160 K. Borsuk.

locally contractible. Consequently P, is also an example of an
irreducible 2-dimensional locally contractible compactum. Every
locally contractible closed proper subset of P, is of the dimen-
sion <1. ’ )

If we submit the space E, to a transformation consisting in
the identification of all points of the set R, we obtain the space E%
homeomorphic to Ej, and the image PE of P is a loecally con-
nected compactum cutting Ef into two regions I'Y and A% and
being their common boundary. It is easy to see that P% is an absolute
neighborhood retract being a closed Cantor-surface and containing
no 2-dimensioral absolute retract.
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Linear functionals on spaces of continuous functions,
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Edwin Hewitt (Seattle, Washington, U.S.A.).

1. Introduction. The present paper is concerned with the
problems of classifying, representing, and approximating to linear
functionals defined on spaces of real-valued continuous functions.
Let X be any topological space; let ©(X,R) denote the set of all
continuous real-valued functions defined on X 5 let €% X, R) denote
the set of all bounded functions in C(X,R). We shall denote the
real numbers throughout the present paper by the symhbol R.
A real-valued function I defined on C(X,R) (or G X,R)) is said
t0 be a'linear functional if I{af - fg) =al(f)+ pl(g) for allf, geG(X,R)
{or XX, R)) and all o, § ¢ R. We employ the usual definitions of
sum, scalar multiplication, produect, and positivity in G(X,R) and
C*(X,R). A linear functional T is said to be positive if it is not the
zero-functional and if it is non-negative for positive functions.
A linear functional is said to be bounded if it carries bounded sets
of functions into bounded sets of real numbers.

In G(X,R), there are at least four interesting topologies. They
have been widely studied, and are described, for example, in [7],
pp- 48-49. It is of some interest to consider the linear functionals
on G(X,R) which are continuous under these four topologies for
(X, R). We shall say that a linear functional is -5 k-, u-, or m-con-
tinuous if it is a continuous mapping of €(X,R) into R under the
?-; k-, u-, or m-topology, respectively.

) Representation of linear functionals by means of integrals,
which forms the central theme of the present paper, has been
studied by a number of writers during the past four decades. (We
limit ourselves to linear functionals defined on spaces of continuoiig
Fundamenta Mathematicae. T. XXXVII, 11
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real-valued functions). The first theorem of this kind appe.a;rs to
be due to F. Riesz [15], who showed that any wu-continuous
linear functional on the space §([0,1],R)2) can be represented as

' . .
f j(z) da{z), where a(x) is a function of bounded variation on [0,1]
0

and the integral is the ordinary Riemann-Stieltjes integral. Riesz’s
result was extended by J. Radon [14] to arbitrary closed bounded
subsets of n-dimensional Eunclidean space.

A further generalization has been made by S. Kakutani.
(See [9], pp. 1008-1009). Let X be a compact Hausdorff space
(throughout the present paper, we use the term compact to mean
the same as bicompact in the sense of [2]). Let I be any positive
linear functional on the space G(X,R) such that I(1)=1. Then
there exists a Carathéodory outer measure o on X for which o(X)=1

and for which all Borel sets are measurable, such that I(f)= f f(w)do
X

for zll f e G(X,R).

A. Markov {13] and A. D. Aleksandrov [1] have written
on integral representations of linear functionals over spaces of
functions which are defined on sets of various kinds. Their work
deals only with bounded functions and may be reduced in part
to the work of other writers.

Studies involving unbounded continuous functions appear to
be very rare. We note the theorem of Mackey [12] and the remarks
of Wehausen [21] and Sirvint [17]. We shall discuss the results
obtained by these writers in connection with our own work in
§§ 3 and 4.

The aim of the present paper is to obtain the best possible
representation theorem for linear functionals on spaces G(X,E),
where we exclude any requirement of compactness in the space X,
and accordingly deal with spaces §(X,R) which may contain un-
bounded functions in great profusion. The absence of compactness
necessitates certain modifications in the constructions employed
and in the final representation theorem. Furthermore, in the case
of compact Hausdorff spaces, the k-, u-, and m-topologies for €(X,R)
coincide, so that questions of continuity in the four senses described
above can arise only in the absence of compactness in X. Throughout

) The symbol {a.8] denotes the interval e<a<pg in B; (e, #] the interval
a<z<g; [a,p) and (a,p) similarly.
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most of the paper, we shall limit ourselves to the consideration
of completely regular topological spaces (which we denote by the
‘term CR-spaces), since, as we shall show, the representation problem
in the case of more general spaces can easily be reduced to the
corresponding problem for CR-spaces?).

In dealing with measures, we shall employ the following nota-
tion and definitions. For an arbitrary topological space X and an
arbitrary function ¢ ¢ €(X,R), let

Plp)=E[z;2 e X, ¢(x)>0] and Z(p)=Ez;z e X, gp(x)=0].

Let £(X) denote the family of all subsets P(p) in X and Z(X)
the family of all subsets Z(p), where ¢ runs through all members
of G(X,R). The smallest family containing P(X) and closed under
the formation of complements and of countable umions is ealled
the family of Baire sets in X and is denoted by the symbol @(X).
The analogous family ©(X), obtained by starting with the family
O(X) of open subsets of X, is called the family of Borel sets in X.
If X is a normal space, P(X) consists exactly of the open F,'s in X.
We note that the relation P{X)C O(X)%=P(X) obtains for a large
class of topological spaces X.

By a Baire measure, we shall mean a non-infinite real-valued
function y defined on the family 2P(X) such that »( S Ag) =
=Yn=17(d,) for every family {4.};,C P(X) such that 4,04, =
for all n4=m. The term Borel measure is defined analogously. The
theory of integrals for functions which are Baire or Borel measurable
is well-known. (See, for example, [16], Chapters I and I1).

Let p be any point of the topological space X and let #p be the
measure function which assigns the value 1 to all zets containing p
and the value 0 to all sets not containing p. The symbol Z‘,-";Iaiypl
has an obvious meaning (a; e R), as does 2210y, (o€ R).

If p is any point in the topological space X, let M, be the
ring-homomorphism of §(X,R) which carries feC(X,R) into f(p),
for all feC(X,R).

Finally, we shall denote by the symbol ¥, the discrete space
of cardinal number s,.

*) The writer’s thanks are due to Professors Paul R. Halmos and John
C. Oxtoby for discussions concerning the subject matter of the present paper.

11*


GUEST


1654 o B. Hewitt:

2. Bounded functionals and their representations.
It is well-known that any bounded linear functional on C(X,R)
can he written as the difference of two non-negative linear functionals
(see, for example, [5], p. 115, Theorem 7 .19). We therefore restrict
ourselves thronghout the present section to the consideration of
positive linear functionals. We first make a preliminary remark.

Theorem 1. Let X be any CR-space and let I be a non-negative
lineay functional on C(X,R). If I vanishes for all functions in C*( X,R}
then I vanishes identically.

If X admits no unbounded real-valued continwous funetions,
then there is nothing to prove. Thus, let f be an unbounded, positive
funetion in ©(X,R). There is no loss of generality in assuming that
infrex f{z)=0. Let functions f, (n=1,2,3,...) be defined as follows.
Select a sequence {lnjn=1 o0f positive real numbers such that
tn <ty f{in) =1, for some @, e X (n=1,2,3,...) and limp;eol,=+co.
Set t,=0. Now, in the set BE[x;2 e X, f(&)<tpp), let fr=10. In
the set E[m: oeX, oy <f(#)<t,], let fa=f—tp4. In the set
Elyx e X, to<f(2)], let fa=1,—%n—. The functions f, arve evidently
continuous, and it is plain that the infinite series Yh=if, converges
everywhere in X to the function f. Now let h,=tafn, and let h =Yme1bn
This infinite series evidently converges throughout X, and the limit
function & is continucus. It is easily verified that

tn(f’“fl_’fz_‘"-“fn)s.h_‘hl_hz—m—hm -
for every n. If the functional I vanishes throughout C*(X,R), then
we infer from the preceding inequality that ¢, I(f)<<I(h) for all n.
This implies that I{f)=0. If ¢ is any function in ¢(X,R), we have
@=max (¢,0)-}+ min (¢,0), and plainly I(p)=0.

