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Some Impredicative Definitions in the Axiomatic
Set-Theory.

By

Andrzej Mostowski (Warszawa).

Let (8) denote the Zermelo-Fraenkel set-theory based on
the following axioms

(4y) (2, 2,) [(®5) (@ € 3y=05 € By) D5, =],

(da)  (21,25) (Umg) (2y) [, € y=(m,=2,V B, =,)],

(d3) (1) (Hawp) (25) [ € B=(2,) (@4 € %D, € 3,)],

(44) () (Hap) (@) [ € o =(Um,) (@3 € B4, € 2,)],

(dy) (M) (Hay) (5 € - () {@ € 2, D (Hatg) [y 55 € 2,

() (g € 2Dy € 3)1}),

(-As) (a"k) (wlzp '“ﬂfkp) {(“"1) [a’l €D (Hmm) (wn) (¢ == mm)] D
D(qu) (@n) [0 € qu(Hml) (e mk'®)]}9

(4y)  (xy, ...,a"kp) {(Hap) @D (Hay) (D () (@€ 2 D~ D)} ).

(4¢) and (4,) are axiom schemata. The letter @ in (4¢) replaces
any expression (with free variables a;, Ly Lays ooy Thyy and xp2)
built up according to the following rules: If i and § ave integers,
then @;ez; and #;=x; are formulas; if @ is a formula and § an integer,
then (Xz)0 is a formula; if @ and Z are formulas, then so is 0\Z3).
We assume that #, is not free in @.

The letter @ in (4,) replaces a formula with free variables
By Thys s Bp, a0Ad D’ veplaces the formula resulting from @ by sub-
stitution of the letter x; for x; on every place where x; is free in @.
It is supposed that «; is not bound in @. :

1) (4,) is the axiom of extensionality, (4,) — the pair-axiom, (43) — the
powerset axiom, (4,) —the sum-set axiom, (4,) —the axiom of infinity, (44) —
the axiom of replacement, and (4,) — the restrictive axiom (the ,Axiom der
Fundierung“ of Zermelo).

*) x must not necessarily be a free variable of @.

%) Other logical connectives can be defined by the stroke | in the well-
-known manner. -
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We assume in (8) the well-known rules of proof, namely the
modus ponens, the rule of substitution and the rules of omission
and of introduction of quantifiers. Furthermore we assume special
rules which enable us to prove every tautological formula including
the identity-symbol:

By If @, ¥, and O are formulas, then the jormulas

(PD¥)DU¥DO)D(¥DO)], DD(~DDY¥), (~PDD)DD

are provable.

R,. The jormula ay=xzy is provable. :

B, If @ is @ formula, x; is not a bound variable of ® and &
differs from @ only by containing free occurrences of x; on one or several
places where @ contains free occurrences of xy, then the formula

;1?1;:([13(@ = Qpl)
s provable.

Let (§) be the Bernays-Godel system of set-theory. We
shall not describe the details of this system because it is sufficiently
well known from the literature 4). We remark only that every ex-
pression meaningful in (§) is also meaningful in (8’) and every
axiom of () is provable in (§).

It has been proved by Novak 5) that if (S) is consistent, then
(87} is also consistent 8). Since this proof is formalizable in (§7),
it follows that the corsistency of (S) cannot be proved in (§’). On
the other hand (8') arises from (S) by addition of variables of the
next higher type and therefore the so-called definition of truth
for (8) is formalizable in (§8’)7). Since the ,;whole theory of truth®
makes it possible to prove the consistency of a system for which
the notion of satisfaction has been defined 8), we infer that certain
properties of the notion of truth for (S) cannot be established in (8').

' ) See, e. g., Bernays [1] or Godel [2].

%) See Novak [8] and Rosser-Wang [5].

