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On a en vertu de (8.4), (8.5) et du lemme 2 sur les accroisse-
ments finis

| —ao| =|g(o(2,)) —g(o(2,))| < b]o(ms) — ()|

lo(@y) —o ()] 1 .
—~%-—_m—0}—°—>5—. Cette relation rapprochée de (8.9) donne

a4 la limite l'inégalité (8.6).
A la ffmction o(z), envisagée dans la sphére Sph (e,fR), on
pourra appliquer le théoréme 3. Il existera donc une fonction h(y)

done

continue dans la sphére Sph (b,gR), c.-a-d. dans la sphére (8.7),
telle que

(8.10) o(h(y))=y pour y eSph (b’gR)‘

En posant #="n(y) dans (8.4) on trouvera

Wy)=glothty))=g(y) lorsaue y e Sph (5,5 )
done en vertu de (8.10) '

(8.11) o(gly))=y dans Sph (b’gR)‘

Soient ==y, deux points de Sph (b, gR) Afin de prouver que
ot 8 . .

g(y), envisagée dans Sph (b,a—,R) est inversible il suffit de prouver
que g(y)+=g(y.). .

Supposons, pour la démonstration i i

0 ar Pimpossibl
9(¥1)=9(y,). En raison de (8.11) on aura ? possible, aue
h=0(g(y1))= o(g(¥=)) =y

contrairement & I'hypothése que y;==y,.

Afin de prouver que 1'ima, i

ge de (8.7) par l'intermédiaire de

englobe la sphére (8.8), il suffit d’appliquer le théoréme 3 (en g

) .
posant s-R au lieu de R) et de remarquer que la fonction 9(y)

d

dtant énvisagée dans Sph (b,éR), la fonction o(x) vérifie Ia relation
s==g(c(»)) dans la sphére (8.8). |

—————————

Cartesian Products of Boolean Algebras.
. By
Roman Sikorski (Warszawa).

The definition of cartesian products of fields?) of sets presents
no difficulty.

For every ©eT?2) let X; be a field of subsets of a set &.
The cartesian product PrX. of all fields X, is the least field (of
subsets of P.er%s)?) which contains all sets P..rX. where X, e X,
and the inequality X.=+ & holds only for a finite number of elements
7 e T4). The cartesian a-product Pé.r X, of all fields X, is the least
o-field (of subsets of Prer%¥:) which contains the field PlferX:®).

The following two theorems ¢) hold for the so-defined cartesian
products: . .

0.1. If for every veT, X, and ¥ are isomorphic ?) fields of
sets, then the cartesion products PrerX, and Pr.rY, are also iso-
morphic.

0.2. If, for every teT, X; and ¥, are isomorphic o-fields §)
of sets, then the carlesion o-products Pl X, and P X, are also
isomorphic. . ]

1) A class X of subsets of a set & is called a field if X;,X,€ X implies
X+ X, X and §—X, ¢ X. A field X is called a ofield if Xne X (n= L2,...)
implies X, X3+ Xg+...e X.

%) T denotes always a fixed non-empty ses.

3) Prer X7 will denote always the set-theoretical cartesian product of
sets Xz (reT). .

4) For instance, if X is the field of all both open and closed subsets of
a hicompact space &, then PY, n X is the field of all both open and closed subsets
of the bicompact space PrerFe.

5) For instance, if TN, and if X5 is the o-field of all Borel subsets of
a metric space &x, then PgeT-X‘ is the o-field of all Borel subsets of the metric
space Prers- '

6) Theorems 0.1 and 0.2 follow jmmediately from theorems II and 3 (@)
in my paper [5]. )

7) The definition of isomorphisms and homomorphisms is given on p.3L.

%) The condition that X and ¥ are o-fields is essential.
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) The purpose of this paper is to generalize the notion of the car-
tesian product and the o-product of fields to the case of arbitrary
Boolean algebras 4, (veT).

The definition of the cartesian product and the o-product of
Boolean algebras 4, should satisfy the following two conditions:

1) If, for every 7eT, A, is isomorphic to a field (o-field) X, of
§eﬁs, then the cartesian product (o-product) of all 4, should be
isomorphic to PferX; (Pf.rX.).

2) The carte_sian product (o-product) of Boolean algebras
(s)lfraofll.l(lldposiess main properties of the cartesian product (c-product)

ields of sets. The ti i i

lowing %: properties under consideration are the fol-
0.319). For every teT let h, be a homomorphi
- . ) ‘ phism (o-homo-
'{(zvorph‘bsm ) of a,.j'zel_-d (o-field) X in a field (o-field) Y. Then there
18 a homomorphism ) (o-homomorphism ) hof PrerX, (PfeTX,) in X
such that W(P.erX)= L]T hi(X:) for every st PrerX. € PrerX,.

0.411). For every veT, let u, be a normalized me
: ' asure (c-measure
;)n;x a field 5( o-field) X;. Then there is a measure (o-measure ) u 07)z
reT Xz (PrsTXr) such that ll(PreTXt) = H,Ll1(.X1) 12) fOT every set
Prsl‘XrEPgeTXz- ' et

The definition of the cartesian product of Boolean algebras 4
(veT) presents no difficulty. As Stone has proved every Boolean’
algebra. Af is isomorphic to a field of sets X;. Wé may define13)
the caztesmn product of all algebras A4, as the Boolean algebra
A4 =P=ETX.,. In fact, the so-defined product 4 does not depend
on the'a.e.hglee of the isomorphic fields X, on account of 0.1 pzmd
it satisfies thi? conditions 1) and ‘2) (see theorems 6.1 and. :’L4 1)

C'l’here arrise some difficulfies concerning the' definition of the
gﬁrteman a-pro.duets of Boolean algebras. We can not say as before
d gt the cartesian o-product is the least o-complete Boolean algebra
which contains the cartesian product 4 of all 4,. In factg for

?) That is, the cartesian (¢)-product should satisty theorems 0.3 a.n’d 0.4

whi ield“ i
e.relf;n?r ﬁg:n;hé?e-rf;elfdum re.plaoed‘by »(o-complete) Boolean algebra*,
papa [5:{. ollows immediately from theorems I and 3 (i) in my
1) See Lomnicki and i
Jessen [0 3 23 i and Ulam [1] p. 245 and 252 and Andersen and
**) Almost all factors in this product are equal to 1.

) Another equivalent definiti fan ]
] on of the cartesian prod:
algebras has been given by Kappos [1], pp. 53-58. produeh of Bockan
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a given Boolean algebra 4 there are, in general, many non-isomorphic
o-complete Boolean algebras B such that A is a subalgebra ) and
a o-generator%) of B. One can, however, distinguish among all
such Boolean algebras B a o-complete Boolean algebra 4°® which .
is ,the least* in an absolute sense. Let namely 4¢ be MacNeille's
minimal extension1é) of 4, ACA; A® is the least o-subalgebra
of A° which contains 4.

The o-complete Boolean algebra A®, where A is the cartesian
produet of all 4;, is ealled the minimal o-product of all A4, (z ¢T)
and is denoted by Pl.rA,. The minimal o-product, however, fulfils
neither of the conditions 1) and 2).

_ Marczewski’s concept of independent fields 17) of sets suggests
another definition of the cartesian o-product of Boolean algebras
A, (v« T). Let us assume for simplicity that all 4, are o-complete.

Let {Bi}rer be a family of subalgebras of a Boolean algebra B.
We shall say that the subalgebras B, are independent in B if18)

(*) (B)[] B,=0

for every finite sequence Bpe B, such that B,=0 and, ti%=7;
for i==j. .

Tf the condition (*) holds for every finite or enumerable
sequence %) B, (satisfying the above hypotheses), the subalgebras
B, are said to be o-independent in B.

The following theorem20) shows the connexion between the

cartesian multiplication and independent subalgebras:

14) The definition of subalgebras and o-subalgebras is given on p. 30.
15) That is, the smallest o-subalgebra of B, which contains B, iz A4 itself.

