COMMUNICATIONS

Now if $A \subset B$, let C = B - A. As we have just shown, $A \circ C = A + C = B$ and $A \circ B = A \circ A \circ C = C = B - A$.

In any case $A \circ B = A - B$. A similar argument shows that $B \circ A = A - B$.

 4° If A is any set, then $A^{-1}=A$.

It is sufficient to show that $A^{-1} \subset A$. Suppose not. Choose $p \in A^{-1} - A$. Then $A \circ (p) = A + (p)$ and $A^{-1} - (p) = A^{-1} \circ (p) = [(p) \circ A]^{-1} = [A + (p)]^{-1}$. Furthermore we have $[A + (p)]^2 = [A \circ (p)] \circ [(p) \circ A] = A^2$.

Now for any set B we have $B=B^{-1} \circ B^2 \subset B^{-1} + B^2$. In this relation put B=A+(p). We obtain

$$A+(p)\subset [A+(p)]^{-1}+[A+(p)]^2=[A^{-1}-(p)]+A^2$$

Since $A^2 \subset A$ and $p \, non \, \epsilon A$, we find that p appears in the set on the left of this relation but not in the set on the right: a contradiction.

5° If A and B are disjoint, then $A \circ B = A + B = B \circ A$.

 $B=A\circ A\circ B\subset A+(A\circ B)$, hence $B\subset A\circ B$. Similarly, $A\subset A\circ B$. Hence $A+B\subset A\circ B\subset A+B$. In the same way $B\circ A=A+B$.

6° If A and B are any two sets, then $A \circ B = A - B$. $A \circ B = [(A - B) \circ AB] \circ [AB \circ (B - A)] = (A - B) \circ (B - A) =$ = (A - B) + (B - A) = A - B.

February, 1949.

ON A PROBLEM OF SIKORSKI

BY

HENRY HELSON (CAMBRIDGE, MASS.)

Sikorski has posed the following problem 1):

For each $\gamma < \omega_{\mu}$ let Z_{ν} be a family of sequences composed of zeros and ones, each of ordinal type ν ; and suppose, for any $\delta < \gamma$, Z_{δ} consists exactly of those sequences which are segments of type δ of the sequences of Z_{γ} . Does it follow that there is a family Z of sequences of type ω_{μ} , such that every Z_{γ} consists of the segments of type γ of the sequences belonging to Z?

The answer is evidently positive if ω_{μ} is the limit of a sequence of ordinals of type ω , which implies that μ is a limit ordinal.

We shall show that the answer is negative for every ω_{μ} smaller than the first regular initial ordinal whose index is a limit ordinal, unless ω_{μ} is the limit of a denumerable sequence; and that the answer is negative whenever μ is not a limit ordinal.

The proof consists in constructing a counter-example.

First suppose μ is not a limit ordinal, and write $\mu = \tau + 1$. Consider the sequences $A'_{\beta} = \{\varrho_{\gamma}\}_{\gamma < \beta}$ of type β (for an arbitrary $\beta < \omega_{\mu}$), composed of non-zero ordinals smaller than ω_{τ} , such that no ordinal appears twice in A'_{β} , and such that the ordinals smaller than ω_{τ} which do not appear form themselves a sequence of type ω_{τ} . For each $\beta < \omega_{\mu}$ denote the set of all such sequences by Z'_{β} . Then for any $\alpha < \beta$, Z'_{α} consists exactly of the segments of type α of the sequences of Z'_{β} .

For each sequence A'_{β} of the sort defined we shall construct a sequence $A_{\nu(\beta)} = \{a_{\gamma}\}_{\gamma < \nu(\beta)}$ of zeros and ones, of type $\nu(\beta)$, where for each $\alpha \leqslant \beta$ we set $\nu(\alpha) = \sum_{\gamma < \alpha} \varrho_{\gamma}$. Take $a_0 = 1$, and adjoin a sequence of zeros of type $(-1 + \varrho_0)$, where $(-1 + \varrho_0)$ is the unique ordinal such that $1 + (-1 + \varrho_0) = \varrho_0$, thus defining a_{γ} for $\gamma < \varrho_0$, all zero except the first. Continue by adjoining a sequence of

¹⁾ See Colloquium Mathematicum 1 (1948), p. 35, P19.

ic

type ϱ_1 , all of whose elements are zero except the first, which is one. If a_{ν} has been defined for all $\nu < \nu(\alpha)$ by means of the ϱ_{γ} for $\gamma < \alpha$, then add a sequence of type ϱ_{α} all of whose elements are zero except the first, which is one. This inductive process defines $A_{\nu(\beta)}$. We have $\beta \leqslant \nu(\beta) \leqslant \omega_{\tau}\beta$, so $\nu(\beta) = \beta$ whenever β is a multiple of ω_{τ}^{α} . For ordinals β of this form, define Z_{β} as the family of all sequences A_{β} derived from elements A'_{β} of Z'_{β} ; the correspondence between Z_{β} and Z'_{β} is one-one for each such β . Define Z_{α} in general to be the family of segments of type α of sequences belonging to Z_{β} , for any Z_{β} already defined where $\alpha < \beta$.

