62 W. Sierpinski.

i 1<k, posons fr(®)=0 pour & réels.
Si 1>k, posons i

1—k—1 I—k+2
0 pour wg———ik——— eh a}>‘—2k-_,

1—k I—k+4-1
1 pour —z—l—i—gm\——2—k—

fral@)= ‘

et prolongeons fy,(x) linéairement dans les intervalles

—f— I—% I—k41 _  _1—k+2
I—k 1<$<_2__ e

Ok
i i infinies croissantes de
Soient k,, k... €t byl ... deux sthes infinies
nombres naturels. Désignons par E,,; 'intervalle

— k1 I—k+2
<<

m ; P p=1.2
et posons H=um £, ;. On a, pour n=1,2,...
n

EC E/,n, + Ek" H’ln+1+

In

Comme m(E, ; )=z et la suite k. ky ... est eroissante on
N e 'n P

trouve 5 5

3 :
mB) <gp+gp o Sonm S<ge

‘ot j)=0. L’ensemble ¥ est donc de mesure nulle.
oo gt)(il )w 1?11 :fJIOP;ILbI‘e véel, tel que # non € B. Vu la définition de
Pensemble E, on a wsnonekX, , pour » suffisamment grand,
soit pour #>¢. D’aprés la définition de la fonetion fy,(x), on a done
fhpig(®)=0 pour n>=gq, d’ou 11‘1_12 Thpt(2)=20. On a par conséquent
la formule (6) pour wnonek, done presque partout. La suite double
Fr(®) jouit ainsi de la propriété 1.

’ Soit maintenant x> 0. 11 existe évidemment pour tout k& naturel
un nombre naturel I,>=>% tel que

L—k lp—k+1
sz: gw\'k""ﬁ'km'

D’apres (12), noas avons done fh(#)=1 pour k=1,2, o
vu que 7>k, il en résulte que 'on n’a pas lim f,.(2)=0. La suite
double fi (@) jouit donc de la propriété 2. ™"

Le théoréme 3 se trouve ainsi démontré.
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An Algebraic Characterization of Quantifiers.
By _’
Leon Henkin (Los Angeles, California, U.S. A.).

Introduction. In this paper!) we shall be concerned with
the relation between certain formal systems, in the sense of modern
logie, and certain algebraic structures which serve as »maodels”
for these systems. Perhaps the most elementary and fundamental
instance of what we have in mind is the relationship between the
classical (two-valued) propositional ealculus and the abstract strue-
tures known as Boolean algebras, which was explored very early
in the literature. More recently a similar relationship has been shown 2)
by Tarski and McKinsey to hold between intuitionistic (pro-
positional) logic and Brouwerian lattices; and also between certain
modal logics and closure algebras.

Bach of the propositional caleuli mentioned above has been
extended to a first order functional calculus embodying a theory
of quantification for individual variables. The clasgical functional
caleulus is widely known; the extension for the intuitionistic logic
has been carried out by Heyting?); while for modal logies this
has recently been done by Barcan4), and independently by
Carnap 5).

" %) This work was begun while the author was a Frank B. Jewett Fellow
at Princeton. The author wishes to express his indebtedness to Professor Mo-

stowski not only for suggesting the problem which led to this work, but also
for the suggestion that the results be expressed with the present degree of ge-
nerality.

%) J.C. C. Me Kinsey and Alfred Tarski, Some theorems about the sentential
caleuli of Lewis and Heyting, The Journal of Symbolic Legic, vol. 13 (1948),
pp. 1-15,

%) A. Heyting, On weakened quantification, The Jowrnal of Symbolic
Logic, vol. 11 (1946), pp. 119-121.

*) Ruth C. Barcan, 4 Junctional calewlus of first order based om strict
implication, The Journal of Symbolie Logie, vol. 11 (1946), pp. 1-186.