See the definition on p. 31.
18) Mac Neille [1], p. 437. The definition and fundamental properties

of minimal extensions will be given in § 3.
17) See Marczewski [1], pp. 125-126.
18) (B)HB,l denotes the Boolean product (common part) of all By in the
n

Boolean algebra B. See p. 29-30. .
1) In the case of an enumerable sequence Bre B the inequality (B) H Bu+0
means: if the element (B)HB,, exists, it differs from 0. n

n
1) Proved in my paper [5], Theorem III. An analogous theorem holds
for independent fields and the cartesian product P7.Xv.
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0.5. Let {¥Xi}er be a family of o-subfields®) of & o-field of
sets X, such that -

a) X is the least o-field containing oll the o-fields ¥;

b) the o-subfields X, are o-independent;

If, for every e T, X, is a o-field isomorphic to Y, then the
cartesian o-product Pl X, is isomorphic to Y.

On the other hand, the cartesian o-product ¥ = P X, of
o-fields X contains a family of o-subfields ¥, which satisfy a) and b)
and is isomorphic to X respectively (X, are the so-called cylinder
fields).

This fact suggests to refer as a cartesian o-product of all A, (teT)
to every o-complete Boolean algebra B which contains a family {B:}er
of o-subalgebras such that

(i) the class ng B: is a o-generator of B;

7€

(il) the o-subalgebras B, are s-independent in B;

(iii) for every 7T there is an isomorphism A, of 4, on B,.

It can be proved that the class * of all such algebras B is not
empty. In general, 2* contains many non-isomorphic Boolean
algebras 2) B. .

The class 8* can be partly ordered. Let B¢ £* and let B?
and 7% have an analogous meaning. We shall write BB if the
isomorphisms 72271;‘ 1 (of B, on B‘,’) can be extended to & o-homo-
morphism of B in B°. ‘

If at the same time B <B and BLB?, then B and B° are
igomorphie. In this case the algebras B and B° will be identified.

The following two elements should be distinguished in £*:
the greatest element of 9% called the mawmimal . s-product and
denoted by Plerd,, and a minimal element of £, called the
minimal o*-product and denoted by PrerA,.

The maximal o-product satisfies property 2) but it does not
possess, in general, property 1). The minimal a*-product possesses
property 1) but it does not possess, in general, property 2). I know
no natural definition of the cartesian o-product of Boolean algebras
which satisfies both properties 1) and 2)

M) ¥, is a g-subfield of a o-field ¥ of subsets of Y if ¥, is also a o-field
of subsets of 9 and ¥,C¥.

*#) This holds also in the case where all 4, are o-fields. On account of 0.2
and 0.5 the class £* containg then exactly one o-field. Other algebras B e g*
are then not isomorphic to a o-field of sets. See §12.
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‘Consequently I shall eonsiderb*in this paper .t-}.n’ee dﬁ{erejt
o-products PlrA., P',’eTA” and Prer4.. The deigmltlon of I:,Z‘T .
can be formulated in the same way as that of P’FTA’ or P,€T4,.
In fact, the class £ of all g-complete Boolean algebras B which
satisfies (i), (iii) and
s (ii/)( )%h(e zf-subalgebras B, are independent i‘n B ) .
is also a partly ordered set with the sa.x.ne ordering relation, ant
PL.rd, is a minimal element, of 83}1’357’4; is also the. great.est.el‘emen
of ). P rd, coincides with Pl.r A, if and only if T is finite.

The restricting hypothesis that all A, areb o-comp]ebte may be
omitted. In this paper the definitions of Plerd., PrerA: and
P',’;TAr are formulated for arbitrary Boolean algebras 4. It seex;;s
to me natural to assume in the general case thab ’qhe subalgebras B;
(see the definition of Q) are o-regular??), th?t is, all enum(?r_a,ble
sum and products of elements B ¢.B, coincide in B: a,n_d 1;1 B£

A o-complete Boolean algebra B is called a o-ewtension ).0
a Boolean algebra A4, if B contains a o-regular subalgebra B, W}_nch
is a o-generator of B and an isomorph of 4. The study of a-extensans
of Boolean algebras is closely related to the stgdy of ca.rt(?smli
.g-products of Boolean algebras; therefore it constitutes a part o
+his paper (§§ 2, 3, and 13). In general, 2 Boolean algebra has many
- non-isomorphic c-extensions. )

1. Definitions and lemmas. A Boolean algebra is a se’F A
of elements (denoted by 4,B,..) with two operations: multipli-
cation A-B and complementation A’ satisfying the Weu known
axioms. The element (A’-B)’ is denoted by A+ B. We write ACB

it 4-B=A. The relation C orders partly the set 4. The symbol 0

denotes the least element of A, that is, 0CA for every Aecd.
Consequently 0’ is the greatest element of A. o

Let {A.}uer be a family of elements of A, distinet or not.
The symbol®?) (A4) sz A, will denote the greatest clement A e 4
- ue€

23) See the definition on Pp. 30.

24) See p. 33. .

25) The value of infinite Boolean products depends on the considered
Boolean algebra 4. In fact, if B is a suba]geb}"a of 4 and _Aue‘B,lﬂfen
(B) HAH C(4) H A, whenever these products exist but the converse inclusion

d.ogsE got hold i¥1E general. Therefore we shall always write before ,II* the symbol
denoting the considered Boolean algebra. .
I; X, are sets, the symbols [] Xy and > X, will denote always the set
uel .

uel
theoretical product and sum of all sets Xy.
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(called the product of all 4, in 4) such that 4C4, for every % ¢ U,
whenever it exists. The meaning of the symbol (4) ﬁ A, is clear.
n=1

In particular, the condition (4)]]A4,=0 means that there is mno
14

element A==0 (4 ¢ 4) such thatuleAu for every ue U.

If the product (4) ]1} 4, exists for any family {4,}yep, then
ue

the Boolean .algebm A is called complete. If it exists for any enu-
merable family {Ag}uer, 4 is said to be o-complete. '

A.class BCA is called a subalgebra of Aif A-BeBand A' ¢« B
for arbitrary 4, B ¢ B. A subalgebra is also a Boolean algebra with
the same operations 4’ and 4 -B.

" EA subalgebra B of A is called a regular subalgebra of A, if
all infinite products in B and 4 coincide, that is, if for any fami
{Buluev Of elements of B ’ ’ v famlly
(i) the condition (B)][] B,= i i

( )gT w=B ¢ B implies (A)HIE'[UB,,zB.
If (i) holds for any enumerable famil i

' ) y {4, then B
said to be a o-regular subalgebra of A. Caduer B :

In the above definition of a regu
© | . gular or o-regular subal,
the pr.opqsmon (i) may be replaced by: ¢ ebma
(') the condition (B)]] B,=0 implies (4) [] B,=0
€U uell B ’

areg lial I(f (44 isl a)regula,r (o-regular) subalgebra of B, amd B is

utar (o-regular) subalgebra of A, th g

e oaral o7 il f A, then C is a regular (o-regular)
A subalgebra B of a ¢-complete Boolean algebra A is called

& o-subalgebra of A if (A4) ]J B, B for any sequence B, ¢ B.

1.2 Every o-subalgebm"}; of a o-comple
- te Bool i
a o-regular subalgebra of A. pic Soclean sigaiv 4 &
A set K of elements of a Boolean algebra A is said to be

den&@ in A if for e ery A eA A=!=0 ther ent
n (1) \4 3 ) here is an elem; .A.OE_K

1.3. Let B be a dense subal,
¢ gebra of a Boolean algebra A. :
]sj) B is a regular subalgebra of A; o hens
ot A)Ct;u.ery element A e A is the product of all elemenis B ¢ B such
Let {Balzer be a tamily of elements of B such that the product

B) = i
( ~),£,B" BeB exists. Suppose an element A e 4 satisfies the
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inclusion ACRB, for every ue U. If AB'+=0 there is an element

B, < B such that 0==B,CAB’. Consequently BZ+B-+B,CB, for

every ue U, and B+Bye B, in contradiction with the hypothesis

that B=(B) f{] B, Thus we infer that ACB, which proves thab
ne

B=(4)]] B,, that is, B'is a regular subalgebra of 4.
uel

Let A ed, A, e A and suppose ACA,CB for every element’
BeB such that ACB. If 4, -A'=0, there is an element B;eB
such that 04 B,CA,-A’. We have By e B, ACBj and A,([ By, which
gives a contradiction. Thus we infer that A;=4 which proves b).

