o
108 C. W. Saalfrank. Im

We define a map G such that G: T—>A4 by

G(x)=F'(»,1), for ®eT.

Now @ retracts 7' onto A because for any a e 4 we have
Fa)=F"(a,1)=F(a,1) =f{a,1) = 0.
Hence by (3.6) 4 is an AR.
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What paths have length?
By
Karl Menger (Chicago).

In the classical theory, the length of the curve y=f(z) (a <z <b)
b
is determined by computing the integral f Vi57+(@) dz. Geometri-

cally, this means that in determining the laength of an arc we really
compute the area of a plane domain. The length of the circular
arc y=J1—a* (0<<w<Cb) is the area of the plane domain (0<e<d,
0<y<1/}'1-—w2). If the arc happens to be a quarter of a circle,
the domain is not even bounded.

In a series of previous papers?), the author has developed
a more geometric approach to the problem based on the definition
of the lergth of a path as the limit of the lengths of inseribed polygons
which get indefinitely dense in the path. This length was studied
in spaces of increasing generality. For instance, when applied to
vector spaces our results comprise not only Finsler spaces but
spaces with locally Minkowskian metries in which the indicatrices
(or unit spheres) are positive in some directions and negative or
zero in others. On each stage we formulated sufficient conditions

1) [1] Mathematische Annalen 103 (1930), especially pp. 492-501. —
[2] Fundamenta Mathematicae 25 (1935), p.441. — [3] Three notes in the
C. R. Paris 201 (1936), p. 705; 202 (1936), p. 1007; 202 (1936), p. 1648. — [4] Ergeb-
nisse eines mathematischen Kolloquiums 8 (1937), p. 1-87.— [5] Proc. Nat. Acad.
Sc., 23 (1937), p. 244, — [6] Ibid., 25 (1989), p. 474. — [7] Rice Institute Pamphlets
27 (1940), p. 1-40.— Cf. Pauc, Les méthodes directes en caloul des variations et en
gdoméirie différenticlle, Hermann, Paris 1941. — In [7], metric methods are also
used for the formulation of necessary and sufficient conditions for a line integral
to be independent of the path. We add a bibliography of more Tecent results
along these lines: Menger, Proc. Nat. Acad. Sc., 25 (1939), p. 621. — Fubini,
ibid., 26 (1940), p. 190. — Menger, ibid. 26 (1940), p. 660. — Artin, ibid.,
27 (1941), p. 489. — Menger, Reports of a Mathematical Colloquium, 2-nd ser.,
2 (1939), p. 45. — Milgram, ibid., 3 (1940), p. 28. — de Pazzi Rochfard,
ibid., 4 (1940), p. 6.


GUEST


110 K. Menger:

for the existence as well as the lower semi-continuity of the length.
Since lower semi-continuity in a well known way implies the ex-
istence of minimizing paths we thus derived exisfence theorems
not only for positively definite but also for semi-definite and inde-
finite problems of the calculus of variations.

In the course of these studies .it became clear that such topolo-
gieal concepts as neighboring paths should not be based on the
distance in terms of which the length of polygons and paths is defined.
The topological concepts should rather be introduced in terms of
a basic topology of the space. Only for the sake of simplicity we
deseribed, and continue to describe, this topology in terms of
‘a metric space but we might as well describe it in terms of any
“topologically equivalent metric 2).

In the present paper we shall formulate conditions which are
not only sufficient but at the same time necessary for the existence
of a finite length. On the other hand, we shall not compare the path
with neighboring paths. Hence we shall treat the path intrinsically,
‘that is, as a closed interval of real numbers?3). We shall choose
the interval J=[0,1] and shall describe its topology in terms of
the euclijean distance |s—y| of the points & and y.

The lengths of polygons and the length of I will be derived
from a distance d(w,y). More precisely, we assume that with every
ordered pair of numbers #,y-of J a real number oz, y) is associated,
called the distance from @ to y, which is connected with the under-
lying topology only by the following one-sided continuity con-
dition 4):

%) In [4] and [7] 1. ¢.) we prove that in theorems of the calculus of varia-
tions which refer to rectifiable paths or to paths of uniformly bounded lengths,
the ordinary length may be replaced by one derived from a more general distance
of coz{xparison 80 that altogether we distinguish three meirics in the caleulus of
variation: the metric which describes the topology and is metrically insignificant;
the metrie for which we wish to minimize the length; the metric of comparison.
In the classical caleulus ‘of variations, including Tonelli's theory, one studies
only the euclidean metric as the metric describing the topology of the underlying
vec_tor space and at the same time as the metric of comparison while the Iength
which we wish to minimize is obtained by a multiplicative distortion of this
metrie — the integrand being the distorting factor.’