%) Rudolf Carnap, Modalities and quantification, The Journal of Symbolic
Logic, vol. 11 (1946), pp. 33-64. .
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It is natural to inquire whether the universal and existential
quantifiers which are introduced in these functional ealeuli can be
given an interpretation in terms of the algebraic structures which
have been shown to provide a faithful set of models for the corres-
ponding propositional calculi. An affirmative answer was conjectured
by Mostowski®) for the case of the intuitionistic caleulus, and the
appropriate interpretation proved to be valid in one direction. The
question was left open, however, as to whether the converse relation
also held, and this question was the starting point of the present
investigation. After a slight modification of Mostowski’s question
which is seen to be appropriate, an affirmative answer is,givenf

It is easy to see that Mostowski’s interpretation for quan-
tifiers of the intuitionistic logic has its exact analogue in the cage
of the other functional calculi. Hence it seemed natural to give
an account of this algebraic characterization of quantifiers suffi-
ciently abstract to provide a unified theory covering all of the formal
systems to which it applies. Upon investigation it is seen that the
classical, intuitionistie, and modal logics all have in common a symbol
for implication which, though differing in some of its usages among
the several logics, satisfies a certain well-defined set of laws which
are valid in each of the calculi. Thus we are led to congider this
common sub-calculus as a separate formal system, which following
Hilbert and Bernays we call the system of Positive Implicative
Logie. Furthermore, it is precisely those laws of interaction between
thé quantifiers and this symbol for implication which the several
functional calculi have in common, which are responsible for the
v.a-]idit'y of Mostowski’s interpretation of the quantifiers. This
glves us a natural method of extending the system of positive logic
to a functional calculus, in terms of which our results can be formu-
lated with adequate generality.

) _1.. The system of positive (implicative) logic H,. The
primitive symbols of this calculus congist of
propositional variables: p g » ...
special symbols: D ().
A finite sequence of primitive symbols ig called a formula, an(i

certain formulae are designated as well-formed aceording to the
following rule: ‘ ’

¢) Andrzej Mostowski, Proofs of non-deducibility in intuitionisti .
N - ity in intwitionistic funclional
caleulus, The Journal of Symbolic Logic, vol. 13 (1948), pp. 204-207. funet

®
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A propositional variable is a well-formed formula (wiff); if 4
and B are wifs so is (4DB). .

If 4, B; ¢ are any wifs the following wifs are called awioms:

H1. (4D(BDA4)),

H2. ((4AD(BD20)D((ADB)D(AD(0))).

If A, B are any wifs the operation which leads from the pair
of wifs 4, (4ADB) to the wif B is called modus ponens. If & is a set
of wifs, 8B a finite sequence of wifs such that each element is either
an axiom, an element of &, or the result of operating on two pre-
vious formulae of B by modus ponens, and if 4 is the last member
of B, we say that B is a formal proof of the wif A on the assump-
tions &. If such a B exists we write F}-4. In case & is the empty
set we write simply [~4, and in this case 4 is called a formal theorem.

On the basis of axiom schemata 1 and 2 and the rule of modus
ponens it may be shown?) that the following, known in the literature
as the Deduction Theorem, holds for our system of positive logic:

I} & ALB then E-(ADB), where &, A" denotes the set
obtained from & by adjoining the wif A.

It is easily seen that conversely each instance of axiom sche-
mata 1 and 2 may be established as a formal theorem by means
of modus ponens and the deduction theorem. Thus the formal
theorems of positive logic are precisely those determined by these
two rules.

2. Implicative models. These structures are defined to
be triplets {X,0,-,, where X is an arbitrary set, 0 is an elament
of X, and = is a binary operation defined on X, satisfying certain
axioms given below. In addition to the primitive operation -~ it
is convenient to introduce a relation < by the

Definition. x<y for z-y=0.
The following axioms hold for all @, y, 2 of X:

M1 z=y<u,
A2 (re2)e(yoa)<(@=2y) =2
A 3. 0ka,

M 4. If 2<y and y<& then x=1y.

7) Cf. Alonzo Church, 4n Iniroduction to Mathematical Logic, Princeton
Tniversity Press 1944, pp. 9, 45.
Fundamenta Mathematicae. T. XXXVII. 5
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In addition to the axioms it is useful to have available a few
theorems which are simple consequences of them.

M 5. If <0 then z=0.

Proof: By M 3 and M 4.

M6, 0-z=0.

Proof: By M 1, 0 -2<0; then use M 5.

M1 v<a.

Proof: Writing M 1 as (z~y)~2=0 we have, in particular,
(or'.. )=o=0 and (z= (z~2)) »2=0. But by M2, (r-z)~((z2t)<1) <<
<‘(I: #))~2. Therefore (z=-2)=-0<0. By M 5 and the definition
of < we thus get # ~2<0, and the same argument then gives M 7.

M 8. If e<<y and y<z then z<z.

