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recursive function. Hence we may suppose o primitive recursive.

We have

@ 15 the Godel-number of a true statement of S;=(Ey) (w=a(y))
=(By) (e=p(y,0))
=(By) (v=2>(m,y,0))

for some primitive recursive § and for some m and this is clearly

expressible in §;; hence S; can define its own truth.
Q E.D.

icm

A Proof of the Completeness Theorem of Godel.
By

H. Rasiowa (Warszawa) and R. Sikorski (Warszawa).

In this paper we shall give a new proof of the following well-
known theorem of Godel?):

(*) If a formula « of the functional caleulus is valid in the
domain of positive integers, then a is provable.

Three ideas play an essential part in our proof: Mostowski’s
algebraic interpretation of a formula « as a functional the values
of which belong to a Boolean algebra; Lindenbaum’s construction
of a Boolean algebra from formulas of the functional calculus; and
a theorem on the existence of prime ideals in Boolean algebras,
the proof of which is topological and uses the well-known category
method.

1. The functional calculus. By the functional calculus
(of first order) we understand the system which can be briefly
described as follows:

The symbols of the system are: individual variables @y,s...;
functional variables Ff, F,... with k arguments (k=1,2,..); and
constants. The constants are: the negation sign ’, the disjunction
sign 4, the existential quantifier 3, and the brackets.

*k

F}‘(I&, -3 i8 2 (elementary) formula of this sj'stem; if cand g
are formulae, then a-t+f, ¢’ and ) a are also formulae.
3

1} K. Godel, Die Vollstindigheit der Axiome des logischen Funkiionen-
Kalkiils, Monatshefte fiir Mathematik und Physik 37 (1930), pp. 349-360. See
also D. Hilbert and P. Bernays, Grundlagen der Mathemalik, Band II,
Berlin 1939; and L. Henkin, The completeness of the first-order functional ealculus,
Journal of Symbholic Logic 14 (1949), pp. 159-166.
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We shall assume that the notion of free and bound individual
variable is familiar. The following formulae

Al (a+a)—>a,

A2 a—>(a+p),

A3 (a=>p) > ((B+a) > (y+5)),
where «, §, y are arbitrary formulae and a—- f is the abbreviation
for o'+ B, ave the awioms of the system 2). The rules of inference
are: modus ponens (¢ and a—§ give B), the rule of substitution
for free individual variables, and the two well-known rules for pX

(from a— g follows 3 a— f, when a is not free in #; and from 3 a—:%
X
follows a—p3). * *

A- formula o is said to be provable if it can be obtained from
the axioms by the above rule§ of inference.

27 Tarski’s definition of the satisfiability. The set of
all positive integers will always be denoted by I. The symbols {f,}
{gn} Will denote enumerable sequences of Dositive integers. {Kx} wai
denote a double sequence (m,n=1,2,3,...) of sets such that ele-
ments of a set KT are m-element sequences of positive integers.

The definition of the satisfiability is induetive 2). Two sequences
{fn} and (K7} satisfy an elementary formula Fray, .. iy) if
{Tiy Fign vy fi,,}EKf~ Two sequences {/,} and (K2} sat:isfylf a formuk]a a’
if they do not satisfy the formula a. Two sequences {f,} and {E7}
satisfy a formula o+ g if they satisfy either a« or g. Two sequenezs
{fa} and {E7} satisfy a formula 2 a, if there exists a sequence {gx}

*i
such that {g,} and {E}'} satisfy « and In=1n for n=£1.
. é{ mf;rn;iﬂi a I8 satisfiable if there exist two sequences {f,}
and (K, which satisfy «. A formula « is valid@ in T if all s :
), L sequences

8. Mostowski’s f'u’nctiom_zls D,. We assume the definition
of a Boolean algebra B as known. The Boolean sum (join) and the
complement of elements a,b « B will be denoted by a+b and a*