The Z_{α} so constructed satisfy the conditions of the problem, but there is no sequence of zeros and ones of type ω_{μ} , each of whose segments belongs to a Z_{α} . For if there were such a sequence A, we could reverse the process by which the Z_{α} were defined to produce a sequence A' of ordinals smaller than ω_{τ} , in which no ordinal appears twice, and of ordinal type ω_{μ} .

To consider the case where μ is a limit ordinal, find λ so that ω_{λ} is the smallest ordinal such that ω_{μ} is the limit of a sequence $\{\delta_{\gamma}\}_{\gamma < \omega_{\lambda}}$ of type ω_{λ} . If $\lambda = 0$, ω_{μ} is the limit of a denumerable sequence, and the solution is positive. Suppose λ is an infinite limit ordinal; then ω_{λ} is not the limit of any sequence of type smaller than itself. That is to say that ω_{λ} is a regular initial ordinal with limit index, or that \aleph_{λ} is an inaccessible cardinal.

Certainly ω_{μ} is not smaller than ω_{λ} ; the problem remains open for this case.

The only remaining possibility is that $\lambda > 0$ is not a limit ordinal, and we can extend the preceding construction to establish a negative answer as follows:

Since λ is not a limit ordinal, we can construct sets Z_{α} (for all $\alpha < \omega_{\lambda}$) so that Z does not exist. For each sequence $A_{\alpha} = \{a_{\gamma}\}_{\gamma < \alpha}$ define a sequence $C_{\delta_{\alpha}} = \{c_{s}\}_{s < \delta_{\alpha}}$ of type δ_{α} by setting $c_{s} = 0$ unless $s = \delta_{\gamma}$ for some $\gamma < \alpha$; in which case set $c_{s} = a_{\gamma}$. Let Y_{α} ($\alpha < \omega_{\mu}$) be the set of sequences of type α so constructed if α is some δ_{γ} ; otherwise define the sequences of Y_{α} by means of the segments of sequences already defined.

The sets Y_{α} evidently furnish the counter-example.

SUR UN PROBLÈME DE SIKORSKI

PAR

E. SPECKER (ZURICH)

Dans une conférence tenue à Zurich, Sikorski a posé le problème suivant. Soient: ω_{μ} un nombre initial régulier 1) et, pour chaque $a < \omega_{\mu}$, D_{α} un ensemble de suites de type α formées de 0 et de 1, les D_{α} jouissant des propriétés suivantes:

- (1) D_1 n'est pas vide,
- (2) Si $\alpha < \beta < \omega_{\mu}$, toute suite de D_{β} est un prolongement ²) d'une suite de D_{α} ,
- (3) Si $\alpha < \beta < \omega_{\mu}$, toute suite de D_{α} admet un prolongement dans D_{β} ,
- (4) $\overline{\overline{D}}_{\alpha} < \aleph_{\mu} \quad (\alpha < \omega_{\mu}).$

Sous ces hypothèses, existe-t-il une suite de type ω_{μ} qui soit pour tout $\alpha < \omega_{\mu}$ prolongement d'une suite de D_{α} ?

Sikorski a déjà posé le même problème ") pour des ensembles jouissant des propriétés (1), (2), (3), et Helson a montré 4) que la réponse est négative pour $\omega_{\mu} = \omega_{\nu+1}$. En m'inspirant de sa méthode, j'ai réussi à prouver que la réponse au problème embrassant la propiété (4) est négative pour $\omega_{\mu} = \omega_{\iota}$. Nous avons ensuite remarqué, Sikorski et moi, que sous l'hypothèse $2^{\aleph_{\alpha}} = \aleph_{\alpha+1}$ il en est de même pour $\omega_{\nu+1}$, quand ω_{ν} est un nombre initial régulier; cette communication est consacrée à démontrer cela par la construction d'un exemple.

Considérons des suites formées non pas de 0 et de 1, mais — ce qui revient au même d'après Helson 4) — d'éléments appartenant à un ensemble E_{ν} de puissance \aleph_{ν} . Admettons de plus que l'ensemble E_{ν} est ordonné. Toutes les suites considérées

¹⁾ F. Hausdorff, Mengenlehre, 3-me édition, Berlin 1935, p. 73.

²⁾ Une suite $b = \{b\}_{\xi < \beta}$ est dite prolongement de la suite $a = \{a\}_{\xi < \alpha}$, si $a_{\xi} = b_{\xi}$ pour $\xi < \alpha$, ce que nous noterons $a \subset b$.

⁾ voir R. Sikorski, Colloquium Mathematicum 1 (1948), p. 35, P19.

⁴⁾ Henry Helson, On a problem of Sikorski, ce fascicule, p. 7-8.