266 A, Walkulicz.
D’autre part, on vérifie facilewert que ckacure des sommes
suivartes c¢p dorre, pcur toutes les pernutations de ses termes,
%k et seulement % valeurs distinetes:

= R (04 1)+ (0 2) + (0 3)+ (0+4),
=+ {wo+1)+w- 24w 3+ w-4,
Jm=a) 24t (w-2+1)+ w0 -8+ -5,

o=+ (w+1)+ w2+ w3406

=0+ (o+1) 402403+,
ouumg-i- o+l)+w 2+ow-44+w-7,
633=w2—l~(a)+1)—}-a) 24 w-44+w-8,
Ope=02+(0+ 1)+ (0-2+1)+ w4+ w-7,
o=+ (w+1)+{w-2-+1)4w-44+ -8,
036= 0>+ 0+ {0+ 1)+ (0 2+2)+(w-343),
Oo= 0?4 (w-+1)+(w-2+2)+ (- 2+3)+(w-3+4),
o=+ (w+1)+(w+2)+ (0 2+ 3)+(w-4+4),
0z9= 0+ (0+1)+(0+2)+ (0 3+3) (w5 +4),
oy =0?+(w+1)+(0-242)+(w-3F3)+(w-444),
op= 0+ (0+ 1)+ (024 2)+ (@-3+8) + (- 64 4),
Oyg=02+(w+1)+(w-24+2)F(w-4+3)+ (0 -844).

I est ainsi établi que Ey=N,—{30}.

_|._
+
+
+
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Extensions of measure.
By

J. Lo§ and E. Marczewski (Wroctaw).

In measure theory one is especially irterested in extension
problems. This paper deals with the most elemcntary cne, namely
with extension of a measure from ary field M of sets to the field
determired by M and an arbitrary set Z which does not belong
to M),

We get a simple effective method of extersion (canonical
extensions) ?) which can be used in som.e cases (Theorers 1, 2 and 4 8)),
in particular for each measure assuming orly firite values4). We
deal also with remaired cases of infnite values (Theorem 3 and 5 5)).

Terminology and symbolism. We denote by A a fixed Boolean algebra
{e. g. the class of all subsets of a set). An additive and complementative sub-
elass of 4 is called a field in 4. A o-additive field in a Boolean o-algebra 4 18
ealled o-field in A.

‘We use the symbols +, -, C, ete. in both meanings: in the sense of Boolean
algebra for elements of 4 and in the sense of Theory of sets for subclasses of A.
For each Fe.d we denote by E’ the complement of E.

A class IC 4 is called ideal in A if it is hereditary (i. e. if the relations:
ded, Bel and ACB mply 4 e1) and additive. An ideal I is proper it A%1T.
A proper 1deal is prime if, for each He 4, we have Ee X or E' el

1) Comp. O. Nikodym, Sur les fonctions d’ensemble.
du I Corgrés des Math.
esp. pp. 310-312.

2) Our metod has been recently used by Sikorski in his study of homo-
morphisms in Boolean algebras. See R. Sikorski, 4 theorem on e:ctenswn of homo-
morphisms, Ann. Soe. Pol. Math. 21 (1948), pp. 332-335.

®) Prosentcd to the Polish Mathematical Socicty, Warsaw Section, om
September 21, 1945.

4) The possibility of extension in this case is well known. See e. g. A. Horn
and A. Tarski, Measures in Boolean algebras, Trans. Amer. Math. Soc. 64 (1948),
Dp. 467-497, csp. pp. 476-477 and, for g-measures, Nikodym, I. e,

5) Presented to the Polish Matlematical Socicty, Wroctaw Section, on
March 25, 1940. v

Comptes Rendus
des Pays Slaves, Varsovie 1929 (1930), pp. 304-313,
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We call measure in a field 3 in 4 each real additive function u(E) defined
for F e M, such that 0<u(B) <+ 0o. If M is a o-freld 1n-a g-algebra, then each
o-additive measure in B is called o-measure. A measure which assumes precusely
two values 18 called two-valued.

If £ 18 & measure in M and » a measure in N and if moreover M'C N and
#{3M)=»(M) for M € I then » is called an extension o} u to N. An extension which
is a g-measure is called g-ewiension.

1. Extension of fields. M belrg a class of elements of A4
and Z au element of 4, we dLnote by [M, Z] the class of all elements
MZ+NZ’ where M, N M.