A set K of elements of a Boolean algebra 4 is said to be
a generator of A if the smallest subalgebra of A containing K is
the algebra A4 itself. If 4 is o-complete, a set KCA is said to be
a o-generator of A provided the smallest o-subalgebra of 4 eontaining
K is the algebra 4 itself. ‘

A mapping b of a Boolean algebra A in another Boolean
algebra B is called a homomorphism of 4in B, if for A,Be A

h(4-B)=h(4)-h(B) and hA")=h(4)"

A homomorphism & i8 'said to be @ o-homomorphism of A
in B if :
(4)[] A,=0 implies- (B)]] 1(47)=0.
n=1 n=1

A homomorphism % is one-one if and only if h(A)=0 implies
A=0. A one-one homomorphism is called an isomorphism. If there
exists an isomorphism of A4 on B, the algebras A and B are said
to be isomorphic, in symbols A~ B.

1.4. Let K and I are generators (a-generators) of *wo ( o-complete)
Boolean algebras A and B respectively, and let { be a one-one mapping
of K on L. If f can be extended to @ homomorphism (o-homomorphism)
b oof A in B and if f 1 cam be extended to a homomorphism (o-homo-
morphism) g of Bin A, then his an isomorphism of 4 on B and g= B

We have
(ii) gh(Ad)=A and hg(B)=2B

for every A ¢ K and B e L. Since K and I are generators (o-gene-
rators) of 4 and B respectively, the formulas (ii) hold also for
arbitrary A ¢ A and B < B, which proves lemma 1.4.
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A finite non-negative function p defined on a Boolean algebra
4 is called a measure on A if u(A-B)=p(Ad)+ u(B) for 4,Bec A
A-B=0. A measure g is called ’
two-valued, if it assumes exactly two values 0 and 1;
normalized, if w(0')=1;

a o-measure on A, if (A) H1 4,=0 implies lim u(4,)=0 for

every decreasing sequence A,ec.A4.
A class I of sets is called a o-ideal if the conditions X, X,eI

(n=1,2,..) and YCX imply } X,eT and Y ¢ L.
n=1

Suppose I is a o-ideal. For every set X the symbol X/I will
d?note the class of all sets which can be represented in the form
X4¥Y,—¥, where ¥,,Y,¢ I If X is a class of sets, then X/T will
denote the collection of all X/T where X e X.

If X is a field of sets, then X/T is a Boolean al i :

. & e algebra w.
following definition of Boolean operations: ¢ o the

(X T) (X ) =X, XX, (X/T)=X'|T.

If X is a o-field of sets, then the B /T i
complets , ) oolean algebra X/T is

X [ (X D)= [ X1 T,

The least o-fiel i . . .
denoted by X",d eld containing a given field of sets X will be

1.5. Let X and I be reépectivel ; i
d Y a field and o o-ideal of
_ﬂl’vhean/vI s o subalgebra and & o-generator of X°/IT. Ifofjrfmsest;
el_(l:}:O) belongs to I, then the mapping X —X/T is an i
morphism of X on X/I. - e
2. o~extensions. Let 4 be a Boolea
] . ] n algebra. The sy
:S(’Ef)) v.vglllddenote the set of all prime ideals of 4. For every Sjlneﬂi:lﬂ
will denote the set of all prime ideals of 4 whi 7
hich do not tai
the element 4. The class of all sets il be ity
' - s 1 s 5(4) will be denoted by S(4
(i(ﬁ (1,511 asfjl)d zf sul;?ets tof S(A4) and s(4) is an isomorjzhisn(n 22)
: . According to the notation from §1, S°4) i
least o-field (of subsets. of &(4)) which contains§S(A). () is the

*6) Stone [1], p. 98 and 106.
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We shall always consider the set &(4) as a topological space
with §(4) as the class of neighborhoods. The space S(4) is totally
disconnected, bicompact and normal %), and S(4) is the field of
all sets which are both open and closed in &§(4).

J(A) will denote the o-ideal of all subsets of first category
in &$(4). The symbol J(4) will denote the least o-ideal containing

all sets ﬁs(A,,) where A,¢.4 be any sequence such that (A)ﬁAn= 0.
n=1

= oo n=1

Obviously, J(A) is the class of all subsets of sets D, 8n where

o co m=1
Sm=[]s(47) and (4)]] A7=0.

n=1 n=1

2.1. J(A)CJ(4).

In fact, if (4)]] A,=0, the closed set []s(4n) contains no

=1 n=1

open non-empty sul;set, that is, it is nowhere dense.

A g-complete Boolean algebra B is called a g-extension of
2 Boolean algebra 4 if B contains a o-regular subalgebra B, which
is an isomorph of 4 and a o-generator of B.

2.9, If I is a o-ideal (of subsets of S(4)) such that

a) no open non-empty subset of S(A) belongs to I

b) J(A)CT;

then 8°(A)/I is a o-ewtension of A. The mapping g(A)=s(4)T
(for A « A) is an isomorphism of A on S(4)/1.

On account of 1.5, it is sufficient to show that S(4)I is
a o-regular subalgebra of §°(B)/I, or that the mapping ¢ is & oc-homo-
morphism of 4 in 8% A)/T. This follows from b) since it (A)]] An=0,

=) n=1
then []s(4,) belongs to I.

n=1

In particular, by 2.1, since no open non-empty subset of
a normal bicompact space is of first category *5):

2.3. The Boolean algebras S°(A)[J(A4) and S8°(4)[3(A) are
o-extensions of A. :

Every Boolean algebra isomorphic to 8°(A4))T(4) will be
called a mawimal o-extension®®) of A. Every Boolean algebra iso-
morphic to S8°(4)jJ(4) will be called a minimal o-extension ) of A.

27) Stone [2], p. 378.

28) See Sikorski [1], p. 256.

29) An invariant characterization of maximal g-extension will be given

in §13, th 13.4. .
#0) Ap jnvariant characterization of minimal g-products will be given

in §3, th. 3.7 and 3.8.
“Fundamenta Mathematicae. T. XXXVIL. 3


GUEST


. &
34 R. Sikorski: Im

2.4. Let A and C be two Boolean algebras. Every o-homo-
morphism h of 8(A)[J(A) in 8(C)[J(C) is induced *1) by a mapping ¢,
that s, there is a mapping ¢ of S(C) in S(A4) such that

WS/T(A)=¢~1(8)/T(C) for § e S(A).

The proof of theorem 2.4 iy analogous to that of theorem (¥)
in my paper [3].

We note that?2)

2.5. If A is a o-complete Boolean algebra, then

A~ 8 (A)]T(A)~ 8 (4)[(A).

3. Minimal extensioms. In this section we shall explain
the connexion between minimal o-extensions and MacNeille's
minimal extensions of Boolean algebras. We shall give also an in-
variant characterization c¢f minimal s-extensions.

For every Boolean algebra 4, the symbol B(4) will denote
the class of all subsets of the space (4) which possess the pro-
perty of Baire:3),

3.1. 8(A4)|J(A) is a dense subalgebra of the complete Boolean
algebra B(A)[J(A) and of the o-complete Boolean algebra S°(A)[S(A).

This follows from the. following more general theorem:

3.2. Let K be a class of open neighborhoods of o topological *4)
space & such that every open subset of & is the sum of some neigh-
borhoods belonging to K (ihat is, K determines the topology in &).
Let I be the ideal of all sets of first category in &, let X be the smallest
o-field containing K, and let ¥ be the o-field of all sets possessing
the property of Baire. Then KII is dense in the a-complete Boolean
algebra X|I and in the complete5) Boolean, algebra Y| T.

It is sufficient to prove that K/T is dense in Y/I, i.e., if
Ye¥ and YnoneT, then there is a set XeK such that X non’eI
and X—Y eI We have Y=G—P-L R where G is open and P,Rel.

31) See Sikorski [2], p. 7.
::) See Lioomis [1], p. 757, Sikorski [1], p. 256, and Sikorski [3], p. 245,
gz } A subset X of a _topologica.l Space & possesses the property of Baire
=@{F—P+ R where G is open, and P and R are of first category.

