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1. We shall consider here systems of the form
dz S dz dz,
==Y ayzifi(Zys . s Zny 5ty eis o, 1), [=1,...
a7 g_; uzi+fi(z, Ji di ) ! n,

where the a; are constant and the f; are continuous and in some
sense small.
Denoting the matrix of elements a; by 4, the vector with

components z by z and the vector with components f; by f
we have '

(1.0) %:Az—{—f(z,%?t,t).

n
The norm of a vector z is denotes by |z|=3|z]. The norm
of a matrix 4 is defined by the formula =

n
Al =
. 4] gjg‘gil&tﬂ-

We shall assume that £(0,0,#) =0, so that z=0 is a solution
of {1.0), a.nd consider the Liapounoff stability ) of the solution
z==0, This Problem has been considered by Bellman 2), where
hypotheses involving among other things, the existence of and

. of af .
restrictions on P and o where f is f(z,m,t), are assumed.

As Bellman remar_ks in his paper, the author communicated
to h;lm a Proc?f which does not assume the existence of theso
partial derivatives. This proof we now give..

* John Simon Gﬁggenheim Memorial Fellow on le f
chusetts Institute of Technology. ave from the Masse-
:) Cf e g G D. Birkhoff, Dynamical Systems, New York 1927, p. 122,
) ) R. ~Be11man, On the boundedness of solutions of non-linear differen-
tz.al and difference equations, Transactions of the American Mathematical So-
ciety 62 (1947}, p. 347-386. Otl§er references to related work will be found here.
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We shall not consider conditional stability here. By a solu-
tion of (1.0) we shall mean throughout a vector, z(f) with a con-
tinuous derivative, z’(f) which satisfies (1.0).

In the first three theorems we shall assume:

(1.1) The real parts of the characteristic roots of A are all negative.

We shall also assume that there exist two positive constants
e and g, which depend only on 4, such that for small |z| and |m]
(where m is a vector with n components)

(1.2) |f(z, 0, )| < alz|+ Bl
The condition (1.2) is certainly satisfied if
(13)  f@mw,t)=o(z|+|m) as |z|4|m| >0 uniformly in £3>>0.
Theorem I Let z(t) be a solution of (1.0), and let (1.1) and
(1.3) be satisfied. Then if |z(0)| and 12’(0)| are sufficiently small,
|z(B] and |z’(f)| are uniformly bounded over 0t<co and tend
to zero as t—s co. Moreover, the bounds on |z| and |z'| can be ta-
ken as J|z(0)|, mhere J is a constant. -
Theorem I is a consequence of Theorem II. o~
Theorem II If (1.3) is replaced by (1.2) in Theorem 1,

mhere o and § are tmo positive constants mwhich depend only on
4, then Theorem I remains true,

“Theorem III. Let z(t) be a solution of

(1.4) : ‘%:Az+3(t)z+f(z,%1t,t),

0t oo,

mhere B(f) is a continuous square matrix for 0<t<Coo, and
|B(t)| >0 as t—oco. Let (1.1) and (1.2) be satisfied. Then the con-
clusion of Theorem I remains valid.

In case (1.1) is not satisfied, and the real parts of the charac-
feristic roots are non-positive, there is another type of stability
criterion, providing the norm of every solution of the linear sy-
stem with constant coefficients

: d
(t5) N

is bounded as f-»co. (This is the case, for example, if the cha-
racteristic roots of 4 with real part zero are all distinct.)
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Theorem IV. Let the norm of every solufion of (1.5) be
bounded as t—co, Let there exist troo positive functions g(f) and
h(t), such that for small |z| and |m|

(1.6) |f(z,0,8)| < g(t)| 2| +h(D) ],

mwhere g(t) is uniformly bounded over 0 t<Cco mhile h{t)<{1—a
over 0Lt<<oo for some 0<<a<<1. Let

(1.2 “f;(t)dt<oo, ﬂ(t)dt< .

Ther if z(f) is a solution of (1.0), and if |z(0)| and |2'(0)| are
sufficiently small, |z(t)] and [Z(f)] are uniformly bounded over
0 t<co, Moreover, these bounds can be taken as J|z(0)|, mhere
J is a constant,

The conditions corresponding to (1.6) in Bellman’s paper
contain as a factor on the right an additional term which is
o(1) as [z|-+|m|-» 0, which we do not require.

2. We turn first to the proof of Theorem II. A more explicit
definition of the constants o and g will be given first. Let Y(f)
be the matrix solution of (1.5) which is the unit matrix for # =0.
" Thus Y'()=AY(#). Then the hypothesis (1.1) of Theorems I, II,
and III implies that there exist two positive constants 4 and C,
depending only on 4, such that

2.0) [Y(8)] < Ce2, £>0.

