34 Sze-tsen Hu.

A\
Let E(+) denote the (n+1)-fold Binhdngung of H. Freu-
denthal. Then we have the

Theorem 6.3. If ¢ is a mapping of S* onto tself with degroe b,
then for each ae=zP(8™) we always have

(6.31) Jy(a)=bE’("+1)(a).
(6.32) I ()= (—1)FDentp) bECD ().

Proof. Let g, denote the identity mapping of S Because
of (4.3), we may suppose n>>0. Let go,g represent Bos B e (87)
respectively, then A=bp,. Hence we have Iyla)= N B=b(a fy)-
Let o be represented by f: SP—8", then a“f, is represented by
N ay=1"w vy v, where g, (i=0,1,...,n), denotes the identity
mapping of §°. Hence, by (4.31), /g, represents Ewt) (g), and (6.31)
is proved. (6.32) can be proved by successive use of (4.32).

Bibliography.

Eilenberg, 8. [1] On the relation bet the fundamental group of a space
and higher homolopy groups, Fund. Math., 32 (1939), pp. 167-175.

Fox, R. H. [2] On fibre spaces II, Bull. Amer. Math. Soc., 49 (1944),
pD. 783-785. ) .

Freudenthal, H. [3] Uber die Klassen der Sphdrenabbildungen I. Com-
positio Math,, § (1987), pp. 299-314.

Whitehead, G. W. [4] 4 generalization of the Hopf inmvariant, Proc. Nat.
Acad. Sci. USA, 32 (1946), pp. 188-190. :

— [56] On products in homotopy growps, Ann. of Math., 47 (1946), pp.
460-475. »

Whitehead, J. H. C. [6] On adding relations to homotopy groups, Ann.
of Math., 42 (1941), pp. 409-428. o

— [7] On the groups =, (V,,,) and sphere-bundles, Proc. Lond. Math. Soc.,
II, 48 (1944), pp. 243-291.

icm

Squares are normal.
By

Anthony P. Morse (Berkeley, U.S.A.).

1. Introduction. Two plane sets are finitely equivalent if
and only if they can be split respectively into sets oy, ...,am and
into sets df,05,...,a), in such a way that the corresponding subdivi-
sions are congruent. A plane set S is paradowical if and only if it
can be split into two sets each of which is finitely equivalent to S.
A plane set which is not paradoxical is normal. It has been known 1)
for some time that squares and a variety of other plane sets are
normal. However, all known verifications of the normality of squares
so far published depend in an essential way on the axiom of choice.
By making use of appropriate known devices for establishing the
existence of certain linear functionals we find it is indeed possible
to show, without the axiom of choice, that any bounded plane set
with inner points is normal.

Nowhere in the sequel directly or indirectly do we employ
the axiom of choice.

If @ is a group then those members of & of the form bab—'¢™2
are commautators; the smallest subgroup of G containing the set of
all commutators is the commutator subgroup of G.

If by forming successive commutator subgroups of G we reach,
in a finite number of steps, the subgroup consisting of the identity
then G is a solvable group.

1) 8. Banach and A. Tarski, Sur la décomposition des ensembles de
points en parties respectivement congruentes, Fund. Math. 6 (1924), pp. 244-277.
See also the abstract of a paper of. Z. Waraszkiewicz, Sur Udguivalence de
deus carrés, Ann. Soc. Polon. Math. 19 (1947), p. 239 (meeting of the Society
of Oct. 19, 1945). .
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A function (or transformation) F with domain and range i
veetor spaces is linear if and only if
Flaw+by)= aF(@)-+ bF(y)
whenever @ and y ave in the domain of F, and « and b ave finite

real numbers. . -
A funetion whose range is a subset of the finite real numbers
is a functional. o
Tt T is & vector space and P is contained in I then the span-
of P consists of all the finite linear combinations of members of P.

9. Linear Functionals. Throughout this gection we suppose
that X is a vector space and that & is a group, with respect to super-
position, of linear transformations which univalently map E into
itself. We suppose further that & is solvable and that p is such
a convex functional with domain E that:

p(@ +y) < pl@) + 1Y)
whenever z and y are members of F,
p(ta) =1p(w)
whenever o is in E and 0t<<oo,
plg(@))=p(x)

whenever # is in F and ¢ is in G. :

An examination of Banach’s proof?) of the Hahn-Banacl
theorem followed by a perusal of sections 1 and 2 of a paper ) by
Agnew and myself should eonvince the reader that an effective
proof is possible of the following

2.1. Theorem. If M is a vector subspace of B, P is a countable
subset of M, the span of P is M, H is a subgroup of @, cach member
of H maps M into dtself; then there is such a Uneor funclional f
with domain M that

Hlg(@))=f(a) < pl#)

whenever g is in H and o is i M.

%) 8. Banach, Théorie des opérations lindaires, Monogr. Matemat. 1, War-
saw (1932), pp. 27-29.