) That is. & satisfies the well kno- i i
. iy own axioms of Kuratowski. See Ku-

%) See Birkhoff [1], p. 178.
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Consequently G'non ¢ I. On account of Banach’s theorem %) on
sets of first category, there is a mneighborhood X ¢ K such that
XnoneI and XC@. The 'set X fulfils the required conditions.

3.3. Let Ay be a dense subalgebra of a Boolean algebra A and
let hy be an isomorphism of Ay in a complete Boolean algebra B. The
isomorphism hy can be extended to an isomorphism h of 4 in B.

The isomorphism k, can be extended %) to a homomorphism h
of Ain B. Let 4 ¢4, A30, and let Ay 4, be an element such
that 04=4,CA. Then 0=hy(A4,)=h(4,)Ch(4). Consequently h(.4)==0,
which proves that & is an isomorphism.

3.4. Let A and B be two complete Boolean algebra and let hy
bé an isomorphism of a subalgebra A,CA on a dense subalgebra B,CB.
Every homomorphism h of A in B which is an extension of h, maps
A on B. ‘ '

Let BeB and let A eA4 be the Boolean product of all elernents
hgt(B,) where Bye B, and BCB,. If By, B, ¢ B, and B,CBCB,, then

1ot (B,)CACH; H(By)-
Consequently

B,=h(hy"(By)) Ch(4)Ch(hg " (B,)) =By

Since B, is dense in B, B is the Boolean product of all B,eB,,
BCBR, (see 1.3 b)), and B is the Boolean sum *) of all B, ¢ By, B,CB,.
Thus B=h(4) which proves the theorem.

3.5. Let A, and B, be dense subalgebras of complete Boolean
algebras A and B respectively. Every isomorphism of A, on By can
be extended to an isomorphism of A on B.

This follows immediately from 1.2 and 1.3.

A complete Boclean algebra B is called, according to Mac-
Neille18), a minimal extension of a Boolean algebra A if

(i) B contains a subalgebra B, isomorphic to A;

(ii) every isomorphism hy 0f B, in a complete Boolean algebra c

can be extended to an isomorphism % of B in C.

38) See Kuratowski [1], p. 49.

87) See Sikorski [4], p. 332. .

38) The definition of the infinite Boolean sum is dual to that of the product.
The mentioned property follows from 1.3b) and de Morgan’s formulas.

3*
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3.6. The four following conditions are equivalent (for given
Boolean algebras A and B):

a) B is a minimal extension of A;

b) B is isomorphic to B(A)[J(A);

¢) B is complete and contains a dense subalgebra B, isomor-
phic to A;

d) B is complete and contains a regular subalgebra B, such

that By~ A and the smallest complete subalgebra of B containing . By

is B itself.

Consequently all minimal extensions of A are isomorphic ).

a) implies b). Suppose B is a minimal extension of 4, and
let B, satisfy (i) and (ii). Let i, be an isomorphism of B, on S(A4)/J(4)-
By a) the isomorphism %, can be extended to an isemorphism %
of B in B(4)/3(4) since the least Boolean algebra is complete.
By 3.1 and 3.4, the isomorphism 7 maps B on B(4)/3(4), q.e. d.

b) implies ¢). This follows from 3.1.

¢) implies a). This follows from 3.3.

¢) implies d). This follows from 1.3.

d) implies a). It follows from the proved equivalence a)=Db)
that every Boolean algebra A possesses a minimal extension (24
(e. g. B(A)/J(A) is a minimal extension of A4). We may suppose
that ACC. As we have already proved, 4 is dense in C.

Suppose the condition d) is satisfied. Then there is an iso-
morphism k of € in B which maps 4 on By On account of d) it
is sufficient to prove that the subalgebra B,=k(C) is a regular
subalgebra of B (that is, B=2B,).

Suppose (Bl)u]c]UBu=0 where B, ¢ B,, that is B,=h({,) where

Cue 0. We have also (C) HU C,=0 since % is an isomorphism. 4 being
ue€

dense in C, for every w e U there exists a set {4 ohev, Of elements
of 4 such that (€)[J4,=C, (see 1.3b)). We may assume that

veVy,

VoV =0 for w's=u'’. Let T=3F,. We have
uel

(C)vQ,AzF (O)HQICH=0 and BHZ(BI)UICYVZL(AD) C(Blguh(ﬁ o) 49)-

38) Mac Neille [1].
40) See footnote 25).
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Consequently (A4)]]4»,=0 and (By) ﬂvh(Av)zo. Sinece B, 18
veV veE
a regular subalgebr of B, we infer that (B) L]V h(4,)=0. Einal]y

() guh(Au))QBl n®] Jz(Av))=(B>UgV h(4,)=0

uel €U

(B)[] Bu=(B)

which proves that B, is a regular subalgebra of B, q.e. d.

3.7. The three following conditions are equivalent (for given
Boolean algebras A and B):

a) B is a minimal o-extension of Aj :

b) B is o-complete and contains a dense subalgebra By which
is an isomorph of A and @ a-generator of B;

¢) B is o-complete and contains o regular subalgebra B, which
is an isomorph of A and a o-generator of B. '

a) implies b). This follows from 3.1 and 1.5.

b) implies ¢). This follows from 1.3.

) implies a). Suppose the condition ¢) is satisfied. Let C
be a minimal extension of B. We may assume that BCC, that is,
B is a regular subalgebra of C and the smallest complete subalgebra
of C which contains B, is C itself (see 3.6 d)). On account of 3.6
and 1.1, € is & minimal extension of B, Let h be an isomorphism
of C on B(A4)/3(4) which maps B, on S(4)]/J(4)- Since B, i8
a o-generator of B, we infer by 1.3 that 7 maps B on 87(4)/J(4),
q.e. d.

3.8. Let C be a minimal extension of a Boolean algebra A, ACC,
and let B be the smallest o-subalgebra of C whick contains A. Then B
is a minimal c-exztension of A.

This follows from 3.6 and 3.7.

3.9. A minimal o-extension B of @ Boolean algebra A s iso-
morphic to a o-field of sets if and only if

(m) for every A 4, A0, there is a two-valued o-measure [
on A such that p{A)=1.

We may assume ACB, that is, A is a dense regular subalgebra
of B and a o-generator of B (see 3.7). Suppose the condition (m)
satisfied. Let 0==Be B. There is an element A ¢4 such that 05=4CB.
By (m) there is a two-valued o-measure x on A such that uA)=1.
By Carathéodory’s exterior measure method, the measure u can
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be extended fo a two-valued o-measure » on B. Obviously #(B)=1.
The element B being arbitrary, we infer that the o-complete Boolean
algebra B is isomorphic to a o-field of sets4).

On the other hand, if B is isomorphic to a o-field of sets, for
every 4 ¢4, A0, there is a two-valued ¢-measure x on B such
that u(4)=14). The measure x restricted to elements of A satisties
the condition (m).

We note else that a minimal extension of a Boolean algebra 4
is isomorphie to a completely additive field of sets if and only if 4
is atomie. This follows £2) immediately from 3.6 c).

4. The spaces & and $*. In the rest of this paper we shall
consider‘ a fixed family {d4,},c; of Boolean algebras ), different
or not.

For the simplicity we admit the following notations:

e5‘1=eS’(A1), Sz=S<At): Jz:J(Ar)’ St=3(A1): ;
SZP-:“eTSr, S‘T-——‘(P?cTSt)U:PfsTSz- '

s; will denote always Stone’s isomorphism of 4, on &,
defined in § 2.

It XCS;, then w,(X) will denote the set of all points of PicrS:
whose v-th coordinate belongs to X. If X; is a class of subsets of S,
then %’, will denote the class of all sets 7;(X) where X ¢ X,. B. g. S,
and 87 are fig}ds (of subsets of Prer ) isomorphic to §; and 87
Tespectively; o, and §, are c-ideals of subsets of Prerd,.

The smallest o-ideal containing all the ideals 7, (veT) will
be denoted by .J.

‘We shall consider the cartesian product Pierd: of spaces &,
as a topological space with two different closure operations.