It iy easy to see that
(G) [M Z]=[M,Z].
(i) If M is a field in A4, then [M, Z] is the smallest field in A4
which includes M ard (Z).
(iii) If E;e[M Z] (for j=1,2) and E,F,=0, then there is
M, ¥ €M (j=1,2) such that
Bj=M; Z+ N2’ (1=1,2)
M, M,=0=N,N,. :
2. Interior and exterior measure. & being a measure

in o field M in 4, we defme in the whole algebra 4 the intcrior
measure 8 [and the exterior measure u,] by puttmg for each Eed

#{E)=sup p(M) [and 1, (B)=inf e

Where B runs over the class of all M € M such that MCE [or MDE
respectlvely]
It 18 known that, for each 4, Be A4:

(1) If AB=0 and A4-BeM then

#(4)+ py(B)=pu(4+ B).
(u) If ACHM and BCN, where M, N ¢ M and MN= 0, then
- A+ B)=p(A)+p(B) A+ B)=p,(A)+p (B

3. Problem of extensions of measure. The followmg
lemma is obvious:

(i) Let MCN be two fields in A 4 & measure in M, and » an
extension of 4 to N. Then

* MK (N)Kp,(N) for NeN.
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Thus the following problem arises 8):

Let: o be a measure in o fidd I in A, Zed and & a number
such that p(Z)<E<w(Z). Does there ewist an eatension » of u lo
[M,Z] such thal v(Z)=£2%

4. Canonical extensions.

Lemma. If pis a measure in g ficld M in A, Zed and for
each Eed
()= (L’Z) WE)=p,(EZ)

then the functions v, and v* are measures in [, 7).
Proof. Let
Eye[M Z] (for j=1,2) and E.E,=0,
then, by 1 (iii),
Ey=M;Z+N;Z', MjN;jeM, M, M,=0=N,N,
Consequer.tly E;Z=DM;Z, wker ce
V(B + By = 1 [(B,+ E,) Z]—u M Z+M,7)
and, by 2 (ii), .
1My Z 4 M, Z) = 1 (M Z) 4 (M, ) =, B,) + v,( By),
whence finally
(Bt Bp) = vy (1) + v, By).
The proof for »* is quite analogous.
Theorem 1, Let u be a measure in o ficld M in A, and Z ¢ 4.
We put jor cach E e[ M, Z]:

(1) ()= 1(BZ)+ 1, (BZ')
(2) AE)=p1,(BZ)+ 1 (EZ').

Then p and @ are emtensions of p to [M,Z] and
) #2)= () @) i) =i, (B,

Proof. By lemna and 1 (i), ¢ and @ aze measures in [M,Z].
Let M e« M, Consequently, by 2 (i),

M M) = p (MZ)+ p (MZ') = p H).
and anzulogimllv, p(M)=pu(M). Tlus p end p are extensiors of u.
By puttit g B=2 in (1) ar.d (2), we obtain (1) ard (2’). Theorem 1
is thus proved. .

8) Cf e. g. leodym, op. cit., p. 312.
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By transfinite irduction we obtain from Theorem 1 and the
well-ordering prixeiple:

(i) For cach measure u in a field M in A there is an ewtension v
10 A such that the closures of sets of all values of u and v are equal ?),

and therefore, in particular 8):

(ii) For each two-valued finite measure p in a field M in A there
is a two-valued finite ewtension v to A,
or, equivalently,

(iii) For each proper ideal X in A there is a prime ideal P in 4
which includes I.

With the help of Theorem 1 we answer by positive (and
effectively) the general problem of this paper under the hypothesis
w(Z)< +oo. Nancely we ohtain directly from Theorem 1 the

Theorem 2. Assume the hypotheses of Theorem 1, and more-
over u,(Z)<<+oo. Let

(3) (2 < E<p,(2)

or, in other terms,

(4) b= (1= (Z)+0u,(Z) where 0<LH<L .
Then, the function

(5) m{B)=(1—98) u(E)+Ip(E)

is an extension of w to [M,Z] such that m(Z)=E&.
The proof is trivial. The hypothesis p,(Z)<<+oo is used for
the logical equivalence of (3) ard (4).

' We call canonical each extension defined by formula (5) and,
in particular, one defired by (1) or (2).