Theoren 2, Let I be any positive linear functional on C(X,R).
Then there is a positive real number a such that al(l)=1.

If I(1)=0, then I vanishes for every bounded function in
{(X,R), and therefore, by Theorem 1, vanishes identically. Hence
I{1) must be positive, and « may be taken as 1[I(1).

In considering bounded linear functionals, therefore, we may
restrict ourselves ‘to funetionals I which ave positive and for
which I{1)==1.

Throughout the remainder of the present §, we take X to
be an arbitrary but fixed CR-space. We proceed to the construction
of a measure on X corresponding to a given linear functional on
¢(X,R) (having the properties preseribed above).
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Let @ be any set in P(X). We define the measure »(G) as sup I(f),
where f runs through the set of all functions in €(X,R) such that
0<f<gs- (The characteristic function of a set 4 is denoted hy ¢a)-

_Theorenm 3. The set-function 3 has the j;lluvu*_i-ng properties:
(1) GCH implies that y{GI<7(H):
(2) 0K for all (e P(X):
(3) »(X=1;
(4) 7(0)=103
& and H being arbitrary sets in P(X).
These statements are cbviously true.
Theorem £, y(GUH)< G-+ y(H) for all sets G and H in PX).

If ¢ or H is void, there is nothing to prove. Let ¢ and H both
be non-void, and let f be a function in €(X,R) such that 0<f<y oun
and such that p(GUH)—e3<I(f), ¢ being an arbitrary positive
real number. Let A=Elr; re X, f(r)=e3]NG. It is plain that
4 e Z(X), and that ACH. Let ¢; be a function in (X, R) such that
%gy)=A, and let ¢, be a function in (X, R) such that Blg,)= H'.
The function k=7f-q2/(g2+¢3) is clearly continuous, is equal to f
on A and 0 on H', and satisfies the inequalities 0L A throughout X.
Next, let g=f—h. Setting B=E[x; v ¢ X, g(x)>2¢/3], we see that
Be Z X) and that BCQ. Let p be a function in €(X,R) such that
=1 on B and p=0 on &', while 0<{p<{1 everywhere (y can be
obtained as h was obtained). Now, set g=vy§. It is easily seen that
f<g+h+2¢/3 throughout X, that 0<{g<{g,, and that U< <y,
Since I is positive, we have y(GUH)—e3<I(f)y<<I(g)+I(h)+
+I(2e/3)< (G} -+ y(H)-+-2¢/3. Hence p(GUH)<y(@)+y(H)+ e for
every positive &, and the present theorem i3 proved.

Theorem 5. If G, He P X) and GNH=0, then (GUH)=
=p(@)+y(H).

For, suppose that ¢ and b are functions in @(X,R) such that
0 < g<¢ea << h<¢g7 and y(G) + ?(H) —e< I{g) + I(h) Then
09+ <gg y and p(@)+y(H)—e<I(g+ 1) <y(GUH). From this
remark and Theorem 4. the present theorem follows immediately.

Theorem 6. Let H be any set in P(X) and let ¢ be any positive
real number. Then there is a set.J such that J ¢ P(X), J CH, and
y(H)—zs<y(J). . 3
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Let p be a function in €(X,R) such that 0y <y, and
HH)—e2<I(y), and lebt J=1Ez;2 ¢ X, ¢/2<yp(@)]. It is clear that
JCH. Now assume that p(J)<y(H)—e. Since p<Le/2 on J', we have
I(y)—e/2=I(p—e/2) < I(max (p—&[2, 0)< y(J) <y(H)—e<I(y) —s/2;
this is an obvious contradiction, and the theorem is proved.

Theorem %. L&t {H,lgey be a family of sets in P(X) such
that HDH,DH,D ..DH,D ... and ]];":IH,T-:O. Then Limpseoy(H,)=0.

By Theorem 4, the sequence {y(H,)};—; is decreasing and
thus has a limit o, where 0<Ca. If 0<a, there exists, for every n,
a function f,eQ(X,R) such that O<fn<¢Hn and 0<a/2<I(f,).

The function o= Y5_;f, is defined throughout X, and since
[[o=1Hz =0, every peX is in some H,'. In this open set, only
a finite number of functions f, are different from 0, and hence a)
is continnous at p. (Note that ® need not be bounded). Now,
Ho)=1I{f,) + I(fa) + If) + -+ L{f) + I S2nra f) > ka/f2, for every
positive integer k. This is a palpable contradiction.

Theorem 8, Let {H,looy be o family of sets in P(X) such that
H,DH,3...0HpD... and [[aeq Hy=0. Then lim, yop(H,)=0.

By Theorem 6, there is a set G,e P(X) such that G;CH,

and p(H,)—1/n<yp(G). From Theorem 7, we infer that
1M g0 p{ Hy) < ity o0 (@) = 0.

Theorem 9. _Let {G,,}n_l be any sequence of sets in P(X).
Then 7( 1(711 <_Zn—1 V(Gn)

Sinee every set G, is in P(X), it is clearly possible to find sets
{Enmim— such that K, e %(X) (m=1,2,3,...) and Dot K ym=G.
Let 37iiG,=@. It is plain that Dt dm=1 B m=G@. Hence, by
appropriate re-numbering, we may write G = Yo,L,, where
every L, is some K;;. Let M=L,UL,U..UL, (k=1,2,3,...).
Then {M;0 6}, is a sequence of sets in P(X) to which Theorem &
applies; and consequently, for every &>0, there exists a kg
such that »(M; O 6G)<e Now, it can be shown, using only
Theorems 3 and 4 and [16] Chapter 1T, that y gives rise to an outer
measure y* defined for all subsets of X which is finitely additive
on measurable sets and-for which the sets M, are all mea-
surable. Henee {(@)=y*(G)=y*My N G)+y(M, O G). Since every
set M, ig contained in some set GIUG U ...UGy, we now have
@) = y( Dt Gn) < P St G + & < Ty ,.) +e < Dy () + &
From this result the present theorem follows immediately.
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"We now extend the measure-function y to an onter measure »*
slefined for all subsets of X: for any ACX, let y*(4)=inf »(G);
where @ runs through the family of all sets in 2(X) that contain 4.

Theorem 10. The outer measure y* has the following properties:

(1) 0 y¥(4) for all ACX;

(2) y*(A)<y*(B) if ACB;

(3) ?'*(E?=1—4;1)<Z;1.;I7'*(An\ fO?‘ all {AlaAsy---yAn,

) y5@)=p(Q) for all G P(X).

These remarks are all immediate consequences of Theorems 3
and 9, and the definition of y*.

Theorem 11. Every set in P(X) is measurable with respect
10 the outer measure y*.

The proof of this result is almost identical with the proof
given by Kakutani for a corresponding theorem ([9], p. 1010),
and will not be repeated here.

Theorem 12. The outer measure y* is countably additive on
the family PX) of Baire sets in X.

The family S of measurable sets is closed under the forma-~
tion of complements and countable unions ([16], pp- 45-46); and
the measure p* is countably additive on the family of measurable
sets ([16]. p. 44). This observation eompletes the present proof.

Corollary. If A and B are subsels of X such that for some
F e F(X), ACF and BCEF’, then y*(AUB)=y*1)+ v*(B).
This follows at once from the fact that F is measurable:
A AUB)=9*F N (AUB)+7*F' V(AU B))=y*4) +y*(B).
In the :equel we shall write y* as y for sets in the family EP(X)
The requirement that every continuous real function be
integrable (y) places very severe restrictions on the measure ¥,
as we now show.

Theorem 18. Let f be any funciion in C(X,R). Then ilwre
are real numbers o and B such that y(E[r;xeX, a<<f(@) < pl)=

The proof is earried out by contradiction. By consxdermv
max (f,0) and min (f,0), we may limit ourselves to positive fune-
tions. If the theorem is false, we can find an fe@X,E) such
that y(Er; o « X, 0<{f(@)<r])<1 for all 7>0. This elearly implies
the existence of a sequence of real numbers .