First we shall consider the set P,erd, a8 the usual topolo-
gical product of the topological spaces &,. This space will be
denoted by . Neighborhoods in & are sets P,.rX, where X, ¢S,
and the inequality X,=, holds only for a finite number of elernents
7eT. & is a bicompact totally disconnected Hausdorff space.

The o-ideal of all sets of first category in the space & will be
dedoted by 5.

) Bee Sikorski [1], p. 250, th. 1.4.
#) See Sikorski [1], p. 249, th. 1.1.
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Beside the above-mentioned usual topology in _stre% we
shall also consider another topology in this space. Nelg].aborhoqu
in this topology are sets P:erX. where X, eS8, and the mequa)hf%y
X,= &, holds only for an at most enume?able number of.elemen 8
reT. The space Prerd: with the so defined topology will be de-
noted by S* S* is also a totally disconnect;ed. Hau.sdqrfjf space.
The spaue.es & and S* are identical if a:(; only if 7' is finite (pro-

i . has at most two elements). . _
Wdedf[‘tfecilaé;s of all neighborhoods of &* above deﬁned? will be
denoted.by S§ The symbol S§* will denote the %east field con-
taining S The o-ideal of all sets of first category in the space &*
will be denoted by J*. . .

1.1. No open mon-empty subset of & is of first category w S.

This follows from the fact that & is a bicompact normal space ).

4.2. No open non-empty subset of S* is of first category in S*.

Let G2=0 be open in &* and let N, be a sequene.e of closed
nowhere dense subsets of §*. Since G —N,==0, there is a ]lelg].lbOI'h0.0d
G—1=P,€TX1 such that 0=4=G,CG@—N,. By induction we define easily
a sequence of neighborhoods G=P.cr X2 such that 0G,C6p g —Ny.

We have []@,=P.er([]X?). Since X;,X5,... is a decreasing
=1 n=1 . .
sequence e; closed subsets of the bicompact space &, we infer

f[ X"+0. Consequently 0= ]]G,C G—n §1 N, which proves the

= n=1
theorem.

1.3. If a set XCS, is of first category in &s, then m(X) is of
first category in & and in S*. | _

" Consequently J.CX.CS, F,CF.C3*, JCJ and JCJ*.

The easy proof is omitted. .

5. Maximal products. Elementary properties. The
Boolean algebra §,J is called the (cartesian) product of all the
Boolean algebras A4.(reT) and denoted by PZ.rA.. The Boolean
algebra S8°/J is called the (cartesian) mamifrrbml o-product gf_ 1_3he
Boolean algebras 4, (r ¢ T) and denoted by Prerd.. By definition

(8)  PlerA.=PLs 817, (b)  Plerd:=Pler S4/J.

5.1. Plrd, is a a-complete Boolean algebra. Pir A, is a
subalgebra of PlerA.. )
In general, Pir4. is not a o-regular subalgebra of Prrd..
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5;2 1f, jo'r every zeT, A, is isomorphic to a Boolean algebra B,
then beeTA, is isomorphic to PierB., and PlorA, is isomorphic
to PTET—B1'

This follows from the fact that §(4,) is then homeomorphi
0 Sip . orphie

5.3. P;leTA-z NP?;TS;.

More exactly

The mapping S—S/J (for Se8) is an isomorphism of S=PrerS,
on Prerd,.

This results from 1.5, 4.1 and 4.3.

5.4. If, for every v e T, A, is isomorphic o a field
then Prer A, ~PrerX;. T ! fied of sets 2%

This follows from 5.3 and 0.1.

55. For every vel, AinS,/ w8 )T and 8T~ 8.
If A, is o-compleie, then A,~ S,“/J,mﬁf/ef.

More exactly: :

The mapping A.—Hn.(s,(A))/J (for A e A;) is an isomorphism
of A, on S,/J.“The mapping Sz —m,(S)[F (for 8 e 85) is an iso-
morphism of 87/, (gze maximal extension of A) on s 2/J, which
transforms S;/J; on S,/ J. ’

The easy proof based on 4.3 is omitted.

5.6. 85/ is a o-subalgebra of Plerd,. 8.)J i

=Y, rerd.. S;]J is a o-regular
subalgebra of 87/, thus of Plr A, also. e

The first remark is obvious. The second follows from 5.5, 1.1
1.2, and 2.3. T

5.7. The classtEZT 8, (i.e. the class of all elements of Boolean
algeb;"as S./J, vel) is a generator of Pfer A, and a o-generator

0]( stTAr-

This is obvious.

5.8. The subalgebras S;jJ (z e T) are independent i .

! ] pendent in Prerd

and o-independent in Plepd,. ? Prer o
o ‘We shall prove only the second remark. The proof of the first
i8 similar. )

Let Ane 8, )7 (=7 for i%j) be a finite or enumerable
sequence. By definition Ap=m, (8n)jJ where S,eS8; . We have

(Plerd,) L]A,.z (g Ty (8a)) [ T=(PrerSs) /T
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where =8, for n=1,2,..., and S,=d, for all remaining 7. The

set P,erS. is open in the space S*. Hence P.,erS.noned on
account of 4.2 and 4.3. Consequently (PfeTA,)HA,,#O, q.e. d.
n

5.9. If T—1. that s, if {A.lrer contains only one Boolean
algebra A, then P A, =8(4)[HA) and Pl A,=8(4)]J(4).

This follows immediately from the definition of the maximal
o-product.

6. Characteristic properties of maximal produets.
Tet {B.);er be a family of subalgebras of a Boolean algebra B and
let B, be the smallest subalgebra of B containing all B,, t¢T.
‘We shall say that the family {B.};er possesses the property (E)
if, for every Boolean algebra C and for every family of homo-
morphisms h; (zeT) of B, in O, there is a homomorphism 7 of B,
in € which is a common extension of all the homomorphisms k., 7eT.

Let {B.ler be a family of subalgebras of a o-complete
Boolean algebra B and let B, be the smallest o-subalgebra of B
which contains all B., 7 7. We shall say that the family {Bilier
possesses the property (B, if, for every o-complete Boolean algebra C
and for every family of c-homomorphisms h, of B, in O, there
is a o-homomorphism % of B, in € which is a common extension
of all the c-homomorphisms h, 7 T.

6.1. The family {S‘;/J},ET of subalgebras of Prerd. possesses
the property (E).

This follows immediately from 5.8 and the fact that every
family of independent subalgebras possesses the property (&)%*).

6.2. In order that a Boolean algebra B be isomorphic to Plrd;
it is necessary and sufficient that there be a family {Bi}rer of sub-
algebras of B such that

a) A, ~ B, for every veT;

b) the family {Bclcer possesses the property (B);

c¢) the set Z,; B, is a generator of B.

1€
The necessity follows from 5.5, 6.1, and 5.7.
Suppose the conditions a-c) are fulfiled. Let h, be an iso-

morphism of S;/J on B.. By 6.1 and 5.7 the isomorphism k. can
be extended to a homomorphism h of Pfer4. in B. By b) and ),

) See Sikorski [6], Theorem 11T
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the cox?vers‘? isomorphisms k7! can be extended to an homomorphism ¢
of B in Prerd.. On account of 1.4, h is an isomorphism of P%, 4
on B. ’ ’

Theorem 6.2 can be also formulated in the following way:

i 6,2’: %’fn order that a Boolean algebra B be isomorphic to
Pler A, it is necessary and sufficient that there be a family {Bihar
of subalgebras of B which satisfies the conditions a) and ¢) of 6.2
and the following condition: B

b’) the subalgebras B: are independent in B.

In fact, b’) implies b) ).

8.3. The family {8 T)ver of subalgebras of PlopA.
the property (E,). ) ) P Frerdle possauses

It is sufficient to prove the following lemma (see 2.5):

Let € be a c-complete Boolean algebra, and, for every veT,
let he be a o-homomorphism of S.|J in S°(C)|J(C). The a—homoZ
morphisms {h.} can be ewtended to a o-homomoryphis &4
gt syl orphism b of Prepd.

The formula

(i) RS J)=h(8)[T) for Se8,

gfeﬁjlss 3}; a—l;oilmmorphism ke of 8./, in §(C)[JF(C) on account
5.5. By 2.4 the s-homomerphism 7%, is induced by a mappi

. e & >
¢, of $(C) in S(d:)=&, that is v e

(i) T8 [T )= U8) [ J(C) for Sec8&,.

