J. Myhill. 192 recursive function. Hence we may suppose a primitive recursive. We have $$x$$ is the Gödel-number of a true statement of $S_3 = (Ey) (x = a(y))$ = $(Ey) (x = \beta(y, 0))$ = $(Ey) (x = \Phi(m, y, 0))$ for some primitive recursive β and for some m and this is clearly expressible in S_3 ; hence S_3 can define its own truth. Q. E. D. ## A Proof of the Completeness Theorem of Gödel. By #### H. Rasiowa (Warszawa) and R. Sikorski (Warszawa). In this paper we shall give a new proof of the following well-known theorem of Gödel¹): (*) If a formula a of the functional calculus is valid in the domain of positive integers, then a is provable. Three ideas play an essential part in our proof: Mostowski's algebraic interpretation of a formula α as a functional the values of which belong to a Boolean algebra; Lindenbaum's construction of a Boolean algebra from formulas of the functional calculus; and a theorem on the existence of prime ideals in Boolean algebras, the proof of which is topological and uses the well-known category method. **1.** The functional calculus. By the functional calculus (of first order) we understand the system which can be briefly described as follows: The symbols of the system are: individual variables $x_1, x_2, ...$; functional variables $F_1^k, F_2^k, ...$ with k arguments (k=1,2,...); and constants. The constants are: the negation sign ', the disjunction sign +, the existential quantifier Σ , and the brackets. $F_J^k(x_{i_1},...,x_{i_k})$ is a (elementary) formula of this system; if a and β are formulae, then $\alpha+\beta$, α' and $\sum_{x_k}\alpha$ are also formulae. ¹⁾ K. Gödel, Die Vollständigkeit der Axiome des logischen Funktionenkalküls, Monatshefte für Mathematik und Physik 37 (1930), pp. 349-360. See also D. Hilbert and P. Bernays, Grundlagen der Mathematik, Band II, Berlin 1939; and L. Henkin, The completeness of the first-order functional calculus, Journal of Symbolic Logic 14 (1949), pp. 159-166. We shall assume that the notion of free and bound individual variable is familiar. The following formulae A 1. $$(a+a) \rightarrow a$$, A 2. $$a \rightarrow (a+\beta)$$, A 3. $$(\alpha \rightarrow \gamma) \rightarrow ((\beta + \alpha) \rightarrow (\gamma + \beta))$$, where α, β, γ are arbitrary formulae and $\alpha \to \beta$ is the abbreviation for $\alpha' + \beta$, are the $\alpha xioms$ of the system 2). The rules of inference are: modus ponens (α and $\alpha \to \beta$ give β), the rule of substitution for free individual variables, and the two well-known rules for $\sum\limits_{x_k} (\text{from } \alpha \to \beta \text{ follows } \sum\limits_{x_k} \alpha \to \beta, \text{ when } x_k \text{ is not free in } \beta; \text{ and from } \sum\limits_{x_k} \alpha \to \beta \text{ follows } \alpha \to \beta$). A formula a is said to be *provable* if it can be obtained from the axioms by the above rules of inference. **2.