icm

With these facts in mind, let us consider a manifold M made up of two copies K'^* and K''^* of the anchor ring K^* by matching their toral surfaces in such a manner that for every $\xi \in T$ the points $q(\xi)$ and $q_{-1}(\xi)$ are identified. It is clear that the mapping g defined as q_1 in A_1 and as q_{-1} in A_{-1} constitutes a homeomorphism mapping the set $S^{(3)} = A_1 + A_{-1}$ onto M. But M is a 3-dimensional manifold obtained from two anchor rings K'^* and K''^* by matching their toral surfaces in such a manner that the circumference \mathcal{E}'_0 of the generating circle of K'^* is matched with the circumference \mathcal{E}_0'' of the generating circle of $K^{\prime\prime\ast}$. It is known 4) that this condition determines completely the structure of the manifold M. Namely M is an oriented manifold with the Heegaard diagram 5) consisting of the anchor ring and the system of two circumferences-boundaries of two generating circles. This manifold is homeomorphic to the cartesian product of the circumference and the 2-dimensional sphere 4).

Thus we may state the following

Theorem. The third symmetric potency of the circumference is homeomorphic to the cartesian product of the circumference and the 2-dimensional sphere.

A theorem on the structure of homomorphisms.

By

Roman Sikorski (Warszawa).

This paper is a supplement to my paper [1]. Terminology and notation are in this paper the same as in [1].

Let A be a σ -complete Boolean algebra and let S and $\mathfrak{s}(A)$ denote respectively the set of all prime ideals of A and the set of all prime ideals of A which do not contain an element $A \in A$. As Stone has proved 1), $S = \mathfrak{s}(A)$ is an isomorphism of A on a field of sets $S = \mathfrak{s}'(A)$.

Let No denote the class of all sets

$$\mathfrak{s}(A) - \sum_{n=1}^{\infty} \mathfrak{s}(A_n)$$

where $A, A_n \in A$, and $A = \sum_{n=1}^{\infty} A_n$.

The class N of all subsets of sets $\sum_{n=1}^{\infty} N_n$ where $N_n \in N^0$ is a σ -ideal of subsets of S.

Let Z denote the class of all sets $Z \subset \mathcal{S}$ which can be represented in the form

 $Z = S - N_1 + N_2$

where $S \in \mathcal{S}$ and $N_1, N_2 \in \mathbb{N}$. Obviously $N \subset \mathbb{Z}$ and $S \subset \mathbb{Z}$. We have then 2):

(i) Z is a σ-field of subsets of S.

(ii) The mapping \$\bar{s}\$ defined by the formula

$$\bar{s}(A) = [s(A)]$$
 for $A \in A$

is an isomorphism of A on the σ -quotient algebra Z/N.

⁴⁾ H. Seifert and W. Threlfall, Lehrbuch der Topologie, Leipzig 1934, p. 220.

⁵⁾ P. Heegaard, Sur VAnalysis Situs, Bull. Soc. Math. France 44 (1916), p. 161.

¹⁾ Stone [1], p. 106. In general, the field S is not a σ -field.

²⁾ The proof of lemmas (i) and (ii) is similar to the proof of theorems 5.2 and 5.1 respectively in my paper [2] (every set $N \in N$ is of first category in Stone's space S). See also Loomis [1], p. 757.

Let now A_1 be another σ -complete Boolean algebra and let S_1 , S_1 , N_1^0 , N_1 , Z_1 , S_1 , \bar{S}_1 have analogous meanings. Then:

(*) For every σ -homomorphism f of A in A, there exists a mapping φ of S_1 in S which induces 3) the σ -homomorphism

$$\bar{f} = \bar{\mathfrak{s}}_1 / \bar{\mathfrak{s}}^{-1}$$

of $Z_i'N$ in Z_1/N_1 , i. e.:

$$\varphi^{-1}(Z) \in \mathbb{Z}_1$$
 and $\overline{f}([Z]) = [\varphi^{-1}(Z)]$ for every $Z \in \mathbb{Z}$.

Theorem (*) explains the structure of σ -homomorphisms between arbitrary σ -complete Boolean algebras. It shows 4) namely that every σ -homomorphism f may be considered as a homomorphism induced by a mapping φ . The study of σ -homomorphisms of A in A_1 can be reduced to the study of some mappings of \mathcal{S}_1 in \mathcal{S} .

Proof. The homomorphism

$$g = s_1 / s^{-1}$$

maps the field S in the field S_1 . Since every two-valued measure on S is trivial 5), there exists 6) a mapping φ which induces the homomorphism g, i. e.:

$$\varphi^{-1}(S) \in S_1^{-7}$$
) and $g(S) = \varphi^{-1}(S)$ for every $S \in S$.

If
$$N \in \mathbb{N}^0$$
, i. e. $N = \mathfrak{s}(A) - \sum_{n=1}^{\infty} \mathfrak{s}(A_n)$ where $A = \sum_{n=1}^{\infty} A_n$, then

$$\varphi^{-1}(N) = \varphi^{-1}(\mathfrak{s}(A)) - \sum_{n=1}^{\infty} \varphi^{-1}(\mathfrak{s}(A_n)) = \mathfrak{s}_1(f(A)) - \sum_{n=1}^{\infty} \mathfrak{s}_1(f(A_n)) \in \mathcal{N}_1^0$$

since $f(A) = \sum_{n=1}^{\infty} f(A_n)$. Consequently

(iii)
$$\varphi^{-1}(N) \in N_1$$
 for every $N \in N$.

This fact implies that

(iv) $\varphi^{-1}(Z) \in \mathbb{Z}_1$ for every $Z \in \mathbb{Z}$.

It follows from (iii) and (iv) that

(v) the formula $\bar{g}([Z]) = [q^{-1}(Z)]$ for $Z \in Z$ defines a σ -homomorphism \bar{g} of Z, N in Z₁, N₁.

We have:

(vi) $\bar{g}([S]) = \bar{f}([S])$ for every $S \in S$.

Let Z be any set belonging to the field Z. By the definition of Z, there exists a set $S \in S$ such that [Z] = [S]. Therefore

(vii)
$$\bar{f}([Z]) = \bar{f}([S]) = \bar{g}([S]) = g([Z]) = [\varphi^{-1}(Z)]$$

on account of (v) and (vi).

Theorem (*) follows immediately from (iv) and (vii).

References.

Loomis L. H. [1] On the representation of o-complete Boolean algebras. Bull, Am. Math. Soc. 53 (1947), pp. 757-760.

Sikorski R. [1] On the inducing of homomorphisms by mappings. Fund. Math. this volume, pp. 7-22.

— [2] On the representation of Boolean algebras as fields of sets. Fund. Math. 35 (1948), pp. 247-256.

Stone M. H. [1] The theory of representations for Boolean algebras. Trans. Am. Math. Soc. 40 (1936), pp. 37-111.

³⁾ Sikorski [1], p. 7.

⁴⁾ See an analogous remark on homomorphisms in my paper [1], pp. 11 and 12.

⁵⁾ Stone [1], p. 106.

⁸⁾ Sikorski [1], p. 10.

⁷⁾ If the sets $\mathcal S$ and $\mathcal S_1$ are considered as topological spaces with Stone's definition of neighbourhoods, the condition: $\varphi(S) \in S_1$ for $S \in S$ means that φ is a continuous mapping of $\mathcal S_1$ in $\mathcal S$.