) We have formulated an intrinsic definiti ;
if the path is imbedded in a space. Of. C. R.n gg‘lilsozfzih(elgzlslie%t_ ?7f3§_ath oren

#) In subsequent papers we shall also admit comples distances, -in fact,

_d.istances ?elonging t0 a normed group. We shall furthermore weaken the one-
sided continuity condition mentioned above.
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For each 6>0 there emists an 7(8)>0 such that |s—a'|<< ()
implies |8(@,2)| <8, - ‘ _

We shall not assume that, conversely, for points »,’ whose
distance d(w,2') is small, the number |z—a’| is small. Even if both
S(z,’) and 8(x’,x) are small or =0, we shall not be able to conclude
that |[¢—ao’| is small.

Under this assumption we shall formulate conditions which
are both necessary and sufficient in order that I have a finite
length. : ’
With regard to the relation between length and area, our
theory reverses the clagsical point of view. Instead of representing
the length as an integral or an area, we may represent integrals

b
and arcas as lengths. For instance, we obtain the integral f f(z) dz
a

as the length of the interval [e,b] derived from the distance

8z, y)=f(») - (y—u). In order to. obtain the variation of the function

f(z) as a length we set &(w,y)=|f(y)—f(»)|. What we may call the
b

left-side Sticltjes integral ®) f f(@)dg(z) is derived from the distance
a b
S, y)=1(@)-(¢(y)—g(x)). The Weierstrass line integral®) f Flo, &) @t

where @ is a vector in any vector space, and f is positively
homogeneous of degree 1 in #, is obtained by setting &(t,t")=

"= f((t),w(t') —a(t).

We begin by defining the necessary auxiliary concepts.
By a polygon we mean an .ordered set P= {@g,®y,..erBr1,%n} O
elements of J such that n>1 and y<4y <...<py<¥,. We call

@y, ..., Tn_q the inmer points of P. The polygons P and @={y,,:..,Ym}

are said to be ewclusive if the closed intervals [2,,%.] and [¥g)Ym]
have at most one point in common. The polygon P is called an
end-to-end polygon if x,=0 and z,=1.

We set

yP=Max. (mH—l —mg), UP:CUH'-—.’DO, ’

5) of. the author’s paper The Stieltjes integrals considered as lengths, Ann.
de la Soc. Pol. de Math: t. XXI (1948). ) .

8) Concerning Weierstrass integrals eof. [7] L c.?) .and, in particular,
Pauc’s comprehensive presentation in his booklet Les méthodes directes.
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112
and call these numbers the norm of P and the span of P, respectively.
By the length of P we mean the number

AP= Zb(y, Be41),
by the absolute length of P the number

AP =X |8(m1, wu4a) |-

We call
2P = 0%, %)
the ¢hord of P. Of importance for our purpose is the following number
P—AP .
#P= - it yP==0.
[2F] x

We call »P the coniraction of P and complete the definition

by setting
¥P=-+oc0 if yP=0>AP,
¥P=—0c0 if xP=0<AiP.

#P=10 is equivalent with AP=yP which, in a euclidean
space, holds if and only if P is an ordered linear polygon. In case
that yP >0, the condition »P=1 is equivalent with 1P=0.

We call a sequence of polygons {P,} distinguished if each P,
is an end-to-end polygon and lim »P,=0. We set

A Ppy=lim sup AP, ard A{P,}=LliminfAP,.

‘We call the least upper bound of the numbers A*{P,} for all
distinguished sequences the upper length of J, the greatest lower
bound of the numbers A, {P,} the lower length of . We say that J
hag a length if upper and lower lengths are equal.

We say that J is of bounded absolute length if the least upper
bound, A, of the numbers AP for all end-to-end polygons is finite.
Clearly, if J is of bounded absolute length, and has a length 29,
then .

[Ag} < 4.

In terms of these concepts we shall prove the following

Theorem. If J is of bounded absolute length, them in order
that J have a finite length it is necessary and sufficient that for cach
£>0 and »>0 there ewists o v=1v(g,%) >0 such that for each finite
set of exclusive polygons Qy,Qy,...,Qx whose spans are <v and whose
contractions are > we have
(1) 2120 <
2) LAQi>—e.

icm
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_ Necessity of 1). If Condition 1) is not satisfied, then there
exist two numbers ¢, and %, both >0, such that for each 2 there
exists a finite set Q={01,€5,....¢%} of exclugive polygons of
spans <1/n and contractions >x, for which

AV
For each n, since the span of each QF is <1 /n we can complete
the polygons of @ to one polygon ¢ of a norm <1 /n. The polygon P*
obtained from @" by omitting all the inner points of the %, poly-

gons @ likewise has a norm <1/n. If 2, is the sum of the lengthg
of the polygons completing the &, polygons ¢F to @, then

AP"=2,-+Z Q7 and  AQ"=2A,+ZAQ7.
Since the contraction of each @7 is >#, we have

ZQ?<XQ?'“”0|XQ?I ("“:‘:1723""]5!()

and thus
1< bk Zr@i—moZln @l -
Hence
Q< AP" —n, ]G < AP"—ry- 5.