§) It can even be shown that every formula provable in (8‘) and expres-
sible in (8) must be’ provable already in (S). We give here a simple proof based
on results established by Novak [3]. Suppose that & is expressible in (), Ppro-
vable in (§’) but not provable in (§). Let (8;) be the system got from () by
addition of ~® as a new axiom. Then (S,) is consistent and the corresponding
system (8]) obtained from (8;) by the method deseribed by Novak must be
consistent t0o. On the other hand (81) is at least as strong as (8’) and therefore &is
provable in (8}) which is a contradiction because ~ @ is evidently provablein (87).

A more elaborate proof is given in Rosser-Wan g [5].

7) See section 1 below. €) See Tarski [6], pp. 359, 392.
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An exact analysis of this situation leads to the following three
‘theorems the proofs of which will be sketched in this paper:

Theorem I. There is an expression V(x,) of (8') with exacily
one free variable x, such that if @ is an arbitrary expression of (8)
without free variables and n the G5del number of ®, then the equivalence

D =V(n)

is provable in (8')9). The formula V(x,) has the form (HX) A(X,a,)

where A(X,w,) is a formula withoui bound class variables. If @ is .

a theorem of (S), then V(n) is provable in (87), but the general theorem
(1) [y 48 the Qodel number of a theorem of (8) DV ()]

38 not provable in (8') provided that (8') is consistent.

Theorem II. There is an expression O(z,) of the form
{HX) B(X,x,) where B(X,x,) does not contain bound class variables
such that the formulas

6(1) and (n)[6n) DG(n-+1)]

are both provable in (§') but (n) O(n) %) is not provable in (S') provided
that (8') is consistent.

Theorem III. There is an ewpression (x,) of the form
(8X) O(X,s,) where C(X,»,) does not contain bound class variables

" such that the formula

(HX) () [2; ¢ X = d(z,)]

48 not provable in (8') provided that (8') is consistent 11).

1. We begin with the proof of theorem I. In order to construct
the formula V(z,) with the properties required in the theorem we
shall formalize in (§8) the definition of satisfaction and of trut
for (§). Let us therefore recall briefly these definitions. )

9) V(n) is the expression resulting from V(x,) by substitution of the n-th
numeral (suitably defined in (8”)) for the variable .

10) The variable n Tanges over the set of integers defined in (8’).

1) This theorem shows that the system NQ considered by Wang [7] is
essentially stronger than the system of Bernays-Godel. This follows also
from the fact that the consistency of the Bernays-Godel system is provable
in NQ. Co
Fundamenta Mathematicse. T, XXXVII. g
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For every formula @ of (S) there exists a sequence of formulas
(1) Dy Py ooy Pp=P

such that for every i<n @, is either a formula of the form wp=us;
* or of the form rpex; or one of the following two cases is satisfied:

(2) there are integers j, h less than 4 such that @;=0;| Dy,
(3) there are integers j and m such that j<i and @;=(d2,,)P;.

A sequence (1) satisfying these conditions will be called
a construction-sequence or briefly a C-sequence for @.

We denote by s; the set of integers ¢ such that «, is free in @;.

A finite sequence of sets is defined as a finite set f of ordered
pairs {u,v) such that if {u,v>ef and <{u,v,>e<f, then v=wv,. The
w’s of the pairs {u,v> belonging to f form the domain D(f) of f. If
{u,) € f, we write v={f(u). If s CD(f), then fs is the set of pairs {u,v)>
such that u es and <{u,v>€f.

A finite sequence of classes is defined as a class F of finite
sequences of sets with a common domain D which is at the same
time called the domain of F12). If meD, then the class of all y’s such
“that there is a sequence f with the properties {z,y> ¢ f ¢ F is called
the z-th term of ¥ and denoted by F,. Note that elements of F,.
.can be arbitrary sets, in particular arbitrary finite sequences of sets.