** Tarski's definition of the satisfiability. The set of all positive integers will always be denoted by I. The symbols $\{f_n\}$, $\{g_n\}$ will denote enumerable sequences of positive integers. $\{R_n^m\}$ will denote a double sequence (m, n = 1, 2, 3, ...) of sets such that elements of a set R_n^m are m-element sequences of positive integers. The definition of the satisfiability is inductive 3). Two sequences $\{f_n\}$ and $\{K_n^m\}$ satisfy an elementary formula $F_j^k(x_{l_1},...,x_{l_k})$ if $\{f_{l_1},f_{l_2},...,f_{l_k}\}\in K_j^k$. Two sequences $\{f_n\}$ and $\{K_n^m\}$ satisfy a formula α' if they do not satisfy the formula α . Two sequences $\{f_n\}$ and $\{K_n^m\}$ satisfy a formula $\alpha+\beta$ if they satisfy either α or β . Two sequences $\{f_n\}$ and $\{K_n^m\}$ satisfy a formula $\sum_{x_l} \alpha$, if there exists a sequence $\{g_n\}$ such that $\{g_n\}$ and $\{K_n^m\}$ satisfy α and $g_n=f_n$ for $n\neq i$. A formula α is satisfiable if there exist two sequences $\{f_n\}$ and $\{K_n^m\}$ which satisfy α . A formula α is valid in I if all sequences $\{f_n\}$, $\{K_n^m\}$ satisfy α . **3.** Mostowski's functionals Φ_{α} . We assume the definition of a Boolean algebra B as known. The Boolean sum (join) and the complement of elements $a,b \in B$ will be denoted by a+b and a' respectively. If a+b=b, we shall write $a \subset b$. The sum 4) of elements $a_x \in B$, where x runs through an abstract set X, will be denoted by $\sum a_x$ (or, more precisely, by $\sum a_x$) whenever it exists. The letter B_0 will always denote the two-element Boolean algebra. The elements of B_0 are 0 and 1. \mathfrak{F}^k will denote the set of all k-argument functions q^k (called (I, B_0) functions), whose arguments run over I and whose values belong to B_0 . We shall say that (1) $$\Phi = \Phi(x_{i_1}, ..., x_{i_n}, F_{j_1}^{k_1}, ..., F_{j_m}^{k_m})$$ is a (I, B_0) functional $^5)$ if Φ is a function whose values belong to B_0 and which has n arguments x_{i_p} running over I, and m arguments $F_{i_p}^{k_p}$ running over \mathfrak{F}^{k_p} respectively. Every formula (2) $$a = a(x_{i_1}, ..., x_{i_n}, F_{j_1}^{k_1}, ..., F_{j_m}^{k_m})$$ from the functional calculus with n individual variables x_{l_p} and with m functional variables $F_{l_p}^{k_p}$ can be interpreted 5) as an (I,B_0) functional if - a) the individual variables x_{l_p} are interpreted as variables running over I; - b) the functional variables F_{lp}^{kp} are interpreted as variables running over \Re^{kp} respectively; - c) the operations +, ', and \sum_{x_l} are interpreted as the Boolean operations 6) in B_0 . The (I, B_0) functional obtained in this way from a formula α will be denoted by Φ_{α} . **4.** An algebraic interpretation of the satisfiability. The following lemmas establish the relation between the satisfiability and the functionals Φ_{α} . ²⁾ See H. Rasiowa, Sur certain système d'axiomes du calcul des propositions, Norsk Mathematisk Tidsskrift 31 (1949), pp. 1-3. ³) A. Tarski, Pojęcie prawdy w językach nauk dedukcyjnych, Prace Towarzystwa Naukowego Warszawskiego, Wydział III, 1933, pp. 1-116. ²) An element $a \in B$ is said to be the sum of elements a_x $(x \in X)$ provided that 1^0 $a_x \subset a$ for every $x \in X$, and 2^0 if $a_x \subset b \in B$ for every $x \in X$, then $a \subset b$. ⁵⁾ See A. Mostowski, Proofs of non-deducibility in intuitionistic functional calculus, The Journal of Symbolic Legic 13 (1948), pp. 204-207. ⁶⁾ Obviously \sum_{x_i} is then interpreted as the symbol of Boolean sum $\sum_{x_i \in I}$. (i) For every formula a from the functional calculus, the (I, B_0) functional Φ_{α} assumes the value 1 (0) if and only if α (α ') is satisfiable. If K^m is a set of m-element sequences of positive integers, then $c_{K^m} \in \mathfrak{F}^m$ will denote the characteristic function of K^m , i. e. $$c_{K^m}(\mathfrak{s}) = 1 \; \epsilon \; B_0 \quad \text{if} \quad \mathfrak{s} \; \epsilon \; K^m, \quad \text{ and } \quad c_{K^m}(\mathfrak{s}) = 0 \; \epsilon \; B_0 \quad \text{if} \quad \mathfrak{s} \; \text{non} \; \epsilon \; K^m.