. }CX;

0 <a; < by echy< . <@p<by<.y
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where il e @y=liM,y0by=-+ 00, Wwith the property that, setting
Adp=Blr;2 ¢ X, a,< () < by], we have 1/y(ds)=0a,>0. Let the
function g € §(R.R) be defined as follows:

g#)=0 for 1<0;
gt)=(mja)t for 0<i<ay;
gty=a; for a,<i<hy;

§(t)=[(vg—ay)[(a,—D,)] {t—b)+a for <t ay;

gt =u, for a,<t<by:
g(t) :[(.Qn—!—l_”n},/(an—j—l—bn)] (t"bn)_x" a, for bn<iS0n+1 3

Then, the function g=yg(f) assumes the values ¢y throughout
the set 4,, and we have I(g) =k for every positive integer k. This
contradiction establishes the present theorem.

We now state our fundamental theorem concerning” hounded

linear funetionals.
' Theorem 14. Tet X be any completely regular space and let T
be any bounded linear functional defined on §(X,R). Then there erists
@ Baire measure y on X such that every funetion in ©(X,R) is bounded
except on a set of y-measure O and such that I(f)y= /‘f(m) dy for all
7eC(X,R). ¥

Writing I in the form I, 1—T5, where I, and I, are non-negative
linear functionals, we associate with I; a Baire measure 7, a8 in
the preceding discussion (i=1,2). It is an easy matter to verify
that I(f)= [ f(@)iy, for every }€C(X,R) and that, writing ;-

X

for y—y,, the present theorem holds. A reference to Theorem 13
shows that f must be bounded except on a set of measure 0. (For
details of u similar proof, see, for example, [9], p. 1011).

The converse of Theorem 14 iy obviously true. .

We shall say that a Baire measure ¥ (P(X)F+L 00) is regular
if for every set 4 ¢ P(X) and every £>0, there exists a set GePX)
such that D4 and [#(@)—p(4)|<e. We note that the measure y
associated with a bounded linear functional is always regular.

Theorem 15. If two regular Baire measures yield the same
finite integral for all Junctions in G(X,R), then they are identical.
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The difference y,—y, is a regular Baire measure, which we
denote by the symbol 6, having the property that /‘ Ha)dé=0 for

all /e C(X,R). Let 4 be any set in P(X). Then, é)‘[being regular,
there exist sets ¢ and H in P(X) sueh that GDA, HD4', and
[6(@)—68(4)] <e/2, [6(H)—8(A")|< /2. Tt follows that H'CACG and
that 16(H')—08(G)i<e. Let g be a function in C(X,R) such that
g=1on H', g=0 on &, and 0Lg<1 everywhere. Then )

6(4)i=l6(4)— fg(m)déj:] [(g ale)—gte)y s <! [ garde <.
X B ¢ GAH
Hence, ¢ being an arbitrary positive real number, 4(d)=0,
and p, is identical with y,.
As noted above, any Baire measure y satisfying the requi-
rements of Theorem 13 yields a linear functional ff(w)dy on the

space G(X,R). This linear functional, by the procgss set forth in
Theorems 3-14, yields another Baire measure , which is necessarily
regular. Theorem 15 asserts that 7 and ¢ are identical if and only
if y is regular. We also infer that with any Baire measure satisfying
the requirement ¢f Thecrem 13, there may be asscciated a regulayr
Baire measure yielding the same integral for functions in C(X,R).

Remark 1. Previous writers (e. g., Kakutani [9] and May-
kov [13]) have considered, instead of our measure y associated
with the linear functional I, a measure § obtained first for all open
sets @ in X by the definition (G =sup I{f}, whera f runs through
all members of G(X. R such that 0< /< g4 For an arbitrary
CR-space, this process yields an outer measure §* whick is finitely
additive on measurable sets. One may define the integral in the
usual way and show that 7 is indeed the integral over X with res-
pect to the measure 6*. If one could prove thab o( 352,64,) << o id( G}
and that §(GUH)=(G)+ 6(H) ({Gn}eiCOX), G, He O(X), and
GNH=0), he would have a stronger result than our Theorem 14,
since all Borel sets would be measurable under o*. Howerver,
there exist non-normal completely regular spaces for which not
all open sets are measurable (6%*) and for which the inequality
N Dot @) > oy (G ) may obtain. Our example is the space T
consisting of all pairs of ordinal numbers (a,8) (<8, B< o), except
for the pair (2, w). A generic neighborhood of (a,,8,) is the set of all
{«,B) such that o' <aKag, p'<f< Py, where o' <a, and f'< fy- The
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linear functional I(f) for feQ(T,R) is defined as limqypf(a,®). This
limit always exists, and produces, in fact, a ring-homomorphism of
€(T,R) onto R. We construct the corresponding 6 and &% we let
H=E[(a,8); (a0, ) e T, a<Q]; and we let @,=E[(a,f); (a,f) e T, f=n]
{(n=1,2,...,w). Then, plainly, §(H)=06*H)=0 and §(G,)=0. Thus
H(T)y=1>(8(Ge)+0(G,) -+ 6(F,)+...) and H is non-measurable.

For compact H-spaces X, Kakutani’s results [9] show that
is countably additive on measurable sets and that all Borel sets
are measurable. It follows from Theorem 14 that 6 has these pro-
perties for all spaces such that every open set is in P(X), e. g., for
metric spaces. The question remains open for normal spaces as to
whether 6 is a Borel measure.

Remark 2. By constructing the measures y and y* for the
space T' and linear functional I of Remark 1, we show that y* may
admit non-Baire sets as measurable and that there may be open
sets which are not measurable (y*). It is not difficult to see that
a subset 4 of T is measurable (y*) if and only if G, N A is countable
or has a countable complement in @,; whereas the Baire sets in T
are those sets 4 such that AN@G, iz countable or has a countable
complement in @, for all n=1,2,..,0. It is also easy to exhibit
examples where the Baire sets are exactly the sets measurable (y*).

3. Continement of measures. It is natural to inquire, in
the light of Theorem 13, whether or not there is always a compact
set ACX such that »(A')=0. For technical reasons, this cannot
be hoped for, but we may expect that for non-pathological spaces,
one can find a compact subset A such that y*(4)=9p(X) and such
that integration over X may Dbe reduced to integration over A.
This is indeed the case.

In an earlier paper, the writer has studied a class of CR-spaces
called @-spaces ([7], pp. 85-98). (The same clags of spaces has been
studied independently, from a different point of view, and with
most fruitful results, by Dr. Leopoldo N achbin). There it is shown
that a OR-space is & Q-space if and only if every ring-homomorphism
of €(X, E) onto R is of the form 3f, for some p ¢ X. We characterize
@-spaces from our present standpoint as follows.

Theorenm 16. A CR-space X is a Q-space if and only if every
Baire measure y on X, assuming only the values 0 and 1, and such
thet y(X)=1, coincides on all Baire seis with a measure Lip-
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First, suppose that X is not a @-space. Then, according to [7],
Thecrem 50, p. 85, there exists a subfamily S cf Z(X) such that:
(1) M does. not contain the void set; (2) A, BeM imply that
ANBeM; (3) AeM, Be Z(X), and BDA imply that B e M;
{4) B ¢ Z(X) and B non ¢ 9} imply that AOB=0 for some 4 e M;
{8) ITqesy A=0; (6) no countable subfamily of S has void inter- -
section. (It turns out that the functions in C(X,R) which vanish
on some set in ¥ are just the functions which go into zero under
a ring-homomorphism M of €(X,R) onto R which is not of the
form M,). We define a Baire measure g on X as follows. For & set
G ¢ P(X), let f(G)==1 if and only if & ¢ M; otherwise, let B(G)=0.
We extend 5 to an outer measure in the standard way; under
this measure, it is clear that every set in P(X) and hence every
Baire set is measurabie. Tt is furthermore easy to verify that
f fl@Ydf=13I(}} ¢« R, where M is the ring-homomorphism referred to
¥ .

above. Finally, given any pe X, there is by (5) some 4 ¢ M such
that pnoned. Then u,{4})=0 and B(4)=1. Hence § coincides
with no measure u, on Baire sets.