%) See H. Rasiowa, -Sur certain systéme d’axiomes du caleul d i

’ 8 DIOPOSi-
tions, Nomak Mathematisk Tidsskrift 3t (1949), pp. 1-3. o propest
%) A. Tarski, Pojecie prawdy v jewykach neauk dedukey; :

I . 2 nyeh, Prace To:

warzystwa Naukowego Warszawskiego, Wydziat 111, 19338, pg] ly-llﬁ. °
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respectively. If a+b=¥5, we shall write aCb. The sum*) of elements
a, e B, where x runs through an abstract set X, will be denoted
by > a. (or, more precisely, by 3 a,) whenever it exists.

x xeX

The letter B, will always denote the two-element Boolean
algebra. The elements of By are 0 and 1.

F* will denote the set of all k-argument functions ¢* (called
(I, By) functions), whose arguments run over I and whose values
belong to B,. ’

We shall say that

3 i
(1) D=2y ey Ty Fily oy F )
is a (I,B,) functional %) if @ is a function whose values belong to B,
and which has n arguments xy, running over I, and m arguments
F“a’ running over ¥ respectively.
Every formula

. Tk %
2) a=a(Ty, s Ly Fily ooy FjT)

from the functional calculus with =n h;ﬂividual variables &y and
with s functional variables F ,{2’ can be interpreted %) as an (I, By)
functional if

a) the individual wvariables x;, are interpreted as variables
running over I;

b) the functional variables F}‘pﬂ are interpreted as variables
running over §*# respectively;

¢) the operations 4, ’, and Y are interpreted as the Boolean
*I
operations ¢ in B,.
The (I, B,) functional obtained in this way from a formula «
will be denoted by Pe..

4, An algebraic interpretation of the satisfiability.
The following lentmas establish the relation between the satisfiability
and the functionals @,.

4y An element a ¢ B is 3aid to be the sum of elements a, (# ¢ Aj provided
that 1° a, (Ca for every x ¢ X, and 2° if a,(Cb « B for every x ¢ X, then aCb.

5) See A. Mostowski, Proofs of non-deducibilily in infuitionistic functional
caleulus, The Journal of Symbolic Legic 13 (1948), pp. 204-207.

¢) Obviously ) is then interpreted ag the symbol of Boolean sum 3.
xi xj€l
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(1) For every formula a from the functional caleulus, the (I, B,)

functional @, assumes the value 1 (0) if and only if a (a’) is satisfiable.
If B™ is a set of m-element sequences of positive integers,

then exme §™ will denote the characteristic function of K™, i.e.

¢gm(s)=1eB, If seH", exm(s)=0¢B,

It can be easily proved by induction that two sequences {fn}
and {Ky} satisfy a formula a of the form (2) if and only if

and if snon e K™

q)m(flp '“:finv 0K"17"'70K1?m): le BO'
i Im

This proves (i). It follows directly from (i) that
(ii) A formula a is valid in the sev I of all positive integers if and
only if the (I, By) functional @, is identically equal to 1 e B,.

5. 4 theorem on the existence of prime ideals in
Boolean algebras. Let B be a Boolean algebra. The set of all
prime ideals of B will be denoted by &. For every aeB let S(a)
denote the set of all prime ideals p of B such that anonep, and
let & be the class of all sets S(a) where a e B. By definition:

(3) p e Sla) @ 10N € P.

We shall consider the set & as a topological space with € as
the class of neighbourhoods. As Stone ?) has proved, & is a totally
disconnected bicompact Hausdorff space, and the mapping §=S(a)
is an isomorphism of B on the field G of all both open and closed
subsets of .

Let p be & prime ideal of B. Then the quotient algebra B/p
is the two-element Boolean algebra. The element of Bjp which is
determined by an element & < B will be denoted by [«]?). By de-
finition:

(4) [al=1eBfp if anonep; [a]l=0¢Bp

Suppose an element « ¢« B is the sum of a class of elements
ay ¢ B where = runs over an abstract set X. In symbols:

if and only if

if aep.