$$ It can be easily proved by induction that two sequences $\{f_n\}$ and $\{K_n^m\}$ satisfy a formula α of the form (2) if and only if $$\Phi_{\alpha}(f_{i_1},...,f_{i_n},c_{K_{j_1}^{k_1}},...,c_{K_{j_m}^{k_m}})=1 \in B_0.$$ This proves (i). It follows directly from (i) that - (ii) A formula a is valid in the set I of all positive integers if and only if the (I, B_0) functional Φ_a is identically equal to $1 \in B_0$. - 5. A theorem on the existence of prime ideals in Boolean algebras. Let B be a Boolean algebra. The set of all prime ideals of B will be denoted by S. For every $a \in B$ let S(a) denote the set of all prime ideals p of B such that $a \text{ non } \in p$, and let \mathfrak{S} be the class of all sets S(a) where $a \in B$. By definition: (3) $$p \in S(a)$$ if and only if $a \operatorname{non} \in p$. We shall consider the set $\mathcal S$ as a topological space with $\mathfrak S$ as the class of neighbourhoods. As Stone 7) has proved, $\mathcal S$ is a totally disconnected bicompact Hausdorff space, and the mapping S=S(a) is an isomorphism of B on the field $\mathfrak S$ of all both open and closed subsets of $\mathcal S$. Let $\mathfrak p$ be a prime ideal of B. Then the quotient algebra $B/\mathfrak p$ is the two-element Boolean algebra. The element of $B/\mathfrak p$ which is determined by an element $a \in B$ will be denoted by $[a]^{\underline s}$. By definition: (4) $$[a]=1 \in B/\mathfrak{p}$$ if $a \text{ non } \in \mathfrak{p}$; $[a]=0 \in B/\mathfrak{p}$ if $a \in \mathfrak{p}$. Suppose an element $\alpha \in B$ is the sum of a class of elements $\alpha_x \in B$ where x runs over an abstract set X. In symbols: (5) $$a = \sum_{x \in X} a_x \text{ in } B.$$ 8) The Boolean operations in B/p are defined by the equalities: $$[a]+[b]=[a+b], [a]'=[b'].$$ We shall say that the ideal p preserves the sum (5) if $$[a] = \sum_{x \in X} [a_x]$$ in B/\mathfrak{p} . Obviously the ideal $\mathfrak p$ does not preserve the sum (5) if and only if [a]=1 and $[a_x]=0$ for every $x \in X$, i. e., on account of (4) and (3), if $$p \in S(a) - \sum_{x \in X} S(a_x).$$ Hence, (iii) The set of all prime ideals which do not preserve a sum (5) is nowhere dense in the space S. In fact, the set $S(a) - \sum_{x \in X} S(a_x)$ is closed. Suppose its interior is not empty. Then there exists an element $a_0 \neq 0$ $(a_0 \in B)$ such that $S(a_0) \subset S(a) - \sum_{x \in X} S(a_x)$, i.e. $S(a_x) \subset S(a) - S(a_0) = S(a - a_0)$ for every $x \in X$. The mapping S = S(b) being an isomorphism, we infer that $a_x \subset a - a_0 \neq a$ in contradiction 9) to (5). (iv) Let a_0 , a_n , $a_{n,x}$ ($x \in X_n$ where X_n is an arbitrary abstract set, n=1,2,...) be elements of B such that a) $$a_n = \sum_{x \in X_n} a_{n,x}$$ in B $(n = 1, 2, ...);$ b) a_0 is not the unit of B. Then there exists a prime ideal p preserving all the sums a) and such that $a_n \in \mathfrak{p}$. Let P be the set of all prime ideals which preserve all the sums a). By (iii) the set S-P is of the first category in S. The space S being bicompact, we infer that the set P is dense in S. By b) the open set $S(a_0') = S - S(a_0)$ is not empty. Consequently $P \cdot S(a_0') \neq 0$. Every prime ideal $p \in P \cdot S(a_0')$ satisfies the thesis of the theorem (iv). **6.