To each C-sequence (1) we let correspond a finite sequence
of classes F' with the domain D consisting of all integers <n. If
i<n and @, is the formula @z=ax; or &;e®;, then F,; is the class
of all sequences f such that D(f)={%,j} and f(k)=f(j) or f(k) e f(j)-

If &; satisfies the condition (2), then ¥, is the class of all
sequences f such that D(f)=s; and either fisynoneF; or flsynon eFy

Finally if &; satisfies the condition (3) and ®, is free in @,
then F; is the class of all sequences f such that D(f)=s; and there
exist an integer m and a set a for which f4{<m,ad} ¢ F;. If z, is
not free in @;, then we put F;=F;.

A sequence of classes # which satisfies the above conditions -

is called an S-sequence for ¢ corresponding to the C-sequence (1).
This definition says of course nothing about the -existence

of S-sequences.
We say that a sequence f satisfies @ if there is an S-sequence F
for @ such that feF,. i

1) See Robinson [4].
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If & has no free variables, then the only sequence which can
possibly satisfy @ is the void sequence 0. If 0 ¢F,, we say that &
is true, otherwise that @ is falses).

It is clear that these definitions can be expressed in (§'). The
only difficulty lies in the presence of the meta-mathematical notions
»iormula®, ,quantifier” ete. It is however possible to eliminate
all these notions in favour of the purely arithmetical ones, using
the well-known technique of the Gédel numbers and identifying
the ,linguistic” concepts with their arithmetical eounterparts.

The definition of satisfaction thus formalized in (8') takes
on the form of a formula Sisf (vy,25)=(8X)M(X,u,2,) Where @,
runs over the set of the Godel numbers of formulas and «, over the
class of finite sequences of sets. The definition of truth takes on the
form of a formula V(a;) of the form (HX)A(X,s):

Vizy) = (Hay) () [~ (25 € 2p) - Stsf (2, )]
= (H.X) {(Hay) (25) [~ (3 € 2p) - M( X, y,)]-

We shall now prove a series of lemmas which will lead to the
proof of theorem I. All these lemmas are concerned with pro-
pertfies of formulas of (§) and since we wish to state and to prove
them in (8°) we must explain in a few words in what way such
theorems can be expressed in (§’).

There are two different ways to express in (8’) meta-mathe-
matical theorems about (8). One of them uses the method of Gédel
and identifies expressions with their Godel numbers. Instead to say
that every expression @ of this or other class K possesses a property P
we say that every integer which is the Gédel number of an expression
from the class K possesses the property P’ obtained from P by
substitution of the arithmetical notions for the corresponding meta-
mathematical ones.

‘Whether this method is applicable or not depends on the
nature of the class K and of the property P and notably on the
possibility to define K and P by means formalizable in (8).

A theorem about formulas expressed in this way in the sym-
bolism of (8') becomes a single theorem of (98").

Another possible method is to express theorems about for-
mulas of (§) as theorem schemata of (8’). The general theorem
every @ has the property P is then expressed in the form of an in-

%) Bee Tarski [6], pp. 313-314.
8*
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finite sequence of theorems of (§') each formula @ contributing
one theorem to the sequence. This method is sometimes advantageous
because the arithmetical counterpart P’ of P is not always definable
in (§') and even if it is definable in (8'), the general theorem described
in the preceeding paragraph does not need to be provable in (&)
although each formula of the sequence representing the theorem
schema is provable in (§8’). We shall see later that both situations
can actually oceur (cf. lemmas X; and Zj).

In order to facilitate our exposition we shall always identify
formulas of (§) with their Godel numbers and shall avoid as far
as possible the use of logical symbols. These simplifications, con-
venient though they are, obliterate sometimes completely the dif-
ference between single theorems and theorem schemata of (8).
‘We shall therefore denote theorems by the letter ,,7 and theorem
schemata by the letter ,,2*. We remark that proofs of all theorems
and of all particular instances of the schemata are based exclusively
on the axioms of (§’).

T,. For every formula of the form xz=ux; or .ty e x; there exists
an S-sequence. i

Proof. It is sufficient to take for this sequence a one term
sequence F' such that F; is the class of all sequences {<k,a, {j,b>}
where a=0 or a €b.