Proof: Writing our assumptions in the form z-y=0 and
y+2=0, and applying M 2, we have (x+2)=0<0-2 Using M 6
and then M 5 (and the definition of <) we get #+2<0, from which
z<2 follows by M 5.

Thus we see that an implicative model is partially ordered
by a reflexive relation admitting no cycles, ard contains a unique
minimal element.

M9 If z-y<z then v =2<y.

Proof: Writing our hypothesis in the form (z-y)=-2=0 we
get (z-2)=(y=2)<<O by M 2. Then M5 gives w-2<y~2 Butb
y~2<y by M1, hence r-2<y by M 8.

M 10. If o<y then zoy<z-u.

Proof: By M2 we have (¢~y)-(2-y)<(¢~2)-y. But
z=y=0 by assumption; and since (by M 1) (z=2)ry<z=n, we
obtain, using M8, (¢=y)=0<2z+o. Using M9 and then M35,
(#~y)~(2~2)=0, which is the desired conclusion.

Given a subset ¥ of X we define top ¥ to be an element z
of X such that y<z for every y ¢ ¥, while for each element @ ¢ X
we have zxa<(2’ whenever y-a<(2 for all y e« ¥. Of course not
every subset ¥ will have a top, in general. If, in thig definition,
we consider the case where a=0, we see that if top ¥ exists it must
be identical with sup ¥ so that when top ¥ exists it is unique;
however, in some models there may be sets ¥ which possess a top
but no sup. If every subset of X has both & top and an inf the model
will be called --complete.
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Boolean algebras, Brouwerian lattices, and closure algebras
are examples of implicative models. In each of these cases y==sup X
implies y=top X. A Boolean algebra of all subsets of some domain,
a Brouwerian lattice of all elosed sets of some topological space,
or a closure algebra of all sets in some topological space, is an impli-
eative model which is --complete.

3. The relationship between implicative models and
the system H,. Let (X,0,-)> be an arbitrary implicative model
and let ¢ be a mapping of the propositional variables of the system Hp,
into X. We extend ¢ to a mapping ¢’ of the wifs of H, into X, as
follows:

i) ¢'(4d)=¢(4) for every propositional variable A.

ii) ¢ ((ADB))=¢'(B)=g¢'(4) for all wffs 4,B.

If ¢'(4)=0 then ¢ is said to satisfy A. If A4 is satisfied by
every ¢ (with values in an arbitrary model X) it is called valid.

Theorem I. For any wfj 4, A is valid if and only if A is a formal
theorem.

We shall not give a proof of this theorem since this will be
easily obtainable from our proof of the corresponding theorem
about the functional caleculus H, constructed below.

4. The first-order functional calculus H;. This is an
extension of the system H,. We add the further primitive symbols:

individual variables: z y 2 ...

n-ary funetion variables: ¥, G, H, ... (n=1,2,..)

special symbols: H ,

We expand the definition of ,wif® by adding the clauses:

Dplay,...,0,) 18 a Wi, where @, is an nm-ary function variable
and ay,...,a, are individual variables. If A is a wif so are (a)4 and
(Ha)A, where o is any individual variable.

An oeccurrence of a variable a is called bouwnd if it is within
a formula having one of the forms (a)4 or (Ha)4; otherwise it is free.
To the axiom sche)ma’ca, H1and H2 of H, we add the following.

H3. (a)dnCAp), where a, B are individual variables, Ary is
any wff, and A is oblained from Ay by replacing each free occurrence
of a by a free occurrence of B.

H 4. ((a)(4D B)D (4D (a)B)), where a has no free occurrencesin A.

H5. (AgD(Ha)Ar), where the symbols are used as in H 3.

H 6. (((a}(BDA)D(Ha)BDA)), where the symbols are used as in H4.

5%
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Along with modus ponens we consider the operation of generali-
zation, which to any individual variable « and wif 4 associates
the wif (¢)4. And we modify the definition of a formal proof B
from assumptions & by inserting the condition that a member
‘of B may be obtained from a preceding formula of the sequence
by generalization on any variable with no free oeccurrence in the
formulae of &. The desecription of our use of the symbol ,,}—“ and
the term ,formal theorem® remain unchanged from that given
for H,.

The Deduction Theorem as stated for H, holds also for Hy,
the proof being identical to that found in the literature for the
classical functional calculus 7). We shall also make use of the following
theorems about Hj.