3 R. P. Agnew and A. P, Morse, Buxtensions of linear functionals, with.

applications to limits, integrals, measures, and densities, Aun. of Matl, 39 (1938),
pp. 20-30.
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From this follows readily the

2.2. Theorem. If N is a countable subset of B, K is a countable
subset of @, thew there is such a vector subspace M of B, such a sub-
group H of G, and such o linear functional f with domain M that:
N is contained in M, K is contained in H,

Hg(@))=1(2) <plx)
-whenever g is in H and x is in M.

Proof. Let H be the smallest subgroup of ¢ which containg
the set K. Clearly H is countable. Next let P consist of those members
of E of the form g(x) where # is in ¥ and g is in H. Clearly P is
countable. Now let M be the span of P. After checking that M is
2 vector subspace of F and that each member of H is a linear trans-
formation which maps M into itself we complete the proof by refe-
Tence to 2.1. )

8. Normal Sets. Theorem 2.2 makes possible an effective
proof of

3.1. Theorem. FEach bounded plane set with inmer poinis is
“normal.

Proof. Suppose R is the plane and that § is a bounded plane
set with inner points. In order to show § is normal we suppose S
is paradoxical and proceed to a contradiction.

Since § is paradoxical it can be split into two sets 4 and B
<ach of which is finitely equivalent to §. Now 4 and 8§ can be split
Tespectively into sets a;,ay...,0n and into sets of,os,...,on in such
a way that the corresponding subdivisions are congruent, Similarly
B and 8 can be split respectively into sets f,fs,...,f» and into sets
b1,62 ..., fn In such a way that again the corresponding subdivisions
are congruent.

Let E consist of such bounded functionals # on K that the set
of points # for which |x(2)|>0 is a bounded subset of the plane.
With addition and scalar multiplication defined in the obvious
manner F is a vector space.

Let @ counsist of such functions g on E to E that

{g(@)}(2)=o(T(2))
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for some distance preserving transformation T of R into R, each &
in B, and each # in . Clearly @ is a group with respect to super-
position of linear transformations which univalently map E into E.
The commutator subgroup of & is an abelian translational subgroup
of G. Accordingly @ is solvable.

The characteristic function of a set A contained in R, ig, it is.
agreed, the function ¢ on R such that, for each z in R, ¢(2) is 1 or o
according to whether # is in or is not in A.

Let N consist of thoge members of E each of which iy the
characteristic function either of the set ¢ where § iy some integer
for which 1<j<<m, or of the set f, where k is some integer for
which 1<k<n. Clearly N is a finite subset of E.

Tet K be such a finite subset of & that: corresponding to each
integer § for which 1<{j<(m there is a member of K which trang-
forms the characteristic function of a; into the characteristic func-
tion of oi}; corresponding to each integer k& for which 1<<k<n there
is a member of K which transforms the characteristic function
of f; into the characteristic function of ;. Clearly there is such a K.

Recall that § is 2 set with inner points and choose a positive
finjte number & which is the radius of some circle whose interior
is contained in S.

Let p be such a funectional on E that for each in B

p@)=sup > > [{g(@)} (ud,»d)].
gin Gy:—m Y0

A check reveals that p satisfies the suppositions of section 2.

Now ascertain M, H, and f in accordance with 2.2; and let
& £, &' be the respective characteristic functions of 8, A, B.

Evidently every circle of radius 6 has within it some point
of the form (u, »6) where u and » are integers. This, 2.2, and our
choice of 4 and of & tell us

_ =8 <p(=6 <1, f(&)=1;
on the contrary 2.2 alone tells us
HE=FE)+f(E")=2f(§), [(&)=0.

3.2. Remarks. By using a different p and B it is no doubt
possible to effectively show that plane sets of finite outer Lebesgue
measure and positive inner measure are also normal.
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Still another choice of p and F makes it easy to see that the
whole plane is normal. On the other hand, Mazurkiewicz and
Sierpinski have effectively constructed4) a paradoxical proper
subset of the plane.

The notions introduced in the first paragraph of this paper
can be generalized by considering, instead of plane sets, the subsets
of an arbitrary set K and, instead of ordinary geometrical congruence,
the congruence under any group G of univalent transformations
of R into itgelf. We can thus speak of subsets of R which are normal
under @. If the group G is solvable then our methods furnish an effec-
tive proof that R is normal under &. If & is abelian then, as was
effectively shown 5) by Lindenbaum and Tarski, every non-
vacuous subset of R is normal under G.

¢) See W. Sierpifiski’s recent paper, Sur un ensenble plan qui se ddeom-
pose en 2% ensembles disjoints superposables avec lui, Fund. Math. 34 (1947),
pp. 9-14. : .

5) See A. Tarski’s forthcoming book, Cardinal Algebras, Oxford Univer-
gity Prese, New. York, § 16.
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