5. Case of infinite measure. We pass now to the case
#4(Z)=--00. We shall prove with the help of 4 (iii) (ard therefore
non effectively) the following

Theorem 3. Let p be a m-asure in o ficld M in A, and Z e A.
We assume b Z)=+co. Then, for cach E2 p(Z) there is an extension
4 of p to [M Z] such that v(Z)=&.

?) The existence of an extension of u to the whole algebra is well-known

{see e. g. Horn-Tarski, op. cit., P. 477, Theorem 1.21). The condition concerning
the closures is due to R. Sikorski,

8) See e. g. vHorn-Tarski, le.
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Proof. In view of Theorem 1 we may assume without loss

of generality that §<4-oco. Denote by I the eclass of all elements
of M of the form

(6) M+N, where M, Nel, p(M)<+ oo, NZ=0.

The class I is-obviously an ideal in M and we shall prove that I
is a proper ideal. In fact, if ¥ eI, then R is of the form (6), whence

B=M+NCM+Z', BLCMZ, n(BZ)<p,(M)<-+too.

Since u,(Z)=-+oco0, we bave EZ=Z and therefore the wnit
element of 4 does not belong to I. By 4 (iii) (for 4==M), there
is a prime ideal P in M, containirg T.

Now, we pul m{E)=0 for ¥ ¢ P and m(E)=1 for £ e M—P.
The function m is therefore a fwo-valued measure in M, such that
(0 m(N)=0 whenever u(N)<-4oo or NZ=0.

If M e M and MDZ, then M'Z=0, whence, by (7), m(M')=0
‘and consequently m({M)=1. Hence
(8) Mel(Z)=1.

By Theorem 1 there is an extension # of m to [M,Z] such that
m Zy=m, Z) and an extension p of pto [M,Z] such that w(Z)= u,(Z).
We put for Fe[M,Z]

(9) W B)=w(B)+-1m(E), where n=§&—ulZ).

The funetion » is clearly a measure in [M,Z] and we have
by (8) and (%) '

WE)=p(Z)+ . Z)=p/Z)+ 7 -m(F)=¢.
The measure » is an extension of u to [M,Z]. In fact, if M « M,

‘then
2 M) = pu M)+ 7 M) = o M)+ oy ),
whenee
it p(M)<+4oo, then »(M)=p(M) by (7);
i w(M)=-oco, then a fortiori »(M)=oco.

Thiy completes the proof.
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6. Problem of effectivity. In the precedirg paragraph
we have proved TlLeoiems 3 nou cttectively. Now, we shall prove
that Theorem 3 inxplies effectively a well krown theorem, all known
proofs of which are also non effective. ‘

Der ote by E* for each set B of rum bers the set of all cumbers
#, such that |a]| B, ard, for each class @ of sets of numbers, by Q*
the class of all sets E*, where B e Q.

Ot course, for cach field M of subsets of a set 1 of positive numbers

(i) M* is a field of subsets of I*.

(ii) The ficld [M* I} contains M.

(iii) If By, B,eM* and E,CICE, then Ey=0 and B,=T*

Now we shall prove that

(iv) Theorem 3 implies effectively the following proposition:

(*) There is a finite measure in the field M of all sets of positive
integers which vanishes for all finite sets.

For if, let us put x(E)=0 for each finite ¥ eM* and u(B)=-+co

for each ivfirite E ¢ M*. Therefore the furction g is a n:easure
in M*. Denotirg by I the set of all positive irtegers, we have by (iii)

wD=0, p(D)=r+oo.

Thus, by Theorem 3 for &=1 ard by (i), we obtain a finite
measure v in M varishing for all finite sets.

This completes the proof.

Notice fically that Theorem (¥*) follows easily from 4 (ii). Pro-
position 4 (ii) implies also the followirg theorem stronger than (%)=

(%) There is a finite two-valucd measure in the ficld of all sets
of positive integers which vanishes for all finite sels ®). |

W. Sierpiniski bas proved that TLeorem () implies effectively
the existence of a set ncn measurable in the seuse of Lebesgue29).
The analogous problem for Theorem (*) remains open.

9) Theorem of Ulam and Tarski. See e. g. A. Tarski, Une contribution
& la théorie de la mesure, Fund. Math. 15 (1930), pp. 42-50.

10) W. Sierpifiski, Fonctions additives non complétement additives et
fonctions non mesurables, Fund. Math. 30 (1938), pp. 96-99.
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7. Problem of unicity. Th i
ihat ity e following easy examples A and B prove

(i) The canonical exiension is mot unique. .