(5) a=}a, in B.
xeX

?) M. H. Stone, Applications of the theory of Boolean rings lo general lopo-
logy, Trans. Am. Math. Soc. 41 (1937), pp- 375-481. See p. 378.
%) The Boolean operations in Bfp are defined by the equalities:

[a]+-Dl=[o+b), [aV=[D]-
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We shall say that the ideal p preserves the sum (3) if
[a] =S[ax] in Bjp.
x€X
Obviously the ideal p does not preserve the sum (3) if and
only if [a]=1 and [a,]=0 for every x«¢X, i. e., on account of (4)
and (3), if
p e S{a) "Z‘ﬂ‘&)'
x€X .
Henee,
(ili) The set of all prime ideals which dv not preserve a sum (5)
is nowhere dense in the space &.
~ In fact, the set S(a)——z; S(a,) is closed. Suppese its interior
is not empty. Then there ex{sets an element a,50 (@, ¢ B) such that
S(a,)CS8(a)—2 S(ay), i.e. S(ax)CS(a)—S{aqm)==58a—a) for every
z e X. The ﬁl:g;)ping §=5§(b) being an isomorphism, we infer that
a,Ca—a,=a in contradiction ®) to (5).
(iv) Let g, @ny Gny (£ € X, where X, is an arbitrary abstract set,
n=1,2,...) be elements of B such that
a) ap=2 apy in B (n=1,2,...);

xeXp,

b) a, is not the unit of B.

Then there exists a prime ideal p preserving all the sums ) and
such that agep.

Let P be the set of all prime ideals which preserve all the
sums a). By (iii) the set $—P is of the first category in e?.. The
space & being bicompact, we infer that the set P is»dense in &.
By b) the open set S{ag)=5—=5(a,) is not empty. §0ns€queutly
P-S{ap)==0. Every prime ideal peP-S(ag) satisfies the thesis of the
theorem (iv). .

6. Lindenbauwm’s algebra B*. Two formulae p, y {(from
the functional caleulus) are said to be eguévalent if the formulae
B—y and y—»§ are provable. The class of all formulae y equivalent
to a formula g will be denoted by E(B)-

The set of all classes F(a) is a Boolean algebra denoted by B*.
The Boolean operations in B* are defined by the equalities:

(6) E(p)+ Ely)=E(B+7);
{7) E(py = EB(§")-

%) See footnote 4.
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It is easy to show that

(\‘) E(p)CE(y) if and only if p—y is provable,

(vi) The wnit of B* is the class of all provable formulae.

For every formula B, let ﬁ(‘r”

) Ad'p

tain from 7 in the following way:
o We ehqose an integer I such that § contains neither the in-

dividual variable #; nor the quantifier ¥'. We replace every bound

x1

) be the formula which we ob-

variable @, by the variable @, and every quantifier ¥ by
= P
Further, we replace every free variable 2, by Tp. K N
Thy 'mula g A'r”) i i i i
e formula p( Y defined in such a way is not uniquely de-
termined; t i i i
" . ; but the element E(;S(J:)) € B* is uniquely determined,
sinee it does not depend on the choice of the integer 1.
Using this notation we shall demonstrate that
(vii) For every formula B,

S

pel

In fact, the provable formula ﬁ(fﬂ) — ' implies by (v) that
o k )

*%
Zp
E(ﬁ(xk))CE(Zﬁ) for p=1,2, ..
R
Suppose a formula y satisties the inclusion

E(ﬂ(":l’:))CE(/) f(A)r p=1,2,..

The formula

9) ﬁ("’p) >y

Ty
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is thus provable for p=1,2,... (see (v)). Let g be an integer such
that o, is not free in y. Then, by (9), the formula Zﬂ (i")»y is
also provable; hence, by (¥), xg ®

(30)-s( Sl fem
xp xq
which proves (vii).