Ty If @ and ¥ are two formulas for which there exist S-sequences,
then there exvists an S-sequence for the formula O[¥.

Proof. Let # and @ be the S-sequences for the formulas @
and ¥ and let F, and G, be the last terms of these sequences.
Finally let s; be the set of integers 4 for which ; is free in @ and s,
the set of integers 4 for which «; is free in ¥. From the axioms of (8')
follows easily the existence of the class Z of all sequences f such
that D(f)=s,+ ¢, and either f|s, does not belong to ¥y, or f|s, does
not belong to G,. We obtain now an S-sequence H for the formula
@|¥ putting Hy=F; for i<m, Huy=G; for j<n, and Hapnp=2.

Ty. If there exists an S-sequence for an expression @, then there
erists also an S-sequence for the expression (Hxp,)®.

Proof is similar to that of 7,.

Let now n be one of the integers 1,2,3,... Applying Ty, Ty,

“and Ty # times we obtain the following theorem schemas:

Zy. If @ is a formula of (8), then for every G-sequence (1) ending

with @ there exists a corresponding S-sequence.
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As indicated, X; is a theorem schema; the existence of the
§8-sequences stated in the schema is provable for each formula &
separately. The general theorem

(D) (HF) [F is an S-sequence for @]

is expressible in (8’) but we see no way to prove it from the axioms
of (8').

Z. If @ is an expression of (8) with free variables Liyseees Ly
(1) @ C-sequence for @, and F a corresponding S-sequence, then
(4) f={Kkyyan Dy ollipy a2} D{f e Fr=0).

Proof. We proceed by induction with respect to n, the length
of the C-sequence (1). If n=1, then & has either the form x,=x,
or the form « ex; and F is a one termed sequence such that F,
is the class of all sequences {<k, aD, <k;,b>}, where a=b or aeb.
Hence (4) becomes in this case one of the tautological formulas

F={{kyya: <k2;-t’kz>} D{f e Py =ap=1p,),
J={<kyan), kn 3} D(f € Fy == xy, € ).

Suppose that (4) is provable for formulas with (-sequences
shorter than n and let @ be a formula with a C-sequence (1) of the
length n. We have to consider the two cases (2) and (3).

In case (2) we have @=@;|®, with j<n and h<n. Let s be
the common domain of sequences from #; and s, the common domain
of sequences from Fp. By definition of S-sequences we obtain

(5) f e Fo={(fls;non e F;Vf|s, non e Fy).
The inductive assumption gives the equivalences
fiSjEFjE@j, fIS},E,FhE@h
and we obtain from them and from (5)
feFa=(~BN ~)) =D =0.

In case (3) we have &= (Hz,)P; with j<n. We can suppose
that 2, is free in &; since otherwise the theorem is trivial. From
the inductive assumption we obtain the equivalence

[+ {Kmyend} e Fy=0;
and the definition of satisfaction gives another equivalence
| e Fo=(Ham) [[4 {{m,2mp} < F).
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Both equivalences together entail the equivalence’

felp=(H,,)P;=0.

Theorem X is thus proved. .

The difference between the schemata X, and X; lies in the
fact that 2 is not expressible in (S’) as a single theorem. If we try
to express 2 as a single statement of (§8'), we must replace the @
on the right side of the equivalence by its Godel number and the
theorem evidently looses sense because on both sides of an equi-
valence must stay formulas and not numbers.

2. Theorem X, shows that the definition of truth which we
adopted for the system (§) satisfies the conditions imposed on that
notion by Tarski [6], p. 305. Furthermore this fact can be proved
in (8') for each particular formula of (S). We shall now analyse the
question why the consistency of (S) cannot be proved in (§*) although
& ,,good” definition of truth is formalizable in (8'). We shall show
that the real source of this illusionary paradox lies in the fact that
although every particular instance of the schema

(Z) if D is provable in (S), then @ is true

can be proved in (8"),yet the general theorem

(T) if @ is provable in (S), then @ is true

cannot be deduced from the axioms of ().