H 7. BDA((AD0)D(BDQ)).

Proof:

BDA, B~A modus ponens.

BDA, B, AD(C}0 modus ponens.

BDA4, ADCHBDC deduction theorem.

BDA((AD0)DBD()) deduction theorem.

H 8. CDB-((4DC)D(4ADB)).

Proof similar.

5. The relationship between implicative models and
the system H;. Let <{X,0,-> be an implicative model, and
let D be an arbitrary domain whose elements will be called individuals.
By a value-assignment we mean a function @ which assigns values
to the variables of H; as follows. ¢(4) is an element of X for each
propositional variable 4; ¢(a) is an element of D for each individual
variable a; ¢(®y) is a function of n arguments ranging over D, with
values in X, for each n-ary function variable @,, n=1,2,...

Let ¢ be a value-assignment; then by Oy we mean the set
of all value-assignments y which have the same value as ¢ for each
propositional and funetional variable. We shall say that <X, 0, =, D>
is an’ implicative functional model in case there exists a value-
assignments ¢ (called an interpretive mapping) such that for each
v e 0, there exists a mapping v’ of the wifs of H, 7 into X satisfying
the following conditions.

7y Cf. Alonzo Chureh, op. cit.
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(i) v'(d)=vy(4d)=¢p(4) for each propositional variable A.
' (Bnlay, ..y @a)) is the value of the funetion (@) for the n—tuple
of arguments (p(ay),...,p(aa)y, Wwhere &, is any n-ary function
variable and ay,...,a, are any individual variables.

(ii) »'((4DB))=7v'(B)=vy'(4) for all wifs 4, B. o

(ifi) »'((a)4d)=top ¥, where A is any wif, « any individual
variable, and ¥ is the subset of X consisting of all elements ¢'(4)
for value-assignments g in O, which differ from p only in the value
which is assigned to a.

(iv) 9'((Ha)d)=inf Y.

It is easily seen that if <X, 0,-, D> is a functional model
there is only one y’ which can be associated with each value-
agsignment v of O, in such a way that (i), (ii), (iii) and (iv) are
satisfied. Every —-complete implicative model is a functional mo-
del. If ¢'(4)=0 we say that ¢ satisfies A; and as before, we say
that A4 is valid if it is satisfied by every interpretive mapping (into
an arbitrary functional model X).

Theorem II, If A is a formal theorem of H, then A is valid.

Proof: Let <X, 0, -, D) be any functional model and ¢ a value-
agsignment (the interpretive mapping) such that to each y in Oy
there corresponds a unique v’ satisfying (i), (ii), (iii) and (iv). If A
an instance of one of axiom schemata H1, H2, then »'(4)=0 is
by (i), M1, M2, and the definition of ,,<<*. If A is an instance of
axiom schema H 3, say A is ((a)BjgyDBp), then to show y'(4)=0
it snffices to show that v'(Bp) < v'((a)Bp). But this iz so because
by (iii) ¢'{(a)Bg) is the top (and hence sup) of a subset of X of which
y'(Bgg) 15 an element. Similarly »'(4)=0 when 4 is an instance
of schema H 5. Now suppose that 4 is an instance of H 4, say
(=) (CDB)D(CD(a)B)), where « has no free occurrences in ¢. We
have to show that y'((a)B)=y(C)<v'((¢)(CDB)). But this is so
because p'({a)B) is the top of a set ¥ for which we have y’'((«)(CDB))
as the sup of the set of all elements y ='(C), where y is in ¥. Finally
suppose 4 to be ((a) (BDC)D({(Ha)BD()), an instance of H 6. We
must show that z~inf ¥<Ctop W, where W is the set of all z-y,
yeY. By M9 it suffices to show z-topW <infY and hence, by
definition of inf, z- top W<y for each y ¢¥Y. But this ig indeed the
case, using M9 again, since 2=y <topW=sup of all elements z-y.

We have thus shown that »'(4)=0 for any axiom 4. Suppose,
next, that A arises by modus ponens from B and BDA, and we
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already now that (B)=0 and Y (BDA)=y'(4) =v'(B)=0. Thus
we have p’(4)~0=0 which gives us P (4)=0 by M 5. Finally
suppose that A4 is (a)B (i.e. arises from B by generalization), and
that we already know that 9'(B)=0 for all  in Og. Then in particular
the set of elements ¢(B), where ¢ ranges over those functions in O,
which differ from y only in the value assigned to the variable q,
Wwill contain 0 as the only element. But v'((a)B) is the top of this
set. Hence y'(4)=0.