** Lindenbaum's algebra B^* . Two formulae β , γ (from the functional calculus) are said to be equivalent if the formulae $\beta \rightarrow \gamma$ and $\gamma \rightarrow \beta$ are provable. The class of all formulae γ equivalent to a formula β will be denoted by $E(\beta)$. The set of all classes $E(\alpha)$ is a Boolean algebra denoted by B^* . The Boolean operations in B^* are defined by the equalities: (6) $$E(\beta) + E(\gamma) = E(\beta + \gamma);$$ (7) $$E(\beta)' = E(\beta').$$ ⁷⁾ M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Am. Math. Soc. 41 (1937), pp. 375-481. See p. 378. ⁹⁾ See footnote 4. Theorem of Gödel It is easy to show that (v) $E(\beta) \subset E(\gamma)$ if and only if $\beta \to \gamma$ is provable, (vi) The unit of B* is the class of all provable formulae. For every formula β , let $\beta \binom{x_p}{r}$ be the formula which we obtain from β in the following way: We choose an integer l such that β contains neither the individual variable x_l nor the quantifier Σ . We replace every bound variable x_p by the variable x_l , and every quantifier \sum_{x_p} by \sum_{x_l} . Further, we replace every free variable x_k by x_n . The formula $\beta {x_p \choose x_n}$ defined in such a way is not uniquely determined; but the element $E\left(\beta\begin{pmatrix} x_p \\ x_k \end{pmatrix}\right) \in B^*$ is uniquely determined, since it does not depend on the choice of the integer l. Using this notation we shall demonstrate that (vii) For every formula β , (8) $$\sum_{p \in I} E\left(\beta \binom{x_p}{x_k}\right) = E\left(\sum_{x_k} \beta\right).$$ In fact, the provable formula $\beta \binom{x_p}{x_k} \to \sum \beta$ implies by (v) that $$E\left(etaig(egin{array}{c} x_p \ x_k \ \end{array} ight)\subset E\Big(\sum_{x_k}eta\Big) \quad { m for} \quad p=1,2,\dots$$ Suppose a formula γ satisfies the inclusion $$E\left(\beta\begin{pmatrix} x_p \\ x_k \end{pmatrix}\right) \subset E(\gamma)$$ for $p=1,2,...$ The formula $$\beta \begin{pmatrix} x_p \\ x_k \end{pmatrix} \to \gamma$$ is thus provable for p=1,2,... (see (v)). Let q be an integer such that x_q is not free in γ . Then, by (9), the formula $\sum_{x_q} \beta \begin{pmatrix} x_q \\ x_k \end{pmatrix} \rightarrow \gamma$ is also provable; hence, by (v), $$E\left(\sum_{x_k} \beta\right) = E\left(\sum_{x_q} \beta \begin{pmatrix} x_q \\ x_k \end{pmatrix}\right) \subset E(\gamma),$$ which proves (vii). 7. The proof of Gödel's theorem. By (ii), in order to prove Gödel's theorem (*), it is sufficient to show that (*) If a formula a is not provable, then the (I, B_0) functional Φ_{α} assumes the value 0 (the zero element of B_0). Suppose the formula α is not provable. Let \mathfrak{p}^* be a prime ideal of B^* preserving all sums (8) and such that $E(a) \in \mathfrak{p}^*$. The existence of such an ideal follows from (iv), (vi), and from the fact that the set of all sums of the form (8) is enumerable 10). Then $B_0 = B^*/p^*$ is the two-element Boolean algebra, and (10) $$[E(\alpha)] = 0$$ (since $E(\alpha) \in \mathfrak{p}^*$); (11) $$[E(\beta)] + [E(\gamma)] = [E(\beta + \gamma)]$$ (by (6)) ¹¹); (12) $$[E(\beta)]' = [E(\beta')]$$ (by (7)) ¹¹); (13) $$\sum_{p \in I} \left[E \left(\beta \begin{pmatrix} x_p \\ x_k \end{pmatrix} \right) \right] = \left[E \left(\sum_{x_k} \beta \right) \right]$$ (on account of (vii), since p* preserves all the sums (8)). Let $q_j^k \in \mathfrak{F}^k$ (for k, j = 1, 2, ...) be an (I, B_0) function defined by the equality $$q_{j}^{k}(p_{1}, p_{2}, ..., p_{k}) = [E(F_{j}^{k}(x_{p_{1}}, x_{p_{2}}, ..., x_{p_{k}}))],$$ where $\{p_1, p_2, ..., p_k\}$ is any k-element sequence of positive integers. Let Φ_{β}^{0} denote (for each formula β) the value of the (I, B_{0}) functional Φ_{β} for the following values of its arguments: $$x_i = i$$ and $F_j^k = \varphi_j^k$. ¹⁰⁾ In the case of the Boolean algebra B^* , the space $\mathcal S$ constructed in § 5 is Cantor's discontinuous set. ¹¹⁾ See footnote S. #### 200 #### H. Rasiowa and R. Sikorski. The equalities (11-14) imply that $\mathcal{Q}^0_{\beta} = [E(\beta)]$ for every formula β . The easy proof (by induction on the length of β) is omitted. In particular $\mathcal{Q}_{\alpha}^{0} = [E(\alpha)] = 0 \in B_{0}$ by (10), which proves (*). 8. Generalizations. By the same method Gödel's theorem can be proved for the functional calculus with the sign of equality =. The axioms of this systems are the axioms A 1-3 and A 4. $$x_k = x_k$$. A 5. $$(x_k = x_l) \rightarrow \left(a \rightarrow a \begin{pmatrix} x_k \\ x_l \end{pmatrix}\right)$$. The algebraic interpretation of the formula $x_k = x_l$ is $\psi(x_k, x_l)$ where $\psi \in \mathfrak{F}^2$ is an (I, B_0) function defined by the conditions: $$\psi(m,n)=1 \in B_0$$ if $m=n$; $\psi(m,n)=0 \in B_0$ if $m\neq n$. A method similar to that of our proof may be used for the two-valued sentential calculus. Note also that the condition that I is the set of all positive integers is not essential in sections 2, 3 and 4. I may be an arbitrary non-void abstract set. # Le dernier théorème de Fermat pour les nombres ordinaux. Par ### Wacław Sierpiński (Warszawa). Le dernier théorème de Fermat n'est pas vrai pour les nombres ordinaux. En effet, on a le **Théorème 1.** Quel que soit le nombre ordinal μ , il existe trois nombres ordinaux distincts a, β et γ dont chacun est plus grand que μ et tels qu'on a (1) $$a^n + \beta^n = \gamma^n \quad pour \quad n = 1, 2, 3 \dots$$ Le théorème 1 est une conséquence immédiate de la formule (2) $$(\omega^{\xi})^n + (\omega^{\xi} \cdot 2)^n = (\omega^{\xi} \cdot 3)^n$$ qui, comme on le vérifie sans peine, est vraie pour tout nombre ordinal $\xi > 0$ et pour tout nombre naturel n (pour le voir, il suffit de remarquer qu'on a pour tout nombre ordinal positif ξ et pour k et n naturels $(\omega^{\xi}k)^n = \omega^{\xi n}k$). Les termes à gauche de la formule (2) sont commutables; si l'on voulait avoir des termes non commutables, on pourrait remplacer la formule (2) par la formule $$(\Omega^{\xi}\omega)^{n} + (\Omega^{\xi})^{n} = (\Omega^{\xi}(\omega+1))^{n}$$ qui a lieu pour tout nombre ordinal $\xi > 0$ et pour tout nombre naturel n. Citons encore sans démonstration les solutions suivantes de l'équation (1) pour n naturel donné (où les nombres ordinaux a, β et γ dépendent de n et dont on ne peut pas déduire le théorème 1): $$(\omega^{n+1})^n + (\omega^n)^n = (\omega^{n+1} + \omega)^n$$ pour $n = 1, 2, 3, ...$ $_{ m et}$ $$[\lambda(\lambda+1)^{n-1}]^n + [(\lambda+1)^{n-1}]^n = [(\lambda+1)^n]^n$$ quel que soit le nombre naturel n et le nombre ordinal λ de deuxième espèce.