Te. The axioms (A,)—(4,) are true.

This is merely a restatement of the fact that the axioms
(4,)—(4y) are at the same time axioms of (§’). For the sake of com-
pleteness we indicate the method of proof for the axiom (4y.

The void sequence satisfies the formula (4,) if and only if
every two termed sequence f={(1,a), {2,b)} satisfies the formula
(6) (23) (23 e w0y =3 € ) D=,

Applying the definition of satisfaction we infer that f satisfies
the formula (6) if and only if it either does not satisfy the formula
(3) (wy ey =myemy) or does satisfy the formula Z,=x,. Applying
again the definition of satisfaction we transform this condition
into an equivalent one as follows: either there is a set ¢ such that
the conditions

the sequence {{1,ad, {3,c)} satisfies the formula Ly € 2y,

the sequence {<2,b>, (3,6} satisfies the formula z, e m,
are not equivalent or f satisfies the formula z=g,.
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Applying still once more the definition of satisfaction we
reduce the above conditions to the following: either there exists
a set ¢ such that ~(ecea=ceb) or a=b.

It follows now directly from the axiom (4,) which is valid
in (S8’) that these conditions are satisfied.

) ET’For every formula @ of (8) the formulas (4g) and (A4;) cor-
responding to the formula @ are true. .

It will be sufficient to indicate the method of proof for the
axiom schema (4,). Let @ be a formula of (S§) with the free variables
L1y Ty Bays ooy Ty Tke Applying the definition of satisfaction we prove
easily that the assertion of X, is equivalent to the following state-
ment: If

{T) xx 15 a set and for every x; in xp there exists exactly one set x,
such that @,

then there exists a set i, such that x,e.xy if and only if there is an
&Zy 1 &y such that @.

In order to prove this statement let us assume (7). By theo-
rem X there exists a class X such that

{<kyzay, oxpy, {n,vny, {kyy@agp, ...,(k,,,mp}} eX=0.
Let U be the class of pairs {&;,&,» such that
{<kyzeyp, <oy, {1yiTnps <k17mk1>?'"'<kp7:thp>} e X.

The existence of U (which depends of course on ,parameters”
Lpy Ty -5 Lk,) TOllOws from the class theorem which is valid in (8)..
It follows from (7) that for every a;in x; there exists exactly one z,
such that {z;,z,> ¢ U. We apply now to U and x, the axiom of-
replacement and obtain a set x, with the desired properties.

The above argument would remain valid with the letter ,@“
replaced everywhere by the sequence f={{k,zx); {,xp, (n,a.c,l),
(kl,.rkl),...,(kp,xkp)} satisfies @~ if we only knew that‘ there exists
a class X of sequences which satisfy @. Hence applying theorems
T, and T, we obtain the following theorem:

Te If @ and ¥ are formulas of (S) such that the instances of the

axiom schemata (Ag) and (4,) corresponding to these formulas are
irue, then the formulas ®O|¥ and (Hz,)P have the same property.
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As is well known the rules of proof lead from true formulas
again to true formulas. To express conveniently this theorem we
introduce the notion of valid formulas.

A formula @ with free variables Tpgs -+ s L, is called valid if
every sequence f with the domain {&,,...,%,} satisfies @.

Ty If @ and ¥ are two valid formulas, then all formulas resulting
from them by the rules of proof are also valid.

This theorem follows immediately from the fact that the rules.
of proof admitted in (§) are also valid in (§’). The method of proving
this will be exemplified sufficiently well on the following example..

' One of the rules states that if the formula @DV is already
proved and the variable z, is not free in ¥, then the formula
(T2,)POF can also be considered as proved. Now let us assume
that the formula @D¥ is valid but the formula (2, @DV is not.