The constants ¢ and g in (1.2) need satisfy only the follow-
ing requirement

_atpld]
(2.1) }.>—1—_—73——-C>0.

Clearly (2.{) can be satisfied by choosing « and £ small
enough. We see that in any case f<<1. It is convenient to define

‘ _a+8l4|
(2.2) 0= 1—3 C.
Then (2.1) is
(2.3) A>0>0,

We require now the following well-known lemma:
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Let u{t)>0. Let G{f)>0 be mtegrable and let
@4 u(t) <b+) f Gud, ' >0,

mhere b is a constant. Then

t
(G de
u{ty < be’

To prove the lemma we let
f
- f G@)u(@)dr.
Then u(®)=H (t)/G(t) and (2.4) becomes H'()<bG )+ G #H(®).

—f Glads .
Multiplying by e @ we obtain

d —jG(z)dz —J'G(zbdz
E(He )<bG()

Integrating from =0 we get
GftG(z)dr
H(t)<b(e —1).
Since (2.4) can be written u{f)<<b-+H(f), we see that the
abowe yields the .result of the lemma.
Proof of Theorem II. We have from (1,0) so long as | 2]
and |z’| are small .
Iz (0] <|4||z|+ 1< (4] +a) | z|+BlZ'].
Or

) o)< 42 ).

Thus so long as |z(#)| is ‘small, |2'(t)| is small and thus we
need only show now that {z(f)| is small.

We have (variation of constants formula or as can be veri-
fied by direct substition into (1.0))

i
(2.6) z(t) =Y ({®)z(0) -+ of Y(t——t)f(z(r),z'(-r),r)dr.
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Thus so long as |z(f)| is small we have from (1.2) and (2.0)

. !
|2 < C™2(0)|+CJ ™77 (ol 2 +- |2’ .
Or using (2.5) and (2.2)

i
[z(#)| < Ce™|z(0)| + ae"—"‘ofez’jz('s) |dx.

Setting |z(f)|e” =u(t) we get
(
u(t) < C'|z(0)H~aOf u(z)dr.
Using the lemma we have

u(f) <Clz(0)}e%, t>0,

or .
2| < Clz@]e "~ < Clz(0)], ¢>0,
Thus if [z(0)] is small enough, then so is |z(f)| for all >0,

and by (2.5) so is |z’(t)}. This completes the proof of the Theo-
rem Il and therefore also of Theorem I.

Proof of theorem III. Clearly there exists a constant
P<<co such that |B({t)|<<P. Let

max [B(t)] =y.

For t> 1, we can incorporate Bz into f with the consequence
that o is replaced by a--y. Choose #, large enough so that

@.7) z>ﬁ-‘—|"{—i# c.

" Since |B(#)| >0 and since (2.1) holds, this can be done.
For 0<#<t, we have in the same way as (2.5)

\z’(t)|<|~“1—’~1‘f£§i'—“[z(t)|.
- From this
61 < (0 exp (AL e ),

Tl}us by choosing {z(0)| small enough we can make |z(£)]
and |2(#)| as small as we wish for 0t <C t,. For t>t, we simply

repeat the argument of Theorem 1I with « replaced b
and #=0 replaced by t=t,. b vty
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Proof of Theorem IV. We note that according to fhe
bypothesis of Theorem IV the matrix solution Y () of (1.5), which
is the unit matrix at £=0, satisfies

(2.8) Y@i<C t>0

for some C. )
From (1.0) and (1.6) we have so long as |z| and |2’} are small

|z| < |4]|z]+8®)| 2|+ (L —a)lz'].
Or )
29 |z’] < Va(llA| 48 )|z
Iﬁ other words: so long as |z(f)| is small, |z'(#)| will be small.
From (2.6) we find, using (1.6) and (2.8), that so long as |z|
and |7'| are small . ,
|2 < Cl2()|+Cf (g)|z(@) |+ k()2 @ dr.
Using (2.9) this becomes ) ' .
(2.10) 2(0] < C120)|+f GE)|2() d=.

where

G(t)=Cgt)+C/a( 4| +8E) R
Obviously N
[G@dt<<oo.
L]
Applying the lemma to (2.10) we get

ftc ds femd‘
(.11) 1z(t)] < Cz(0)|€’ < Clz(0)]e

Thas if |z(0)| is chosen small enough, |z(#)!, whell-e t(} 0, is small,
and by (2.9) so is |z'()]. Thus (2.11) and (2.9) establish Theorem IV.

(@)

Mathematics Institute, Copenhagen.
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