A. Let us put I=(a,b,¢,d) and denote by M the field which consists of
four sets: 0, I, (a,b) and (c,d). Let Z={a,¢). Consequently [BE,Z] is the field of
all subsets of I. Denote for E e M by u(E) the number of points of E. For each

non negative number £<1 we denote by p_(X) the m . "
by the equalities: #y(B) easure in [M,Z] defined

sl@)=p, (@) =1—¢, p ((B))=p,(()=1+e.

Thus wo obtain a family of different extensions #, of u such that u (Z)=2
B. For the same M and Z let us put ¢

w(@)=2, »((6,d)=-co
and, for 0ge 1
(@) =1~ »(@)=+co, v,(B)=,(()=1+c.

-Then we obtain a family of d.fferent extensions v, of » such that » (Z)=2.
It may be noticed however, that :
(ii) In case
(10} ri(Z) <+ o0

the canonical extension u defined by (1) is the unique extension satisfying (17) B)
Let » be an extension of g on [M,Z] such that

(11) (Z)=p,(Z).
For each M e M wo have .

w(Z) = v (MZ) + »(M'Z)

. w2y = p(MZ) + p (M Z) (by 2 (i5))
w(MZ2) K v (MZ), p(M'Z)<v(M'Z) (by 3 (i)
whence, in view of (10) and (11),
(12) v(MZ)=p (MZ).
For each N e M we havo »(N)=u(WN) and
2(N)= o (NZ) +2(NZ")
W)= p (NZ) -+ p, (NZ') (by 2 ().

Hence, on account of (12) (for M=XN) and (10), if u(N)=-co, then

) »(NZ')=-co=p, (NZ')
and if u(N)< -+oo, then

AN LY=o N )= (N E) = ()~ e, (W Z) = t, (N 2.

1) Propositions (ii) and (iv) are due to Professor V. Jarnik.
Fuadumenta Mathematicae, T, XXXVL* 18
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Thus

a3 v (NZ)=p,(NZ).

The formulas (12) and (13) imply the identity »=pu.
Analogously :

(iii) In case

(14) #,(Z)< + o0

the canonical exiension u by (2) is the unique extension satisfying (2%).

The frllowing simple example shows that

(iv) The condition (10) in (ii) cannot be omitted 1t),

Tet us put I=(a,b,c), and dauote by M tho field which consists of four
gets: I, 0, (a,b) and (o). Lot Z=(b,0); than [M Z) is ths field of all subsets of I.

Danote by u the maeasure in M dafined by the equalities:

u{(a,b))=2, u((e))=-+oco.

Obviously p,(Z)= oo and there are different extensions » of u to [M,Z}]
guch that »(Z)=-c0.

Notice finally that

(v) The condition (14) in (iii) cannot be replaced by (10).

Dinote by I the set of all positive intagsrs and M the class of all subsets
of I. D »note Finally by u( M), £ar cach M ¢ M * (whare tha asterisk is used in the
gense of n® 8) the number of points of M (+oo in case M infinite).

By 6 (iii) we have p(I)=0 and p, (I)=+o0. It is easy to see that there
are diffsrent extensions »’ and »” of p to [M*,I] such that »'(I)=+4co=2»"(I):

o. 8. v'(H) dofined as the numbar of points balonging to B and »"(H) defined
as 20'(BI).

8. c-extensions. Let us suppose that 4 is a Boolean o-algebra.
Then .

(i) It M is a o-field in 4, then [M,Z] is the smallest .o-field
in 4 which includes M and (Z).

For o-fields and o-measures propositions 1 (iii) and 2 (ii) hold
for infinite sequences of elements of 4. Consequently, it is easy
to prove that our effective metnod of extensions may be used for
o-Ineasures:

Theorem 4. If u is a c-measure in o o-field M in A, then the
canowical exlensions of w are c-extensions.

On the contrary, our non-effective Theorem 3 fails foc
o-extensions:
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Theorem 5. There is a o-ficld of sels A, a o-field MCA
a o-measure g in M ond o set Ze A, such that U Z)=0, u (Z)=—-]-007
and that there is no o-ewtension v of u to [M,Z] with 0< :(Z)< ~+o0.