The -condition (ii) implies that
(i) ¢7U8) e J(C) for & ed,.
sinee A(8/J;)=h(0)=0 for § ¢ J,.
" f;isigfzntgs Eli?fpmg #le)={p:(0)} of S(C) in S=Picrd..

e (8)) = 1(S) €« J(O).
Consequently

{iv) o7H(8) e J(C) for every §ed.

4) See Sikorski [6], The
equivalns (6], Theorem III. One can prove that b) and b’} are
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Tt follows from (iv) that the formula
WS | T)=p~1(8)[J(C) for SeS°

defines a o-homomorphism h of Plrd, in S(C)/J(C). By (i)
and (ii), if §eS;, then

e §) ) =g (7 (8) [T(C) =g 71(8) T(C)=Fe( 8 T) =l ) | ),

+which proves that b is 2 common extension of all h;.
6.4. In order that a a-complete Boolean algebra B be isomorphic

- o the mazimal o-product Pl p A, it is necessary and sufficient that

there be a family {Bleer of o-regular subalgebras of B such that

a) Bya A, for ve T

1) the family {Bilrgr possesses the property (Eq);

¢y the set X B, is a o-generator of B.

€T

The necessity follows from 5.6, 5.5, 6.3, and 5.7.

The proof of the sufficiency is analogous to that of 6.2.

The condition b) cannot be replaced by the hypothesis that the
subalgebras B, are o-independent in B.

7. Commutativity and asseciativity of maximal pro-
duets. 1t is obvious that

7.1. If {7} is a one-one mapping of T on T, then Plerd . mPrerdin
and Pfﬂ’[‘Az NP?eTAt(v)-

The maximal cartesian products are thus completely commu-
tative. They are also completely associative. This follows from the
~following theorem:

7.2, Tet T be the sum of mutually disjoint non-empty sets Ty (nelU).
Then PfeTArNPzeU(PgeTu A,) and PSSTA’E"SPﬁGU(P’?ETu'AT)‘

We shall prove theorem 7.2 only in case of maximal o-products.
The proof of the first part of 7.2 is analogous 48),

On account of 6.4 the maximal o-product B = Phey(Pler4r)
contains a family of o-regular subalgebras B, such that

a') ByxPler, 4

b') the family {B!.ey possesses the property (Ke';

¢') the set > B, is a o-generator of B.
uell

45) Another proof of this fact follows from 5.4.
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By a’) and 6.4, every algebra B; contains a family of o-regular
subfﬂgebras {B:}ser, such that
a") Bix Ay
b’ the family {B.}:er, possesses the property (E);
¢”) the set ) B, is a c-generator of B.

’[E u
By 1.1, B: is a a»regula,r subalgebra of B. The conditions
a’-a’), b’-b”"), and ¢’-¢”) imply 1espect1ve]v the conditions a), b),
and c) of theorem 6.4. Therefore B=Pl 4., q. e. d.
By 5.9 and 7.2 (where U=7 and T,=(u)) We obtain
7.3. If, for every ve T, B, is a marimal c-extension of A,
then P,eTB,NPTETA

8. The structure of independent subalgebras. If {B,},r
and {Cijrer are two families of subalgebras of Boolean algebras B
and C respectively, such that
a) B,=C; ior every veT;
B) By (reT) alemdependent in B; C;(reT)are independentin C;
Py Z B, is a generator of B; Z C, is a generator of C,

then BN C. This fact follows easﬂy from 1.4 and Theorem IIT
in my paper [6]4).

On the other hand, if {B.};e; and {C.ler are two families
of subalgebras of o-complete Boolean algebras B and € regpectively,.
such that

a) B~ C; for every re T

B) B (v e T) are o-independent in B; C, (zeT) are o-indepen-
dent in C;

Z,’B is a o-generator of B; Z C. is a o-generator of 5 :

then, in general, B is not 1s0morphlc to €. The following
theorem explains this fact.
8.1. Let { Bi}eer be a family of o-regular subalgebras of a o-complete

Boolean algeb)a B such that 2 B. is a o-generator of B. Suppose
€T
B,~ A, for every teT. Then-.

a) B is isomorphic to the Boolean algebra ST where I is
a o-ideal such that JCT;

b) the subalgebras B, are independent in B ’If and only if no
set G==0 open in the space S belongs to T;

¢) the subalgebras B, are o-independent in B if and only if
no set G==0 open in the space S$* belongs to I

4) Or: from 6.2’.
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In particular:
) If JCICS, then the subalgebras B, are independent in Bj;

if T==3CI, then the subalgebras B, are not independent.

y If JCICS*, then the subalgebras B, are a-independent
in B; if T==3*CI, then the subalgebras B, are not c-independent.
Let h, be an isomorphism of 4, on B,. The formula

D Bl d))) =ho(d) for A eA,

defines an isomorphism %, of S /J on B,. Since B;is a c-1egulam
subalgebra of B, we infer that h is a o-homomorphism of g o T
in _B. By theorem 6.3 the o¢-homomorphisms h. (zeT) can be
extended to & o-homomorphism % of Pl.rd4,=8°/T in B. Since
3 B, is a o-generator of B, the homomorphism % maps 8°/J on B.
zeT

The required ideal T is the least -ideal which contains all § e 57

such that Z(S/J)=0. In fact, the formula

MS|I)=h(S|J) for SeS
defines an isomorphism % of §°/T on B. By definition, J C I, which
proves a). :

The subalgebras B, are independent if and only if the sub-
algebras §,/T are independent in §°/I, that is, if no neighborhood
P.er X0 of the space & belongs to I. This proves b).

The proof of e) is analogous to that of b). Instead of the
sp&ce & one must consider the space &§*.

b’) follows from b), theorem 4.1, and the fact that every set
8 ¢ 8 possesses the property of Baire in the space J&.

¢’) follows from c), theorem 4.2, and the fact-that every set
S ¢ 87 possesses the property of Baire in the space S*.

Let €, denote the class of all systems (B, {B,}, {i;}> ¥) where

(i) B is a o-complete Boolean algebra;

(ii) for every e T, B, is a o-regular subalgebra of B, and
A, ~By; )

(iii) for every v e T, h, is an isomorphism of 4. on B;;

(iv) the set _Z; B, is a o-generator of B.

T€

8 will denote the class of all (B, {B.},{h:}p e, such that
the subalgebras B, are independent in B. £* will denote the class
of all <B, {B.}, {h.}> 8, such that the subalgebras B, are o-in-
dependent in B. Obviously £*C2CE,.

47) r runs always over the set T.
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Let (B, (B}, {1 ¢ £, for i=1,2. We shall write
(B, (B, (1)) <<B, (B, (1))
if the isomorphisms %) 7; (k)™ can be extended to 3 c-homomorphism
of B?in Bi,

By theorem 1.4, if hoth (Bl {Bi}, {h}> <<B% (B3, (1%}
and (B’ (B, (B2} < (Bi, {BY, {h,}), then there is an isomorphism
of B- on B* which transforms B? on B. Thus we may identify such
two systems.

After this identification, the relation < orders partly the
sets 9, 8, and g% Tt is easy to show that <B',{BY, {1}y <
<CB (B2, {2, it and only if I28°CI'8° where Ii denotes
the o-ideal constructed in theorem 8.1 for the system (B, { B}, {A}>.

It follows from theorem 6.3 that

8.2. The sysiem (Pleq Az, (8T}, o), wime R A)=m(5.(4)),
is the greatest element of the partly ordered sets Q,, Q, and {*.

9. Minimal products. Elementary properties. The
Boolean algebra 8°/3 is called the minimal o-product of the Boolean
algebras A, (v e T), and denoted by Prez4,. The Boolean algebra
8°/3* is called the minimal cr*-prod’u(t of the Boolean algebras
A, (teT) and denoted by Prepd..