Les s; be the set of integers 4 such that = is free in @ and Sy
the set of integers § such that w; is free in ¥. From the definition
of satisfaction follows the existence of a sequence f such that f|s,
satisfies (Hw,)® but f|s, does not satisty ¥. If x,, is not free in @
we have already a contradiction since fls1 satisties @ but f|s, does
not satisfy ¥, hence f does not satisfy the formula &O¥ against
our assumption that this formula is valid. If z,, is free in @ then
there exists an a such that the sequence i+ {<{m,ad} satisties @
and hence the sequence f+{<{m,ad} does not satisfy the implica-
tion @DO¥ contrary to the assumption that this implication is valid.

We arrange now all the formulas falling under the schemata
(4¢) and (4,) into an infinite sequence

(8) B17B27 B.'H .

in such a way that the formulas corresponding to the composite
expressions ¥ and (Hw.)® occur later in the sequence than the
formulas corresponding to the simple expressions ¢ and ¥.

We shall say that @ is a theorem of at most n-th order of (S)
if @ is provable from the axioms (4,)—(4;) and at most n first terms
of the sequence (8) by at most » applications of the rules of proof.

From theorems T, and T, we obtain

T,y If every theorem of the n-th order is true, then every theorem.
of the n--1-st order is true.

icm

Impredicative definitions 121

Using T, and applying successively the theorem Ty we see
that the following schema contains exclusively formulas provable
in (8"):

Zu. Buery theorem of the n-th order (n=1,2,...) is true.

It follows from this schema that if m is the Gédel number
of an arbitrary theorem of (§), then V(m) is provable in (8’). The
general theorem however

(n) (@) [(D is a theorem of the n-th order)D(P s true)]

though expressible in (') is not provable in (8") provided that (S’)
is consistent. If this theorem were provable in (8'), then the theorem

(D) is a theorem of (8))D(D is true)]
would also be provable in (§') and since the theorem
(D is true) D~ (~D is true)

is provable in (§), we would infer that the consistency of (S) is
provable in (8’). This however entails the inconsistency of (8) and
hence the inconsistency of (S’).

In view of X and X, the last remarks complete the proof
of the theorem I. Af the same time we have explained why the
consistency of (8) is unprovable in (§') in spite of the fact that
a satisfactory definition of ,,truth“ for the system (8) is formalizable
in (8).

8. We shallnow deduce from the previous results the theorems IT
and IIT mentioned in the introduction.

Let @(x) be the formula which we obtain writing in the symbols
of (8’) the following statement:

x i8 an integer and every theorem of the w-th order is true.

It follows from T, and Ty, that the formulas
O(1) and (n)[6(n) D26(n+1)]

are provable in (8’) whereas the discussion given at the end of
section 2 shows that if (8") is consistent, then the general state-
ment (n)O(n) is not provable in (8").
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As to the form of the formmla @(z) it is immediate that it can

be written as
(9) (m) [m<g(z) D (LX) A(X,m)]1*)

where ¢(z) is a number-theoretic funct'on such that ¢(w) exceeds
the Godel numbers of all theorems of the order x at most. Indeed
O(z) says that for every theorem of an order <= there exists an
S-sequence such that the void sequence belongs to its last term.

We can now transform the expression (9) intoe an equivalent
one which says that there is a finite sequence ¥ with the domain
consisting of integers less than ¢(z) and such that if m<Ce(x), then
the m-th term Y, of Y satisfies the condition A(Y,,m).

In this way we give to O(x) the form (H.X)B(X,z) required
in theorem IIL.

Finally we prove theovem III. Let us take as @(x) the for-

mula
x is an integer and ~0O(x).

Suppose that the formuls,
(HX) (2) [ « X =D()]
is provable in (8’) and consider the class X such that z ¢ X=0(=).
Using the restrictive axiom?) we infer that
(10) X=0V(Hz)[(ze X)-(no element of x is in X)].

Since (1) is provable in (§’), we obtain # e X Da==1. Hgnee (10)
entails 16) that ’

X=0V(Hz)[(x e X+ (z—1non e X)]
and therefore we obtain
X=0V(Hz) [@x—1) ~6(z)].