‘We see for each n there exist two polygons P* and Q" of
norms <1/n whose lengths differ by more than e, Thus & hag
no finite length. v ‘ . -

Necessity of 2). If Condition 2) is not satisfied, then there
exist two numbers g, and x, both >0, such that for each # there
exists a finite set @ of exclusive polygons ¢i,...,Q%, whose spans
are <1/n, whose contractions are >, and for which

*) 2 < — &

Since the necessity of Condition 1) hag been established we can
agsume that '
{**) lim 2| 7Q7| = 0.
n-»eo

Tor each n, we form @ and P* as before and have

. AP = dt 2@ and AQ"=Ank ZAQL.
Thus :
AQ"— AP = ZAGT — Ty Q1.

Fundamenta Mathematicae, T, XXXV
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From (*) and (**) it follows thab
lQ";-lP"<,—eo/2 for all large n,

and again g has no finite length.

Sufficiency. We begin by proving: If Conditions 1) and 2)
hold, and thus for every >0 and »>0 a number »(¢ %) with the
specified properties exists, then for-every » >0 and { >0 the following
condition holds:

Condition Cg. For each polygon whose norm 4s sufficiently
small, namely, <v=3w([b,%), there exists a number v' >0 with the
property that each polygon Q whose norm is <v', satisfies the incquality

1Q>AP—x- AP—L.

By assumption, for every finite set of exclusive polygons
GQyy...,Qr whose spans are <v=19({/5,%) and whose contractions
are >z, we have
1) Qi <5,

@) - 220i>—L 5.

Let P be any polygon whose norm is <». Let P be the polygon
{®g, ...} 80 that n41 is the number of points of P. For the number
£/5n we form fhe number 7(Z/5n) mentioned in the basic continuity
postulate, that is to say, the number for which
() jp—o'| <7 implies |8(w,@')| < ¢ /Bn.
If »' denotes the smaller of the two numbers
7 and 4 Min. (#44—a);

then we shall prove that »’ hag the property claimed in Condition Cy.

In order to prove this contention, let @ be any polygon whose
norm is <»', Hence

(3) vQ <} Min, (w41 —a)
and. I ,
4 1@ <n=n(¢/5n).

For each point a4 of P we denote

by yiy the first point of @ which ig >my,
by yap the last point of @ which ig i .

What paths have length? 116

‘We shall set

Q=Y Yiw+15 -1 Yn0}
and
QF ={B0, Y10, Y5011+ Unp 1o}

From (3) it follows that
B <Yy <Ynty L (i=0,1,...,n—1).

Hence each @ containg at least two points and thus is a polygon,
while each @ is a polygon containirg at least three points. The
points yup and Yern of @ are consecutive and

Y K1 <Yjen) (i=0,1,...,n—1).
Trom (4) it thus follows that ‘
{5) [8(a, gl <C/5n and |8y, Yen)] <E/5n.

The spans of @; and @ are <ays—a<». The polygons
0%,...,Q%; are mutually exclusive. Also the polygons ohtained by
veplacirg some (or all) of the ¢f by the eorresponding @ are mutually
exclusive. We have .

297 = 6o, Ysn) -+ 2Qi+ 0(Yr s B}
From (5) it thus follows that
{6) 2Qs> AQF—2 [Bn.
If we seb Yuo=1o,, then
2Q=X2Q1+ Z3(yno) Ys+v)-

Hence by (b)
69] 2Q>Z2Q—L /5.

We shall say that a given polygon Qr is of the first kin.d if
%Q} >, of the second kind if %Q¥<%. We shall denote su.nmlatlons’
restricted to polygons of the first kind or the second kind by X
and by X, respectively. We have

(3) ZAQ=2"2Qi+ 2"
Now polygons of the first kind have spans <» and contractions

. Thus by (1’
>x. Thus by (1), 2’{7{@1{<C/5,
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that is to say,

(9) 26wy t141) < £/

and by (2%)

(10) 2 AQi>—L/5.
From (6) it follows that

{11) ] Z2UAQi>Z QT —2L 5.

Since for each polygon of the gecond kind #@f< x» we have
AQY =@ —x- |1 QF].

Thug
2UAQF = I Q@ —wZ| Q| > 2V g Qf —n - AP=5"" 8@ t01a)— 2~ AP =
=AP—2"0(2;,%41) —2 - AP.
By (9)

LUAQF > AP —L )5 —x-AP. )
Combining the last inequality with (7), OS), (10), (11) we
conclude '
Q>P—n-AP (.
Thus conditions Cy is satistied.