7. The proof of Godel’'s theorem. By (ii), in order to
prove Godel's theorem (*), it is sufficient to show that

(%) If a formula a is not provable, then the (I, B,) functional @n
assumes the value 0 (the zero element of By). :

Suppose the formula a is not provable. Let p* be a prime ideal
of B* preserving all sums (8) and such that E(a)ep*. The existence
of such an ideal follows from (iv), (vi), and from the fact that the
set of all sums of the form (8) is enumerable 19).

Then By=B*p* is the two-element Boolean algebra, and

(10) [E(a)]=0 (since E{a) e p*);
(11) LB+ [EXN=[EF+7)] (by (6))1);
(12) [E()) =LE(B)] (by (N1
(13)

Se(CIN-[=(2)

{on account of (vii), since p* preserves all the sums (3)).
Let ¢keFk (for k,j=1,2,...) be an (I, B,) funetion defined
Jo.
by the equality
{14) ‘a“;(pypg’"'7pk)=[E(F§-z(wp17wp2!"'v‘vpk))]s

where {p,,D,,.-,P,} 18 any k-element sequence of positive integers.
Let @) denote (for each formula g) the value of the (I,B,)
functional @, for the following values of its arguments:

a=1 and Fk=g}

10) In the case of the Boolean algebra B¥, the space § constructed in § 5
is Cantor’s discontinuous set.
11) See footnote S.
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The equalities (11-14)
The easy pro'of (by induction on the length of 8) is omitted
In particular ¢0=[E(a)]=0¢B, by (10), which proves (k).
8. Generalizations, By the same method Godel’s theorem
can be Proved for the functional caleulus with the sign of equality =
The axioms of this systems are the axioms A1-3 and T

Ad rp=ux,.

A3 (wp=a) — (a-» a (:'1))

The algebraic interpretation of the f
' alge 1t ; ormula &= is w2,z
where p ¢ F? is an (I, B,) funetion defined by the cond;tiony;(- w )

pmn)=1eB, if m=n; pmyn)=0eB, if mn
A method similar to that of our

two-valued sentential calculus.

. N m?e also that the condition that I is t

integers is not essential in sections ©

non-void abstract set.

proof may be used for the

he set of all positive.
, 3 and 4. I may be an arbitrary

imply that SZ::,?= [E(p)] for every formula B.

Le dernier théoréme de Fermat pour les nombres
ordinaux.

Par

Waclaw Sierpifski (Warszawa).

Le dernier théoréme de Fermat n’est pas vrai pour les nombres
ordinaux. En effet, on a le

Théoréme 1. Quel que soit le nombre ordinal p, il existe trois
nombres ordinaux distincts a,f et y dont chacun est plus grand que u
et tels qu'on a

(1) anpr=npn pour n=1,2,3..
Te théoréme 1 est une conséquence immédiate de la formule
(2) {08+ (0f - 2)2= (wf-3;"

qui, comme on le vérifie sans peine, est vraie pour tout nombre
ordinal £>0 et pour tout nombre naturel » (pour le voir, il suffit
de remarquer qu’on a pour tout nombre ordinal positif & et pour k
et n naturels (efk=cfk).

Les termes & gauche de la formule (2) sont commutables;
si on voulait avoir des termes non commutables, on pourrait
remplacer la formule (2) par la formule

(QEe) + (5= (QE(w +1))"
qui a Heu pour tout nombre ordinal E>Q et pour tout nombre
naturel n.

Citons encore sans démonstration les solutions suivantes de
Péquation (1) pour n naturel donné (ol les nombres ordinaux
a, B et y dépendent de n et dont on ne peub pas déduire le théoréme 1)z

(@rHjn 4 (M= ("t o) pour n=1,2,3,..
et
(A2 4+ 1)1 - [(2 4 = [(A+10T
quel que soit le nombre naturel » et le nombre ordinal 4 de deuxiéme
espéce.
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