Conversely, suppose that X is a @-space, and let 8 be a Baire
measure on X assuming only the values 0 and 1, with g(X)=1.
Let f be any funetion in G(X,R), and let {a,}7= ., be any strictly
inereasing set of real numbers such that Onp1—a, 18 bounded and
such that inf_opeyot, < infrexf(z) and SUP_—cocngoo U == SUDye xf(2).
Putting .
Ap=EBz; ¢ ¢ X, ay 1 <f(2) < az),
we find at once that every A4, but one, say A,, has j-measure 0,
since f is countably additive on Baire sets. We continue this
argument in the natural manner and conclude that f is constant
on a get He Z(X) such that A(E)=1. From this, it is apparent
that I(f)= f f(z)dp is finite for all fe@(X,R) and that 7 is a ring-

]iomomorpi\ﬁsm of G(X,R) onto R. Sinee X is a @-space, there is a
point p e X such that I(f)=/F(p,) for every feG(X,R). It is evident
fhat the measure up coincides with 8 for all Baire sets.

Remark 1. The outer measure f* associated as in § 2 with
the Baire measure 8 need not coincide with pz, on all subsets of X.
Consider T4, the space of all ordinal numbers <, in the order
topology. Let I(f)=f(2). Then the Baire measure § associated with I
by the process expounded in §2, is defined only for Baire sets,
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is 0 for countable sets and 1 for sets containing some interval (e,2].
where ¢ <. (These sets exhaust the family of Baire sets). For the
outer measure % we have g¥2)=p*(1,2))=1, while p,((1,2))=0.

Remark 2. Theorem 16 extends a theorem of Smulian [18],
stating that a ring-homomorphism of C* X, R) onto R, where X is
a normal space, is realized by an integral with respect to a finitely
additive measure assuming only the values 0 and 1.

Theorem 17, Let X be & CR-space, I a positive linear functional
on C(X,R), and y and p* the measures associated with I as in. Theo-
rems 10 and 14. If X is a Q-space, there ewists o compact subset F of X
such that y(X)=y*(F). If X is not a Q-space, there exisis a ring-homo-
morphism I of C(X,R) onto B with associated Baire measure fi such
that g*(d)=0 for all compact subsets 4 of X. ‘

We first consider the case in which X is not a @-space.
Theorem 16 shows that a ring-homomorphism of €(X,R) onto A
can be found such that the family i of sets in %(X) having measure 1
satisfy conditions (1)-(6) set forth in the proof of Theorem 16.
Let K be any compact subset of X. In view of (5), if peK,
there is a set Z,e SM such that pnon e Z,. The family {Z)}ex is
thus an open covering of K, which admits a finite subcovering
1Z3ys Loy s 2y The seb W=[]it1 7, is a set of M, by (2}, and
thus K is disjoint from the set W e Si. It follows that fHKE)=0,
if p* is the outer measure associated with 2.

Conversely, suppose that X is a @-space. We may suppose
that y(X)=1, by Theorem 2. In view of Theorem 13, we have,
for every fe®(X,R), a pair of real numbers ¢ and § such that,
setting A,=E[x; ¢ ¢ X, a<f(x)<£], we have y(4d)=1. It is obvious
that 4;e B(X). Let J denote the family of Baire sets of y-measure 1.
It is obvious that 9 is closed under the formation of countable
intersections and (within P(X)) arbitrary supersets, and does not
contain the void set. Hence, A=IN%(X) enjoys properties (1), (2),
and (3) set forth in the proof of Theorem 16, and has the furthev
important property that every function in §X,R) is bounded on
some set in K. By an application of Zorn’s lemma (for a statement
of which, see [19], p. 7), we infer that & can be imbedded in a family
H,CH(X) such that A,y enjoys properties (1), (2), (3), and (4). An
appeal to [7], page 85, Theorem 50, shows that HA, canrot enjoy
properties (5) and (6) simultaneously. If (6) fails, then there is
a countable subfamily {Dy,Ds,..., Dp,...} of A, such that [J7, D,=0.

icm

Linear functionals 173

Let By=DND,N...0D; (k=1,2,..) and let f, be a function in
@(X,R) such that 0<f»<<1, fx=0 on By, and f>0 on B, (k=1,2,...).
Then g=(37u2 %" is a function in G(X,R) such that @32k
on By. The set 4, is clearly contained in some B} and yet Ay must,
by definition, he in HA,. By this contradiction, we see that (6) must
obtain and that (5) must fail; i. e, Iges,B=+0. A fortiori, we
have that F=IIgezB==0. 1t is clear that F is a closed set, as the
intersection of closed sets.

We shall now show that F is compact. (For this proof, we are
indebted to Dr. Leopoldo Nachbin). Let U be the weakest uniform
structure on X making all functions in §(X,R) uniformly continuous.
{For a discussion of uniformity see [6], p. 91 et seq.). Being a §-space,
X is complete in this uniform structure (see [7]; p. 92); and as a closed
subset of the complete space X, F is also complete in the structure
The structure 2 on F may be described as the weakest unitorm
structure under which all continuous real funetions extensible con-
tinuously over X are uniformly continuous. These functions are
all bounded on F (since F is contained in the intersection Iljeeiz,m 4y
and hence F is totaily bounded under the structure 2. A complete
and totally bounded uniform structure, however, yields a compact
topology, and therefore F' is compact.

‘Next, consider the measure ¥*(F), which is defined as inf (&),
GDF and G ¢ P(X). If there is a set GDF such that G e P(X) and
(@) <1, let C be any set in A. It is clear that

1=9(C)=p(COG)FH C'NG)Fp(COGF )7 {C'OG y=( COG ) Fp{COGET).

Hence, p(CNGF)=1—y(CNE)Z1—7(G)>0. It follows, since c
was taken arbitrarily from F. that {CNG'}cexr is a subfamily of
Z(X) closed under the formation of countable intersecticns and
not containing the void set. Just as in our definition of ¥ above,
we can now show that Ifces(CNG')==0; and this proves that F
is not the intersection of all sets of measure 1 in Z(X). This con-
tradiction shows that y*(F)=1, and proves the present theorem.

The example adduced in Remark 1 after Thecrem 16 shows
that F need not be measurable (y*). Here F=0, and, as noted,
HF)=y*F/)=1. In spite of this fact, however, we can reduce
integrals over X to integrals over F. as the following theorem shows.
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Theorem 18. Let X be a Q-space, and let I, y, y*, and F be as
in Theorem 17. Then the outer measure y*, resiricted fo subsets of F,
makes every set in P.F) measurable; and furthermore, for every
7 e §(X,E), we have [f(@)dy*= [f(a) dy.
F X

If F be measurable (p*), there is of course nothing to prove.
We first observe that every function ¢ ¢ C(¥,R) can be continuously
extended over X. Indeed, let p and g be two distinet points of F.
(The case in which 7' consists of a single point need not detain us).
Then there is a function ge@(X,R) such that ¢(p)Zg(g). The
function g can be restricted to ¥, and provides a.continuously
extensible function assuming different values at p and ¢. It is clear
that the set of functions in €(¥,R) which sre continuously extensible
over X form a closed subring of G(F,R). Since this subring permits.
one to distinguish between arbitrary pairs of points, we may infer
from the Stone-Weierstrass theorem (see, for example, [8]), that
every function in G(F,R) admits a continuous extension over X.