‘We assume also the following notation for the finite cartesian
produets:

Prer 4.:=8/3, Prerd.=8/[3*

It follows from the definition and theorem 3.2 that

9.1. Prrd, is a o complete Boolean PrerAd, s
a dense subalgebra of P,ETA,.

P,ETA, is a o-complete Boolean algebra. PzeTAT is a subal-
gebra of Prerd, and of S*[3*. 8*[3* is a dense subalgebra of Prey A,.

By 1.5, 4.1, 4.2 and 5.3 we have

9.2. Pler d.nPler donPlor 4,7 Pler 8, =5.

Therefore we shall not study the products Prer.4, and P::TA,;.
We note only that

9.3. § /3 is a regular subalgebra of PrerA..

Consequently S, [ is a regular subalgebra of PrerA.; S /3* is
a reguZm subalgebra of PresA,.

algebra.

) b (#%)™! maps B2 on BL.
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It is sufficient to prove that (Prerd.) ng(n,ﬂ(s,a(Au))):o

A4.)[]4,=0. In fact, if (ATE)HUAZ,:O, then HUS"'(A")
uel u€ ue

js nowhere dense in &, By 4.3 the set ]%:zo(s,v(_»‘iu)) is nowhere
ue.

whenever (

dense in &, which proves the required equality.

The following theorems can be proved in the same way as
the analogous theorems in § 5.

9.4, If A,~B, for every 7T,
Plerd.~PlerB:.

9.5. For every teT, A,&8,; R 138, [3* and CHAR HRTY
~8o3*. If A, is c-complite, then A~ 873~ 875~ 873"

More exactly:

The mappmg A—s>m,5,(A)[I (for A e ;) is an isomorphism
of A, on 8., The mapping S/J,-)'r, (8)/5 (for Se87) is an iso-
morphism of S7/J. Q}e minimal c-ewtension of A;) on S”/S which
transforms S; . on S:/J.

The vmppmq A m,5,(A)[J* (for A e Ay is an isomorphism
of A, on 8,15 The mapping S[Se—>71(S)/I* (for Se83) is an
isomorphism of 87'%,(4) (the minimal c-extension of A4;) on S" IRy
which transforms Sy J4) on S, i3

9.6. S,,S is @ reqular o-subalgebra of P,GTA S,/ is a dense
subalgebra of §¢/% and a regular suba?gebm of Plerd..

K 7/3* is a regular subalgebra of Pler A, §* IJ* is a dense
subalgebra of 85/5* and a regular subalysbra of Prer A,

9 7. The cass 3 8, S:IS5 (4. e. the class of all elements of Boolean

1€T

then P:‘ T A P?i TBr and

algebras S" /3) is a o-generator of P’Z’ETAt

The class ZS /X* s @ o-generalor of Prerd.,.

9.8. The subalqebms 8,13 are mdepmdent in Prerd.. The
subalgebras 8./3* are c-independent in Prer 4..

9.9. If every alyebra A, has more than fwo elements, ther
Pler A, =Plir A, if and only if T is finite.

For if T' is infinite, the subalgebras SN’,S are not o-independent
in P::TA.,- In fact, let A,e 4, (7,47 for i==§), 0=FA4,50'. Then
[ 72, (5:,(4,)) belongs te 3—3
=1

9.10. If J.'—l that 4s, if the fumzly {As}er contains only ome
Boolean algebra A, then Phep A=Pler A,=8° (4)[3(4).
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Theorem 8.1 b'-¢’) implies

9.11. The system <P,ETA,, lS 13} {9:5>, wheie go(A)=m, sl(A) IN
for Aed,, is a minimal element of . The system (PreqA.,, {5 NN IR Y
where ho(d)=714(5,(4))[T* for A e d., is a minimal element of Q*.

10. Charaecteristic properties of minimal produects,
It follows from theorems 3.2 and 3.7 that

10.1. Prer A, is a minimal o-extension of 8.

10.2. P?:TA, is a minimal c-extension of S*.

These theorems imply:

10.3. In order that a o-complete Boolean algebra B be isomorphic
o P,ETA it is mecessary and sufficient that there be a family {B:}rer
of subalgebras of B such that

a) B,~A, for every v e T}

b) the subalgebras B, are independent in B;

¢) the smallest subalgebra B, containing all the subalgebras
B, (veT) is dense in B;

d) the set Z; B. is a o-generator of B.

TE€

The necessity follows from 9.5, 9.8, 9.1 and 9.7.

Suppose the conditions a-d) are satisfied. By a), b) and
theorem 6.2’ we infer that By~ Pf.rd.~8. By ¢), d), and theorem
3.7, the Boolean algebra B is a minimal c-extension of B,. Hence,
by 10.1, BaPrerd..

104 In order that o o-complete Boolean algebra B be iso-
morphic lo Prey B, ) 1t is necessary and sufficient that there be a family
{B:}her of subalgebras of B such that

a) BixA, for every ve T,

b) the subalgebras B, are o-independent in B;

¢) the smallest subalgebra B* C B which contains all elemendts

(B)ng]B,, where By e By, 151 for i=j, is dense in B;
d) the set 3 B, is a o-generator of B.
7€T

The necesgity follows from 9.4, 9.8, 9.6, and 9.7.

Suppose the conditions a-d) are satisfied. Let h, be an iso-
morphism of B, on §;, and let B} be the class of all elements
{B)]] B, where B,e B, 1y¥7; for i=j. The formula

ho((B) [1 Bo) =[], (B2)

icm
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defines a one-one mapping k, of Bf on §3. The hypothesis b) implies
that h, satisfies Kuratowski-Posament’s condition #9). Therefore
the mapping hy can be extended to an isomorphism of B* on §*.
By c), d), and theorem 3.7, the Boolean algebra B is a minimal
o-extension of B*. Hence, by 10.2, Bx PrrA,.

11. Commutativity and associativity of minimal pro=-
duets. It follows immediately from the definition of minimal pro-
ducts that

113, If i r) is a one-one mapping ¢f T on T, then PfeTA,wPfeTA,(,>
and Pleg AmPrer A

The minimal o-product and the minimal o —product are thus
completely commutative. They are also completelv associative.
In faect,

11.2. If the set T is the sum of 'm'utually dzs;omt sets 1’,,:}:0
(?l € U) then PfETA1“’PH€U(P1ET r) aml PI‘ETA‘i’VPuEU(PTETn 1)

We shall only prove that B= PusU(PrsTu .) i8 isomorphic
$0 PrerA4,. The proof of the remaininig part of 11.2 is analogous.

The o-complete Boolean algebra B contains, by 10.3, a family
{Buluer of subalgebras such that

a’) B,,NP,W A, for ue U;

b’} the subalgebras B, are independent in B;

¢') the smallest subalgebra Bj containing all the subalgebras
B, (ueU) is dense in B;

d') the set Z B, is a o-generator of B.

By a), By is u-complete By a) and 10.3 there is a family {
of subalgebras cf B; such that

a") B;~ A, for every veTy;

b’’} the subalgebras B, (ve Ty)
in B also);

¢"') the smallest subalgebra BY containing all the subalgebras
B (teT,) is dense in By;

d’’) the set > B, is a o-generator of Bj.

€Ty . .
‘The conditiovs a’-d’) and a'*-d"’) imply that the family {B.};cr
of subalgebras cf B satisfies the condition a-d) of theorem 10.3.
Consequently BaxPrerd., q.e. d.

zJ1eTu

“are independent in B, (thus

) Kuratowski and Posament [1], p. 282.
Fundamenta Mathematicae, T. XXXVIL 4
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Theorem 11.2 (where U=
imply:

11.3. If, fm‘ every tel. By is a minimal o-extension of A,
then Pr:’[‘B zs’l‘A and stTBz~Pz57A

12, The connexion between set-theoretical and Boo-
lean products of fields of sets. Theorems 0.1 and 9.2 imply
12.1 For every family [X,).cr of fields of sets:

« a - *
Pt‘sTXz'&‘PIIIETXZNPWTA:}JP‘:TA .

If {X,},ET is a famly of o-fields of sets, then, in general,
the products P%,X, and Plr X, differ from Pf.. X,. However:

12.2. For every family {X}.er of o-fields (of subsets of sets
&, respeciively), Pl X.aPrer X,.

Let X§ be the class of all sets P,y X, where X,¢X, and
the inequality X,== & holds only for an at most enumerable number
of elements 7 e 7.