Proof. Let us denote by Z the interval 0<<t<<1, by B the
class of Borel subset of Z and by K the ideal in B which consists
of all Borel sets of the first category contained in Z.

By applymng the notation of n° 6, we put M=B* and

0 for BeK*

(15)
+oo for Ee¢M—K*,

()=

The function u is, of course, a o-measure in 3.

Suppose » is a o-extension of u to [M Z]. By 6 (ii) the o-field
{M Z] contains B and, consequently, » is a o-measure in B. In
view of (15), we have »(E)==0 for each ¥ ¢ K. By a known theorem 2}
we have #(Z)=0 or »(Z)=-o0, q. e. d.

9. Table of results. B denote an effective proof,
E’ — a non effective proof of existence, U — the unicity of extension,
U’ — the existence of different extensions for some measure. N de-
note that the theorem fails for at least one measure.

Extensions.
i then there exists an extension » of u
If p is a measure to [M.Z] such that
in a field M -
and (@) v) w2)=¢ )
v(Z)=pu,(Z) | where p(Z)<E<p, (2)| v(Z) =p,(Z)
(A) BE-—Th.1 E —Th 2 E—Th1
B, (Z) < oo U — 1 (ii) U —1{A U — 7 (iii)
(B) E-—Th.1 E/ —Th. 3 E—Th. 1
p(Z)<p (B =+ oo U — 7 (ii) U —17(i) B T'—17(v)
(C) Be—Th. 1 N — Contradiction E—Th 1
2 (Z)=+oo U"—17 (iv) between (C) and (b) U'—17 (iv)

12) E. Szpilrajn-Marczewski, Remarques sur les fonctions complétement
additives d'ensemble ot sur les ensombles jouissant de la propriété de Baire, Fund.
Math, 22 (1984), pp. 808-311, esp. p. 305, Corollaire,

18*
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s-extensions.

then there exists a o-extension » of p
If 4 is & o-measure to [M,Z] such that
In & ofield 2 @ ®) »z)=¢ )
w(Z)=p,(Z) | where u (Z)<é<p,(2) | v(Z)=p,(Z)
(A) E—Th. 4 E —Th. 4 E—Th. 4
p(Z)<+oo T — 17 (ii) T—17 (i) T — 7 (iii)
(B) E—Th. 4 o Th 5 E —Th. 4
#(2) <py(B)=+co | T—T (i) U'— 1T (v)
©) E —Th. 4 N — Contradiction E —Th. 4
#(Z2)=+c0 7 (iv) between (C) and (b) — 7 (iv)
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Quelques généralisations des théorémes sur les
coupures du plan ).

Par

Casimir Kuratowski (Warszawa),

Soit sur le plan des nombres complexes, augmenté du point
& Pinfini, Ay, Ar un systéme de # (>3) ensembles arbitraires.

Posons
(1) H=Ay+ .. FAp, (2) =Apr1t oot Adppna,
(3) Olr=Ak-[-l 4. +-Alz+u—2; (4) P= 00' el C,,_l,

les indices ¢tant réduits mod.n (dans les formules (2) et (3)).
La seule hypothése faite sur les ensembles A,,..., 4,1 est que
{i) les ensembles Cy,...,0ny sont connexes.
Nous nous proposons @’établir les deux théorémes suivants 2):
Théoréme 1. Soient p et q deuw points situds en dehors de &.
Sous les hypothéses que:
(ii) aucun des ensembles By ne coupe le plan entre p et ),
(iii) Ps=0,
— DVensemble & ne coupe pas le plan entre p ot .

1) Communieation présentée au Congrds des mathématiciens polonais et
tehéquoslovaques & Prague, le 30. VIIL. 1949,

2) Pour n=3, les théordmes 1 et 2 ont été étn.'blls par 8. Eilenberg,
Transformations continues en circonférence et la topologic du plan, Fund. Math. 26
{1936), p. 78 et 79. Les théorémes de Eilenberg généralisent lo théordme ,.sur
trois conlinus“ (voir ma note des Monatsh. Math.-Phys. 36 (1928), p. 77), ainsi
que certaing théordmes de E. Cech, publiés dans sa note Trois théorémes sur
Phomclogie, Publ. Univ. Mas. 19 (1931), p. 20.

?) Un ensemble B coupe le plan entre les points p et ¢ lorsqu’il n emta
ancun continu unissant ces points en dehors de H.

’
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