Next, suppose that fe®X,R) and that f=0 on F. Then
Elz;ze X, e>f(a)] is a set in P(X) containing F, for every >0,
and thus I(f)= j f@)dy=0. If p<G(F,R) and if  and § are two

continuous extensmns of ¢ over X, it is plain that I (p)=1I (gy).
The functiona! T can thus be defined in a natural way on the
space of functions §(F,R): for any f « C(F,R), Iz(f)=1I(f), where J
is any continuous extension of f over X. We denote the Baire
measure and outer measure associated with I, by y, and Vo
respectively. We now prove that 75(@)=1*@), for every set Qe P{F).
Indeed, for every £>0, there exists a function p e C(F,R) such
that 0<Cy<e, and y,(G) —ef3<I.(p). Furthermore, there is a set
H e P(X) such that HDG and 7/( —ef3<y¥@). Let 4 be the
set B[z e F, p(a)>¢/3]. 4 is compact, as a closed subset of the
compact space F. One may accordingly find a fanction & e« (X, R)
such that 6=1 on 4, =0 on H’, and 0<5<{1 throughout X.
(Since X is a OR—spaee, and H' is elosed one can find, for every
p € 4, afunetion o, < €(X,R) such that opfp)=2 and op=0 on H'.
There is a neighborhood U(p) in whieh o, is greater than 1. A finite
number of these nelghborhoods, Ulpy), U(py),---; U(pn), cover A,
and the function &=min (1; max (Cpy:Tpyy-- ,cpn)) has the required
propertles) Let ¢ be any continuous extension of p over X; let
g=3o9; and let g be the function § defined only on F. It is obvious
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that we have p < g+ ¢/3. The following relations then obtain:
yF(G)-—~e/3<IF(¢,u)<_ I.(g+¢/3)=1,lg)+ e/3=1(§)4 ¢/3<y(H)+ e13<

< y*(@)+2¢/3. Hence we find that y,.(G)<y*(&)+ & for every £>0,

and thus y (@) <y*(@). To prove the reverse inequality, we first cbserve
that @ is contained in a set H; e P(X) such that FNH,=§. For,
@ being in P(F), there exists a.function ¢«C(F,R) such that P(f)=@
Tor any continuous extension f of f over X, we may take HO_P(f\
Now, let p be a function in €(X,R) sueh that 0<p <y and
y(Hy)—e<I(g), ¢ being an arkifrary positive real number. Let g
denote the function g restricted to the domain . Then 0o,
and we have the following relations:

vp(@) 2 Ip(e) = I(§) >y(H,)—e 2 y* (@) —e.

Thus y (&) >y*(G)—=: since g is arbitrary, we have y AG) = 74(G);
and finally, y.(&)=y*G).

It follows mmedlate]y that y* is counta,bly additive on the
tamily 2 F), which is just the family of all sets ANF, where 4.¢2P(X).
The present theorem also follows at once.

Remark 1. Theorem 18 is a natural extension of the theorem
of Mackey [12] which discusses positive linear functionals on the
space G(N.,R). He proves that every such functional I has
a measure y associated with it. of the form y=3iia;pp, ¢ R, if
and only if N, admits no measure countably additive on all sub-
sets, vanishing for points, assuming only the values 0 and 1, and
equal to 1 for N, itself. Such spaces are just the spaces for which
Ulam’s theorem on two-valued measures is true [20]. The writer
has stated ([7], p. 87, Theorem 52) that every space N is a @-space.
The proof is incorrect, and it ean be shown without difficulty that
N, is a Q-space if and only if it admits no two-valued measure of
the kind described above. By Theorem 18, for any such space N,
and any positive linear functional I on C(¥,.,R) with associated
Baire measure y, there exists a compact set F' (necessarily a Baire
set in Ng) with p(F)=I(1)=y(N,). This set F is necessarily finite,
and Mackey’s theorem is re-verified.

Remark 2. Mackey [12] further observes that even if N,
does admit a 2-valued measure. of the kind specified above (the
existence of cardinal numbers R, for which this is true being an
open question), the measure yp associated with a positive linear
functional I can be represented as J3itjasup -+ 3i—1f;0;, Where


GUEST


176 L. Hewitt:
the g; are 2-valued measures of the kind described above, defined
on subsets 4; of ¥, which are disjoint from each other and from
the set {p,,p,, ...,p_}. If we imbed the space N, in the Q-space » ¥V,
. (see [7], p. 88, Theorem 56), each of the measures @7 corresponds
to a point ¢; in » N, such that ¢; becomes Hg; The set F of Theo-
rems 17 and 18 hecomes Dy Pos sy T3y -4, } ID 2 N
Remark 3. Theorems 14, 17, and 18, embody as special cages
the results of Banach (41, pp- 10 and 50) and Wehausen ('[21],
p- 164) characterizing general continuous linear functionals defined
on (N, R) and C(R,R). The metric topologies imposed upon these
function spaces coincide with the k-topologies, so that these authors
are considering k-continuous functionals. As we shall show infra,
k-continuity and boundedness are identical for these 8paces, so that
Banach’s and Wehausen’s observations are subsumed under
ours. A generalization of the situation considered by them may
be described as follows. Let X be any topological space such that
X=375K,, where I, is a compact Hausdorff space (n=1,2,...).
Let P,=K,UK,U...UK, (n=1,2,...), and let C(X, R) be topologized
Wwith a metric p:
=¥ iy
(’(f:!/)‘"% T m4
where ;’f——g[,,:supxepn{f(w)——g(m)i.

This metric topology is identical with the k-topology for §(X, R).
Linear funetionals on C(X,R) continuous in this topology are exactly
the bounded linear functionals, and, in view of Theorems 17 and 18,
each of them may be represented by an integral / f(z)dy. where
is a Baire measure on P,. By

4. Continuity. We now discuss the various topologies for
C€(X. R) and the functionals which are continuous in these topologies.

Theorem 19, EBuery linear functional I on C(X,R) which is
continuous in the p- or k-topology for C(X,R) is bounded.

It suffices to prove this statement for k-continuous functionals,
since every p-continuous functional is clearly %-continuous. For I
to be k-eontinuous, there must be, for every positive real &, & compact
subset 4 of X and a 6> 0 such that [f(z)|< & for all wed implies that
H(f)|<e. I being linear, this condition is also sufficient for conti-
nuity throughout G(X +E). Let @, and g, be any two Tunctions in
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(X, R) such that ¢;<gs; and let B be the set of all functions 7 in
GC(X,R) such that ¢, <f<p, Since ¢, and ¢, are bounded‘on 4,
there exists a positive real number ; such that [rp,/<d on 4 .(z=1,2).
Thus |gf|<d on A for all f¢®B, and accordingly we.fmd that
|I(f)]<e/n for every fe®B. Thus I carries bounded.sets in G(X,R)
into bounded sets in R, and our theorem is established.

Lheorem 20. Any p-continuous Unear fundional I on G(X,R)
can be represented in the form I=3 7, a;M,,, where the a; are real
numbers. If X is & Q-space, the p-continuous linear fthwa:mls on
C(X,R) are just the Unear combinations of ring—homomm‘phzsms- of
C(X,R) onto B. If X is n0t a Q-space, there exisis a ring-homomorphism
of C(X,R) onto R which is not P-continuous.

Consider first the case in which X is a Q-space and I is
a positive linear functional such that I(1)=1. From Theorem 1‘4,
we infer that I(f)= f flz)dy, where y is a non-negative Baire

— X .
measure on L(X) such that »(X)=1. By Theorem 18, we kunow
that there is a compact set FCX such that y*(F)=1 and

f flz)dy= f f(@) dy*, for every fe@(X,R). It is obvious from the
X

construetioix of F given in Theorem 17 that for peF, Ge P(X),
and p e @, we have 0<yp(G). (If this were not the case, then for
some @ >, p(@)=0, y(@)=1, and FCF; thus p non < F).

We now prove that ¥ must be finite. If the contrary be
true, then for every finite subset Bz{qi,qz,...,qk}‘ (.)f X, th.erg
is a point p e FNB’, and there is certainly a positive function
¢ € €(X,R) such that g(p)=1 and g9(g)=0 (i=1,2,...,%). "l‘he .se_at
H=E[»; x ¢ X,1/2>g(2)] has the property that 0<y(H), in view
of our remark above. The function g,=(2n/y(H))-g is clearly in
the p-neighborhdod of 0 consisting of all functions ke E(X,R)
such that |h(g)]<e (¢=1,2,...,k). On the -ofyher .hand, we have
I(g)=n. Since {g,,g,..,q,} and ¢ are arbitrary, '1t.fonows that I
is not p-continuous. This proves that ¥ must be finite.

The most general measure on the finite set F={p.vy D}
i8 3™ ayup. Theorem 18 shows that

[ f@idy=3 aifip)=_3 a:My(f),
x =1 =1

where the o; are non-negative and S5 a;=1.
Fundamenta Mathematicae. T. XXXVIL 12
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The case of a general p-continuous linear functional I
(X a @-space) is quickly reduced to the preceding case 'by writing
I=0I,—pl, where I, and I, are positive linear functionals such
that I(1)=Iy(1)=1. (It is easy to verify that the standard con-

struetion for I, and I, makes them p-continuous if I is p-continuous). ~

Since the only ring-homomorphisms of X are of the form A, the
second statement of the theorem is established.