By 10.4 it is sufficient to prove that the least field X* con-
taining the class X¥ is dense in P, X,.

Let X be the class of all sets X ¢ P?.;X, such that

(*) if e X, there is a set ¥ e X} such that # ¢« YCX.

We have:

(i) X*CX;

(i) if X,e X, then Y X, e X
bt

==}

(i) if X, e X, then [ 1 X, e X

(i) and (ii) is obvious. B X,eX and v []A ny then, for every
n=1

positive mte.qer n, there is a set Y,e¢ X§ such that e ¥Y.CX,.
Clearly renl' CHX and n),,FX,,

n=1 n=l1
(), (n) and (m) imply that X=F’7X,. Thus the class X is
dense in P?, ; X7, Consequently, the field X* is also dense in Pler X,
which proves 12.2.

12.3. In order that P;‘TA be isomorphic to a o-field of sets
it is mecessary and sufficient that, for every veT, the minimal
o-ewtension of A, be isomorphic to a o-field of sets.

T and T,=(u)) and theorem 9.10¢

icm
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Let B, be a minimal o-extensions of A,. By 11.3 P:;TA, is
isomorphic to a o-field of sets if and only if PIETB is so0.

Suppose Py B, is isomorphic to a o-field X of sets. By
9.5 and 9.6 B, is isomorphic to a o-subalgebra of X, that is, B is
also isomorphic to a o-field. The necessity is proved.

The sufficiency follows from 12.2.

12.4. If, for every veT, A, is isomorphic to a o-field of sets,
then (P?:TAZ, {ngS*}) {gr}>1 where g,(A)=7r,s,(A)/3* fOT A e A’”
is the least element of £*30). .

Let (B, {B.}, {h}) < £*. Then gh7! is an isomorphism of B,
on S,/S* By 5.6 and 9.6, g,h is a o-homomorphism of B, in
Pie; A, which is isomorphic to a o-field of sets on account of 12.3.
The o’-subalgebras B, being c-independent, the ahomomorp}usms
g,h, can be extended to a o-homomorphism of B in Piird, on
aceount of Theorem VI in my paper [6].

We note else that if <B, {B;}, {h:}> e 2* and B is isomorphic
to a o-field of sets, then BmPf:TAf. This follows easily from
theorem IT in my paper [5].

13 %), The case T'=1. Suppose now that f:l, that is the
family {d4.};; contains only one Boolean algebra 4.
By 5.9 and 6.3 we obtain

13.1. Every o-homomorphism of 8(A)[J(A) in a o- complete Boo-
lean algebra Ccan be extended to a o-homomorphism of 8°(A)[JF(A)in C.

The partly ordered set €, is then the class of all systems
{B, By, I’y such that

(i} B is a o-complete Boolean algebra;

(il B, is a o-regular subalgebra of B, and B,~A4;

(iii) % is an isomorphism of 4 on By;

(iv) B, is a o-generator of B.

Otherwxse speaking, €, is the class of all o-extensions B of
the algebra 4. Obviously ;=8 =%

By 5.9 'and 8.2,

13.2. {8°(A)/J(A), S(A4)]I(A), g> where g(A)=s(A)[JI(A) for
A e A, is the greatest element of L. {8°(4)/J(4), S(4)/J(4), kD,
where h(A)=s(d)[J(4) for 4 ¢ A, is a minimal element of Q.
—;)—I_mknown whether theorem 12.4 is true for arbitrary ¢-complete-
Eoolean algebras.

51) Obviously the theorems formulated in this section can be also proved.
immediately.

4*
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This theorem explains the terminology: ,the maximal o-ex-
tension® and ,,the minimal o-extension®.

13.3. If S°(A)[3(A) is isomorphic o « o-field of sets, then
<87(A)[3(A), S(A)/3(4), ¢, where g(Ad)=s(4)/ST, is the least ele-
ment of L.

This theorem which is a particular case of 12.4, follows
immediately from Theorem VI in my paper [6].

The following theorem is a partieular case of 6.4:

18.4. In order that a o-complete Boolean algebra B be ¢ mawimal
g-extension of A, it is necessary and sufficient that

a) B contain a o-regular subalgebra B, which is a o-generator
of B and an isomorph of A;

b) every o-homomorphism of B, in any o-complete Boolean
algebra. C can be extended to a o-homomorphism of B in C.’

The following theorem is a particular case of 8.1:

13.5. Ewery -o-emtension B of A is isomorphic to the quotient
algebra S°(A)/ T where T is a o-ideal of subsets of S(A) such that

a) J(A4)CT;

b) no open non-empty subset of S{A) belongs to I.

By 12.2, the class £ contains at most one system (B, B, h)>
such that B is isomorphic to a o-field of sets. 1f it exists, B is
2 minimal c-extension of 4.

If 4 is o-complete, then £ contains only one element on
account of 13.5 and 2.5

14. Extending of measures. The following theorem %2
follows immediately from 5.4 and 0.4.

14.1. For every v eT let p, be a normalizcd measure on A,.
Then there ewists a measure p on Plerd, such that

/t(Pz;q-S(A,)/J)=]JT/.4,(A,) R

where A;e A, and the inequality A,==0" (that is, s(A,szS(A:))
holds only for a finite number of elements 7 T.

An analogous theorem holds also for amea.smes and the
maximal o-product:

52) See Kappos [1], p. 61-64.
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14.2. For every teT let u. be @ normalized o-measure on A..
Then there i8 a o-measure [ on P2y A, such that

w(Prers(ds) [ JS)= 17#1

where Aye A, and the inequality A =0’ holds only for an at most
enumerable number .of elements 7T

The formula
W(s(4)=p(4) for Aed,

defines a measure »? on S§;. The space S; being bicompact, the
measure »? can be extended %) to a o-measure 3, On 8¢ Since ui
is a o-measure on 4,, we infer that

H V wW8)=0 for Sel,.

On account of 0.4 there exists a o-measure » on PfGTS,=Sf
such that

(ii) r(P,ET,S'T)zﬂ r:(8,;) for every set PrerS:e PrerS:-
T€T

By (i) and (ii) #(S)=0 for every S eJ. Thus the formula
w(S/J)=»(8) for Se8°

defines the required o-measure on PrerA
Theorem 14.2 fails if we replace the o-product Plerd. by
Prerd. or Prerd, ).
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Sur les suites doubles de fonctions,
Par

Waclaw Sierpifiski (Warszawa).

Théoréme 1. Soit fual@) (m=1,2,..; n=1,2,..) une suite
double infinie de fonctions mesurables dune variable réelle, assujettie
& la condition suivanie:

Ty Kpy e € Iy lo. ... €tant denw suiles infinies quelcongues de nombres

naturels, telles que
Hm k,=1lim l,= +o0,

n=co n=o0
o a
Lim fp,, 1, (@)= f()
oo .
pour tout &, abstraction faite d’un ensemble de mesure nuile (dépendant
des suites kyykgy... 8 1.0, ... )
On a alors
lim fm,n{‘t)zf(‘x)
m,n
pour tout x abstraction faite d>un ensemble de meswre nulle 1),

Démonstration. 11 suffit évidemment de démontrer le
théoréme pour les fonctions fua(z) (m=1,2,..; n=1,2,...) définies
dans Pintervalle I=[0<a<<1], en posant f(#)=0 pour z  I.

S0it fma(®) (m=1,2,..; n=1,2,..) une suite double de
fonctions satisfaisant aux hypothéses du théoréme 1 dans linter-
valle I, ob f(#)=0 pour z eI et supposons que lensemble E de
tous les nombres z de I pour lesquels 1’égalité Lim fun(@)==0 est

en défaut ne soit pas de mesure nulle. Les fonetimo}gs fm,n(®) étant
mesurables, ’ensemble E est donc mesurable et de mesure positive.

Pour tout nombre z e E, il existe deux suites infinies de nombres
naturels %, %, ... et IL,ly..., telles que lm k,=liml,=+oco sans

. n=oo n=0co . .
que limf, 5 (z)=0. Il en résulte, comme on le voit sans peine,

1) e théoréme. résout un probléme de M. Sikorski.
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