Since Owr—1)DO(x) is provable in (S') we can simplify this
formula to X=0. But if this formula were provable in (§’), then
the formula (n) @(n) would also be provable in (8’) and hence (8)
would be inconsistent. Theorem III is thus proved.

14) The variahle m ranges over the set of GOdel numbers of theorems of (8).

15) See Bernays [1], axiom VII or Gddel [2], axiom D.

16) We recall that in the Bernays theory of integers the less-than re-
lation is identical with e. Cf. Bernays [1], pp. 8-9.
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4. We conclude with the following general remark which
should clarify the intention of the paper.

People working with Tarski’s theory of truth generally believe
that if a satisfactory definition of truth fof a system (or _language™)
(8) can be set up in another system (,meta-language) (S’), then
the consistency of (8) is provable in (§’). By a satisfactory defi-
nition of truth is meant a definition which satisfies the ,conven-
tion 2B° given on p. 305 of Tarski [6].

It follows from theorem I proved above that one should be
careful making such general statements. If the meta-language of
(8) is very weak (though stronger than (8) itself), then as our
theorem 1 shows the statement in question can even be false.

In order to be sure that the consistency of (S) is provable
in (8') by the methods used in the theory of ,truth“, one has to
require that the general theorem

T. Each formula provable in (8) is true,

be provable in (8'). This is certainly the case if the following ‘two
theorems

T'. Each axiom of (S) is true,

T. If ¢ arises from true formulas by means of « rule of proof
admitted in (S), then @ is true

are provable in (§') and if the induction principle

if ©(1) and (n)[ON)DO(n-+1)] are provable in (8°), then so
25 (n) O(n)
holds in (&§') for arbitrary formulas.

It is entirely conceivable (although I did not sueceed to find
2 suitable example) that for certain systems (S§) and (8°) both T*
and T are provable in (§') and yet the consistency of (8) is not
provable in (§’) because of the lack of a sufficiently strong induction
principle in (§').

On the other hand the consigtency of (8) is evidently provable
in each w-complete system (§‘) in which a satisfactory definition
of truth for (8) is formalizable. This remark is however of little
practical value, since according to the wellknown fundamental
theorem of Godel no finitary system containing arithmetic of
integers is w-complete.
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Remarks on some topological spaces of high power.
By
Roman Sikorski (Warszawa).

The subject of this paper?) is thegstudy of those topological
spaces (called w,-additive spaces)?) which satisfy the following
axioms:

I. For every a-sequence 3) of sets {Xg}, a<<cwy,

Xe= ) X»
0i<e o<
II. X=X for every finite set X.

III. §=X.

If p=0, axioms I-1II coincide with the well-known axioms
of Kuratowski?). If x>0, axiom I is stronger than the first axiom
of Kuratowski.

It will be shown that in the case x>0 it is convenient to .
modify some topological notions and definitions. The idea of the
modification is that the words: ,,an enumerable sequence”, ,,a finite
set“, ,,an enumerable set” should be replaced by ,an w.-sequence”,
»a set of a poteney <r.”, ,.a set of the power x,” respectively. After
this modification many topological theorems on separable metrie spa-
ces holds also for w,-additive spaces whose power, in general, is >8,.

It is not the purpose of this paper to specify all topological
theorems which can be generalized in the above-mentioned way.
Only the direction of the generalization will be shown and some
singularities which appear in connection with the notion of com-
pactness and of completeness will be discussed. The final section
contains an application to the theory of Boolean algebras.
mat the Mathematical Congress in Wroctaw on December 14, 1946.

2) oy always denotes an initial ordinal (i. e. @, is the least ordinal such
that the set of al! ordinals {<w, is of the power ).

3) For brevity’s sake we say ,an e-sequence” instead of ,a (trausfinite)
sequence of the type e“.

4) Kuratowski [1]. p. 20.
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