To establish the remainder of the theorem, suppose ‘that X
is a non-Q-space imbedded in the space »X. Every function in
@{X,R) can be uniquely extended over »X 50 as to be in €(vX,R),
s0 that the rings €(»X,R) and G(X,R) are algebraically isomorphie.
The p-topology in €(X,R) may be strictly weaker than the p-to-
pology in G(»X,R), however. In any case, & linear funectional I
which is p-continuous on G&(X,R) is certainly p-continuous on
G(»X,R), and by our remaiks above, I=2?=1a,Mpi—|—2j”;1,9iMqﬁ.
where {p,,Py-P,;CX and {08+ @y CP XN X' 16 is easy to’
see that all §; must be zero. Suppese that some fy, say f,, is nob
zero. The point ¢, in »X N X’ corresponds to a ring-homomorphism of
G(X,R)not of the form M, for p « X. There is a function ¢ in C»X, R}
such that o(g)=1, o(gs)=-...=p(¢m)=0, and g also vanishes on
an arbitrarily pre-assigned finite subset of X. It follows that I cannot
be continuous in the p-topology for E(X,R), and the first state-
ment of the theorem is verified. The final statement of the theorem
follows at once from our remark on ¢,. If there is a point g e» X NX",
then the ring-homomorphism of §(X,R) corresponding to ¢, is not
p-continuous. g _

An entirely analogous situation exists with respect to k-con-
tinuous linear functionals.

Theorem 21. Let X be any CR-space. Then every k-conti-
nuous linear functional on G(X,R) can be represented in the form
I(f):ff(m) dy*, where F is a compact subset of X and y* is an outer

F

measure on X which is countably additive on PF).

Let I be positive and let I(1)=1. If I is k-continuous, it is
bounded (Theorem 19) and hence has a representation as the integral
with respeet to a Baire measure y (Theorem 14). Tf for every compact
gubset B of X, we have p*(F)<1, then it can be shown, as in the
proof of Theorem 20, that I cannot be k-continuous. Observing
that the case of a general k-continuous I can be reduced to the
ease just treated, we may assert that the present theorem is valid.
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Theorem 282, If X is a Q-space. then a linear functional I on
C(X,R) is k-continuous tf and only if it is bounded. If X isnot a Q-space,
there exists a bounded linear funciional (indeed, a ring-homomorphism
onto R) on &(X,R) which is not k-continuous.

The first statement of this theorem follows at once from
Theorems 21 and 18. To prove the second, let X be u non-@-space,
M a subfamily of Z(X) as described in the procf ¢f Theorem 16,
M the ring-homomorphism of §(X,R) corresponding to M, and g
and g* the measures corresponding to M. If K is any compact sub-
set of X, then A¥*(K)=0, as noted in the procf of Theorem 17.
Let @ be any set in £(X) such that DK and f(G)=0. As observed
in the proof of Theorem 18, there is a function o ¢ (X, R) such
that 0=0 on K, =1 on &', and 0<{o<1 throughout X. Then ¢
belongs to the k-neighborhood of 0 which consists cf all functions

he@(X,R) with |h]<e on K, but M(a):/a(m)dﬁ:l. Hence the
X

ring-homomorphism M is not k-continuous.
We next consider the rcles played by »- and m-continuity.

Theorem 23. If the CR-space X admits any unbounded con-
tinuous real-valued functions, then €(X,R) admils u-continuous linear
functionals which are unbounded and hence not k-continuous. Further-
more, (X, R) admits m-continuous linear functionals which are not
u-continuous.

These assertions are verified by appropriate selections of
Hamel bases in €(X,R). (For a discussion of Hamel bases, see, for
example, [11], pp. 157-158). It is easy to see that there exists a Ha-
mel basis for €(X, R) over R of the form $*U§H, where H*CEX X, R)
and H$NEC*X,R)=0. $ can furthermore be chosen in such a way
that there are functions ¢;<¢, in $ and a sequence {fn}miC$H.
such that ¢, <fa<g, for all n. Let I be any bounded linear functional
on G X,R). It is obvious that such functionals exist in great pro-
fusion. (Indeed, every point we¢BXNIX’ provides a mnon-trivial
functional of this kind, and there are at least 22 such points). It is
clear that I determines and is determined by the set of numbers
{I(h) ) nes*- Now define I(g,)as0, I(gs) as1,and I(f,) asn (n=1,2,..).
Agsign arbitrary values to I{g) for all other g ¢ §, and set I(g)=I(g)-
for g « *. Let y be any element cf €(X,R). Then y has a unigue
representation of the form w=2§=xaihu where {h.hs, .., hi}CH*UH;

!2* B
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and I(h)=X%,aI{h;) is a linear functional defined on C(X,R)
which agrees with I on C*X,R) and is therefore w-continuous.
From the construction, however, it is clear that I is unbounded
and therefore not k-continuous.

A large number of m-continuous linear functionals which are
not u-continuous are also at hand. We may, for example, choose
a Hamel basis for €(X,R) and values of I for that basis which send
an entire m-neighborhood of zero into zero, at the same time assigning
the value » to a function which is less than 1/n in absolute vajne
everywhere. We omit the details of this construction. T

Remark 1. From the preceding theorem, it is apparent that
integral representations simply fail to exist for a large class of con-
tinuous linear functionals on G(X,R). It is true, of course, that
(X, R)isnot a topological linear space under the m- or the u-topology
if X admits any unbounded real-valued continuous funections; and
this fact makes Theorem 23 less surprising than it might other-
wise be.

Remark 2. G. Sirvint [17] has stated that any k-continuous
linear functional I on the space €(N,,E) has the form I= St p: M,
where the f§; are arbitrary real numbers. This result is a special
case of Theorem 21, and is closely related to Mackey’s theorem [12].

5. The space of linear functionals. Let X be any
CR-space, and let B be the space of all bounded linear functionals
defined on G(X,R); we define addition and multiplication by real
numbers within B in the usual way. A number of different topo-
logies can be imposed on B, which we shall now discuss. For an
arbitrary finite subset {f,,f,,...,fx} of C(X,R) and an arbitrary
positive real number &, let U(fy,fs,...,fr; ) be the set of all fune-
tionals I ¢ B such that |I(f)|<e (i=1,2,..,k). As {f;,fs...,Js} and
¢ assume all -possible values, the corresponding sets U describe
a complete family of neighborhoods of zero in B. Neighborhoods
of other functionals are defined by translation, and the resulting
topology for B is the ordinary weak topology as customarily defined
‘forlljanach spaces. We shall call this topology the weak topology
in B.

Next, Arens [3] has observed that if one has an appropriate
family B of bounded sets in §(X,R), one can define a topology
(the b-topology associated with this family of bounded sets) on B
in the following manner. A generic neighborhood (M/a) of zero in B
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consists of all T « B such that suprew|I(f)|<a, where A e B and a
is a positive real number. The p-, k-, u-, and m-topologies for €(X, K)
give rise to four families of bounded sets in €(X,R), when we apply
the usual definition of boundedness with respect to a given topology
([21], p. 158).

B, consists of all sets ACC(X,R) such that SuPfenf(p)| < o0
for all pe X.

B consists of all sets WCE( X, R) such that sup e Sup,exfl)|)<<oo
for every compact subset K of X.

B, consists of all sets UCE(X, R) such that supe(sup.exf(£)])<oo.

‘We shall have no need to discuss the topology for B associated
with the m-topology on €(X,R) and hence omit a description of Bp.

The topologies on B which we obtain hy applying Arens’s
definition of the b-topology to the families B,, Br, and By, are
designated as the &, by, and b,-topologies, respectively. We are
particularly interested in the b, and &g-topologies.

Theorent 24. In the bytopology, B is a normed linear space,
where {L{|=8up_, o, LA} In general, B is incomplete in the
metric induced by this norm.