We conclude the demonstration of the sufficiency of the Con-
ditions (1) and (2) by proving:

If T is of bounded absolute length and Condition Cy holds for

every » and &, then J has o finite length,
Let A De the finite least upper hound of the numbers AP for

all polygons. Clearly, the upper length 2* of & ig finite and there

exists 2 mazimal sequence of bolygons {P,}, that is to say,
2 sequence such that

lim 7Pn= A%,

We claim: for every £>0 there exists a »' >0 such that
for each polygon P whose norm is <»" we have

].P>l*—-s.

We choose # so large that AP, 2% — 3. We further o .
x and ¢ so that ‘ n &3, Wé farther choose

C<ﬁ3 and  x<g/34.

Under these circumstances, Condition (1.

ields our con-
tention. E 8§ our (o
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In subsequent papers we shall formulate conditions which

are both necessary and sufficient for & to have the length oo, in

which ‘case the interval will, of course, be of unbounded absolute
iength. On the other hand, in connection with the theorem which
we have proved above, the question arises as to whether an interval

-of finite length is not eo ipso of bounded absolute length.

We conclude this paper with an example for the fact that

finite length is compatible with unbounded absolute length. One is

reminded of infinite series which converge without converging
absolutely — except that there are more polygons in J than terms

or partial sutns in an infinite series.

Our example is based on the following auxiliary function f
which is defined for all inbegers:

f(en)=% and (2n+1)=—}% (n=0,1,...)

We divide 9 into 8 equal segments and define the distances
of the end points as follows:

ofi, 2 =i

We further set
a(; g) a(z ”fl)+a(%+1 i+2 >+ +5( ,-g-) for i<
In particular,

80, 1) =p—+i—t+Hi—+b—i=

‘Next we divide each of the mtervals
segments and defme

o422+ o) =t 16,

" } into 8 equal

Again, we set
e 1 :
(Bl i) s(b B o o Bk,

Proceeding in this way we set

in &
&8

Dt

%’,‘.:‘,+“"+1) His) oo+ flines) -F(in)

( +.. +*’,’,j -
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and define a distance 6(w,y) for every two octogonally rational
numbers # and y of J such that z<<y. We seb 6(y,2)=d(w,y) and
d(m,)=0. If two octogonally rational numbers differ by less than
1/8n, their distances differ by less than 1,27 Hence it is easy to
axtend the definition of §(,y) to any two numbers # and y of &
The length of each end-to-end polygon is 1. The absolute length
of g is unhounded 7).

7) A slight modification of the above construction leads to an are having
the absolute length oo and the length 0. We divide the interval [0,1] into four
instead of eight equal parts and define the distances from 0 to , and from } to
3 to be £, and the distances from 1 to } and from 4 to 1 to be —1. Iteration of this
procedure leads to the indicated result.

Mr. Sheldon L. Levy pointed out that the original example (with divisions
into eight parts) can be simplified. It is sufficient to divide the interval [0,1]
into three equal parts and to define the distance from 0 to  as 3, the distance
from 4 to § as —f, and the distance from £ to 1 as . Iteration of thig procedure
eads to an arc whose absolute length is co and whose length is 1.

Iitinois Institute of Technology, Chicago.
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Group invariant continua.
By
A. D. Wallace (New Orleans, La., U.S.A).

1. We denote by X a compact (=Dbicompact) counected
Hausdorff space. Let Z be a group which is also a topological space.
It is not required that Z be a topological group. Let f be a map
(=continuous transformation) of Zx X into X. Writing Z multi-
plicatively it is assumed that -

f(e_,ob): o for each ® ¢ X, ¢ the neutral element
and .
1o, fle, @) =f(ez',2) for each v e X and 22" < Z.
On setting #(#)= f(z,#) 1t may easily be verified that z is
a homeomorphism of X onto X and that #* is the inverse of # as
a transformation. Accordingly we shall say (somewhat incorrectly}
that Z acts as a group of homeomorphisms on X.
It A is any subset of X we define Z(4) as the union of all the
sets #(4), # ¢ Z. Tt is an immediate consequence that

Z(A)=U 2(4d)=U Z(a).
z€Z agh

A subset A of X will be termed Z-inveriant if Z(4)=A or,
equivalently #(4)=4 for each z in Z. Clearly X is Z-invariant.
In this note we prove among other things the

Theorem. Leét X be metric and locally conmected. 1f Z is abebian
then there ewists o Z-invariant cyclic element. )

The first result of this character was proved by W. L. Ayres[1]
who assumed that Z was generated by 2 gingle map, i.e., that Z
wag eyelic. For other results of this type see [6], Chap. XII, and [5]
and the reference given here to G. E. Schweigert. In addition
to extending this result from the case in which 'Z is cyclic to the

cage in which Z is merely abelian we remove the restrictions that X
be metric and locally connected.
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