A generic neighborhood of zero, (¥/a), in the b, topology
consists of all IeB such that suppeu|l(f)j<a, A being any set
in €(X,R) whose elements all satisfy an inequality —p<f<+8 (§>0).
If (Y/a) is any byneighborhoed of zero, then, and if |[Ii<a/g, it
follows that I e (/a). It is obvious that every neighborhood of zero
in the norm topology is a b,-neighborhood of zero. Hence the topo-
logies ave identical. Verification of the usual norm properties for
I} is very easy and is accordingly passed over.
To prove that B need not be complete, consider the space
[o,1), an;i let L, be the functional on €([0,1),R) such that
1—=

Lafi= [ fz)de (n=2,3,...). It is clear that Ln—Ly = n~'—m=4,
0

s0 that the sequence {L,lnes is a Cauchy sequence in B. The limit

1
functional L, however, is defined by the relation L(f)= / flz) daz.

0
It is obvious that L, is a linear functional on €*({0,1),R) which
cannot be extended over €([0.1),R) 50 as to be hounded. Hence B
is incomplete in this case.
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On the other hand, we find the following rvesult for the
by-topology.

Theorem 235, Let X be o (-space, and let B be the space of
bounded linear functionals on G(X,R). Under the by-topology, B is
a complete, partially ordered, locally convew, topological linear space.

If X is a @Q-space, then B is exactly the set of k-continuous
linear functionals on €(X, R) (Theorem 22); and every such functional
can be represented as an integral with respect to a Baire measure
on a compact subset of X. Certainly B is a linear space over R under
the usual definitions of addition and mmultiplication by real numbers;
if I and J are bounded and « and # are real numbers, al+pJ is
also bounded. Now consider the family £B,. A generic set in this
family is of the form {K,ag} ({K} being the family of all compact
subsets of X and agx being an arbitrary positive veal number);
{E,ur} consists of all fe®(X,R) such that sup.erlf(®)|<ax for
all K e {I'|. A generic neighborhood of 0 in the by-topology for B
consists of all I such that sup |I(f)|<1, where f runs through all
functions in a set {K,ag}. Denote this neighborhood by the symbol
V{({K.ag}). Itis plain that if I,J e V({K,ag/2}), then I—J e F({K,ag}).
To prove that multiplieation by real numbers is continuous, it
suffices to observe that if ¥({K,az}) is ahy neighborhood of 0 and I
is any element of B, there is a positive real number §, such that
|8]<é, implies that éI e P({K,ax}). If I is a positive functional,
there exists a compact subset K, of X and a non-negative Baire

measure ¥* on Kg such that I(1)=y*Hy) >0 and _I(]‘):ff({(‘)dy*

(Theorem 18). Lt d,=1/(2axy*(Ky)). This value of gg clearly
has the required property. Subtraction being a continuous operation,
this result holds for an arbitrary I which is the difference of two
non-negative functionals. Thus B is a topological linear space.
The partial ordering in B is defined in the usual way, and it is clear
that B is locally convex.

It zemaing only to prove that B is complete in the uniform
structure defined by the neighborhoods V({EK,ag}). To accomplish
this, consider any Cauchy filter & of sets in B. (See [6], pp. 99-102).
For every neighborhood V({K,ax}) of 0 in B, there is a set Fe F
such that it I,J e F, then I—J «V({K,ag}). Let Ir be any func-
tional in F, and let ¢ be a fixed clement of G(X,R). The set of
numbers {Tr{g)}res is clearly a directed set under the relation

icm

Linear functionals 183

of inclusion in &. It is plain that {I Fl§)}Fes admits a Moore-Smith
Jimit, which we denote by Iy(g). One may verify witheut difficulty
that T » is linear and bounded and that the filter & converges to I,
Hence B is complete.

I X is & non-Q-space, the description of B in the bh-tupn.vlogy
presents a number of technical difficulties, and we accordingly
dismiss this subecase. )

Tt is well-known that the unit sphere in the conjugate space
of a Banach space is compact in the weak topology. .This property
fails in our present situation, if the norm introduced in Theorem .‘:’4
is used to describe the unit sphere in B. Let X be the space Ny,
identified with the positive integers: Ny={1,2,3,...,m,...}. Let
p € C( N, R) have the values p(n)=mn. Introducing the w?ak topology
in B is equivalent to imbedding B in the 'Cartesmn pmductj
Preax,nBy (BRy=R) where IeB is mapped into the el}:}x‘min;:
(I eazm I the Cartesian product. In our example, 1t. ctxe
P, goes into a set of points in Pf“mﬁz R; whose ,,co-ordinates
on the ,axis® corresponding to the function y have the values n
(n=1,2.'...). This shows that the unit sphere (-:fn}mt he compact.

We obtain a yet weaker topology tor B by defining W(fifoy-In} &)
as the set of all IeB such that |[I(fd]<e (i:l,?,...,qz); where
Frsfas s/ are elements of E*X,R) and ¢ is an arbitrary pOSlt.IV(%
real number. Theorem 1 shows that the topology oh_’(amed by 1lxsmg
these sets as a complete family of neighbnrhom]? .of Oisa ;1’1~t91)9A0gy.

We may call it the *weak topology for B. §lx1ee B is @wt;gsl_;t
@ t0pol})gical group under this topology, 1‘t follo\v.\" Thatv : is
a CR-space under the *weak topology. Tn this case, we have:
Theorem 26. Let 8] be the set of all fmwt[o'nals I in B sucl;
that [Ij<a (a is any positive red number ). Then S[a] is a compuct
set in the *weak topology of B. ; . .
We observe that |I{f)] <o SuPxe x|f(z)], and that t-111c un‘l.)eddmg
of B into Preevx,m By carries §[a] into a subset of a -Lartemahn p:l(\)-
duct of closed finite intervals. It is simple t'olshovt', just as in the
case of a Banach space, that the image of S[«] in this Cartesian pro-
is closed and is hence compact.
auet i:Ve( 13::]26 1: iir:al observation concerning the structure of the

unit sphere in B.
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Theorem 27, The linewr functionals on C(X,Rf which are
ring-homomorphisms or the negatives of ring-homomorphisms are
exacly the extreme points of the set 8[1] in B. If X is a Q-space, then:
the functionals 1 M p arve the exireme points of S[1).

To avoid needless complexities, we first consider the cage in
which X is a @-space. Let I be any ring-homomorphism of (X , RY
onto B. Then M =M, for some p ¢ X. Assume that M, is an interior
point of a line segment in S[1}: M,= aly+(1—a)L,, where 0<a<1
and Ly L, e S[1]. Write L, as P,—N, and L, as P,—N,, where
Py, Py, Ny, and N, are non-negative linear functionals, with
corresponding Baire measures Yu Y2 0, and ;. Then we have
Mp=aP,+ (1—a)Py —(aN,+(1—a)N,), and for any feG(X,R),

f(p)=aj(/ f(‘»v)‘dh—Hl—aLf f(e) @y (a Xf () a8+ (1) [ 1@)as). Tet

4 be any set in Z(X) not containing p, and let g be a function

in ©(X,R) such that 9(p)=1,g=0 on 4, and 0<g<1 everywhere.
Then we have

1=ef ey + 0= [g(0)dye— (o f o(@) 38, + (1 —a) [ g0 )as,) <
A it & 4
Sayfd’) + (1—a)yy(4").
If it were true that y(4’)<1, we should have

I<ap(d)+ (I—a)yy(d)y < a+ (I1—a)=1.

From this evident contradiction we infer thaf y’;(p):y;(p):l.
This implies that Py=P,=M, and that Ny==N,=0. Thus M, is
not an interior point of any line segment in 8[1]. The case of a func-
tional —af, is immediately reducible to this case.

Now suppose that L « B and that T, is'not of the form -+ 7, .
If =0, then L is obviously not an extreme point of S[ﬁ. ff
0<|L(1)|<1, then L= a{a™1L)+ (1—a)0, where a=|L(1). If I(1)=—1
we consider the funetional —F. Thug we have reduced our problen;
to funetionals L ¢ B such that L(1)=1. L not being of the form M,
Theorem 16 implies that the Baire measure y associated with L hz:js’
.the property that 0<|y(@)|<1 for some @ ¢ 2P(X). Suppose that
?E)=a>0. Let K,(f)=q— [f@)dy and let K= (1~a)™ [f(z) dy.

. G .

It is _then clear that L= ak; - (1—a)K,. If the inequalities i1 <a<(
obtain, then we have GE)=1—y(@)>1; and thus there existe
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2 set H e P(X) such that HD G and 1< y(H). By definition of y,
there must be a function pe¢G(X,R) such that 0< o<gy and
1<I(g); that is, I non e S[1]. Hence L is in no ease an extreme point
of S[1].

If X is a CR-space which is not a @-space, we imbed X in
vX (see [7], p. 88, Theorem 56) and proceed as before.

We now turn to weak limits of the linear subspace spanned
by ring-homomorphisms.

Theorent 28. Any functional in B can be approximated arbi-
trarily closely in the weak topology for B by linear combinations of
ring-homomorphisms; and if X is a Q-space, by linear combinations
of functionals M,.

Let X be a Q-space and let L be any functional in B. By
Theorem 18, L(f)= ff(m} dy*, where F' is a compact subset of X and

¥* is a Baire measﬁrc on F. The weak neighborhood of L defined
bY fisfes-onfme €(X,R) and >0 consists of all e B sueh that
Z(fd—L{fdl<e (i=1,2,..,m). For each . there exists a division
of F into pair-wise disjoint sets Ay dy, oy di e P(F) such that
3= flw)y*(d,)]<e, where @, is an arbitrary element of
Ay (k=1,2,...,n,). Let B}, B,,..., B, be the family of pai-wise disjoint,
sets (all necessarily in P(F)) formed by taking all possible inter-
sections of sets 4, and their complements. Let 2, be any point in
Bi (k=1,2,...,5). Then, clearly, the functional Si=t3*(By) M, is
in the (fi,fs,....fm; €) neighborhood of I. If X is not a @-space, we
imbed X in »X and apply the preceding result.

The difference between the weak topology and the bpy be, and
by-topologies, is illustrated by the following result.

Theoreme 29. Let K denole the set of all linear combinations
of ring-homomorphisms in B, and let X be a Q-space. The closure
of K in the by and b,-topologies consists exactlly of the Functionals
SrenMy , where {pahey is a countable compact subset of X and
Meiles| converges.

Suppose that T is a positive functional in B such that in every
byneighborhood of I there are functionals of the form oM, P
Thus, for every positive integer %, there are points PryPay s Pny € X
and numbers a,...,a,, € R such that :

g
Sup_1<f<%111(f) “’I_:g 01(7(211))]< k-1


GUEST


186 . E. Hewitt:

This implies that if f(p,)=F(ps)=...=f(pn)=0 and 0<f<1,
then |I(f)j< %Y. The Baire measure y associated with I thus has
the property that p(@)<k™" for every set & ¢ P(X) such that @ is
disjoint from the finite set py,Pg ..., Pn,- It is plain that the set
B=331{p1, Do Pryy 18 countable and has the property that
»¥(B)=y(X)==I(1). It is plain also that the compact set F' described
in Theorem 18 is contained in B and is therefore countable. 'Write
the set F as {gn}me1. The most general measure x on F has the form
WG =g, nmi]aa}< oo, and we see that the b,-closure of K contains
only functionals of the form B",’,“_la,,M . It follows at once that
the samie is true of the bp-closure of K

Conversely, consider any functional I,=37mfn pp Where

={Pata=1 i @ compact subset of X and Yie|fn]<+ co. We shall
show that the bz-closure of K contains I;,. A generic b,-neighborhood
of I, consists of all functionals I such that sup |I(f)—I(f)|<1,
where f runs through a set W={K,ag}. F being compact, we have
SUDigneoolf(Pn)[<a=ap. Thus, if feA, we have for every positive
integer m, |NiemPuf(Da)] <aSnem|f, and this number may be
made arbitrarily small for sufficiently large values of m. Hence
the number |I4(f) —\‘ﬁ'_‘}lﬁ,,M plf)l can be made arbitrarily small
for all fe by taking m large enough, and we see that the by-closure
of K contains all functionals 2?=1ﬁnﬂfpn of the kind described.
Thus, the present theorem is established.

Remark. It is not difficult to see, by means of appropriate
examples, that the b,-closure of K may be a proper subset of the
set of all functionals of the kind described in Theorem 29.

6. Relations with other problems. Let X be a completely
regular space and let I be a positive linear functional defined on
the space €*(X, ). Then the process elaborated in § 2 can be carried
out with the funectional I, and one obtains a measure-function &*
defined for all subsets of X such that

(1) 6*(AUB)6*(d)+6%(B) for all 4, BCX;

(2) 0<<é*(A4) for all ACX;

(8) M(X)=1I(1).

It is impossible to establish the property 6*( Frid ») < Joe:0%(An)
{N. B. The proof carried out in § 2 breaks down at Theorem 7 , if
we attempt to carry it over to the present situation). Under the
usual definition of measurability, the function 6* can be proved
to be finitely additive on measurable sets; the family of measurable
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sets is closed under the formation of complements and finite unions
and contains the family 2(X). Countable additivity cannot be
hoped for, as the following example shows. Let p be any point in
the space SN, Ny Then every function in €*( N, R) can be continu-
ously extended over p, and the functional M,(f)=f(p) is certainly
a positive linear functional on C* Ny, R). The measure » on N,
corresponding to the functional M, vanishes for points and hence
cannot he countably additive. In spite of this defect, however,
the measure 6* for general X yields an integral such that
I(f)= f f(z)ds* for all funetions in CX(X,R).

i. Markov [13] has considered the problem of finding an
integral representation for an arbitrary positive linear functional a7
(M(1)=1) defined on the space of all hounded continucus real-
valued functions on a space X which satisfies the axiom of normality
but need not satisfy any separation axiom at all. He proves that
every such functional has an integral representation: 3 (f)= f flz)du,
where yx is an outer measure on X such that

+u(BY; p(AUB)=p(d)+u(B)
WX)=1; p(4)=int (@),

HAUB)u(4) it ATNEB=0:

where @ runs through the family of all open sets containing A4.
Markov’s theory can be generalized and reduced to the problem
treated in the preceding paragraph. Let X be any topological space.
In X, identify all points p,q,... such that all functions in €*(X, R)
have the same values at p,gq,... Denote by X the resulting space of
subsets of X, with points p_E[q, ge X, every fe€(X,R) is constant
on g]. Topologlze X by setting Uf, (p)=E[§; § « XI{H—F(D)|<el;
as f runs through all elements of C(X,R) and ¢ runs through
all positive real numbers, the neighborhoods U,v, (7)) describe
a complete family of neighborhoods of . The space X ig clearly
completely regular and is a continumous image of the space X
under a mapping @. The space (S*(l R) is identifiable with the
space G*X,R). The theory sketched above can be applied to any
bounded linear functional I on (i*(l R), to obtain a measure a*
which is finitely additive for measurable sets and such that
I(f)= f f(#)d6* for all f e C*(X,R). The measure 6* on X such that

X .
6*(A) = oX{(P(4)) provides a similar integral representation for the
functional I on C¥(X,R).
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In exactly the same way, we can use the results of § 2 to
obtain an integral representation for a bounded linear functional
defined on the space C(X,R), where X is an arbitrary topological
space.

A.D. Aleksandrov [1] has considered integral representations
of positive linear functionals defined on spaces of continuous funec-
tions €*(T.R), where T' is a space satisfying all of the axioms for
a normal space, except that the union of an uncountable family
of open sets need not be open. His theory, while closely related
to the theory sketched in the first paragraph of the present work,
cannot be immediately reduced to it. We note that the space €7, R)
satisfies all requirements for an M-space (see [9]) and hence may
be identified with the space of all real-valued continuouns functions
on a certain compact Hausdorff space ¥, a certain subspace of
which maps continuocusly onto 7. A bounded linear functional
on €*(1,R) yields the same funetional on C(¥,R), and with it
& measwe function on Y. There is, however, no obvious way of
transferring the measure to the space T.
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