This completes the proof of Theorem IT by induction on the
length of the formal proof of 4.

Theorem III, There erists a functional model (X, 0, =, D>,
and an interpretive mapping @ (with the values of ¢’ in X )y such that
for eaca wff A which is not formal theorem there is a v in Oy with
'(4)%=0. Furthermore, both X and D are denumerable 8).

Proof. We form a new formal system, Hf, whose primitive
Symbols are those of H, together with new Symbols  wy,uy, us,...
which we call special (individual) variables. The definition of , wif«
is the same as for H rexcept that we do not permit the special variables
to appear bound; i. e. if 4 is a wif of Hf then (a)4 and (Ha)A are
wifs if ¢ is an ordinary individual variable, but not if « is a special
variable. The axiom schemata and rules of inference for H¥ are
taken over without change from H,.

A wif of Hf will be called eligible if it has no free occurrence
of an ordinary individual variable. We define a relation ~ hetween
eligible formulae, writing A~ R in case both 4DB and -BDA.
Clearly the relation ~ ig symmetric; it is reflexive since 404
(as one sees at once from the Deduction Theorem); and it is transitive
as one sees by using H 7 and modus ponens. Hence the relation o~
partitions the eligible formulae of H 7 into disjoint equivalence
classes. We write »[4]" for the class to which A4 belongs, and have
[4]=[B] if and only if 4~B. We take the set of all these equi-
valence classes to be X; and we take ag 0 the class consisting of
all eligible formal theorems of Hf. That these formal theorems
form an equivalence class is seen from the fact that -4 and -B
imply -4DB and B4 by H1 and modus ponens; while -4 and
A~B imply B directly by modus ponens.

®) I am informed by Prof. Mostowski that a very similar theorem has
been found independenily by H. Rasiowa.
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Now we define an operation - on X by thelaw .[A];[.B]= [BDA]
In order to be sure that the operation so (?efmed is realiytilen
operation on the classes [4] and [B] and m(%ependejt" ;Jt , the
particular representatives A and B We.must'show that‘ ~ o
B~B imply (BDA)=~(B'DA4’). This is easily done with the ai
nd modus ponens. o
o H;ieﬂ fzcznghat the It));peration = thus defined on X savt‘lsfles
M1 and M2 is a direct consequence of H1 and H 2 respe'cmv;;y;
21 3 is easily established using H 1 and modus ponens, v'vhll-e .
is immediate from the definition of ~. Thus (X, 0,+) is indee
implicative model.
= IHIIIIJ;C;E 1‘;: the set of all special variables uy,u,,... We sh.av]l shov:
that <X, 0,-,D) is a functional mo.del by. demon_stratmg t'ha
the value-assignment ¢ defined belov}vﬂxs an interpretive mapping.
X and D are denumerable. .
01931‘115; t.:ft?s a propositional variable set ¢.(A)=[A].- If a is an
individual variable set g{a)=a or % acco?dmg as a is special or
ordinary. If @, is an n-ary function va.mable-le:b ¢(@,) be that
funetion whose value for the arguments <“i1z "'*“{'n> 18 [Pl gy, <oy tigy)]-

Now let p be any element of O; i.e. let  be any .value-
assignment which has the same value as ¢ .for each proposmonal
and functional variable. Let 3’ be the mapping (of the wifs of H?
into X) such that y’(4)=[4,], where A,;,. rf:sults fro_m the wif 4 by
replacing each free occurrence of an individual vangble a b;y zp(z%).
‘We shall show for all ye0,, that the functions ¢’ so defined satisty (i),
(ii), (iii) and (iv).

(i) If 4 is a propositional variable th.en Ay=A and yp'(4)=
=[A]=¢(4). If C is Dpylay,...,a,) then 01,!; is Pply(ey);...;p(an)) and
P (0)==[@n(p(cy). ..., p(an))]=0(DPn) (Kp(ar); -y w(an)).

(ii) Consider the formula (4DB). We /ha,ve ' ((ADB))=
=[(4D B)y]={(44DBy)]=[Byl=[4y]=7'(B) =p'(4).

(iii) Consider the formula (a)4d. Let ¥ be the s_ubsetvof X
consisting of all elements o’(4) such that peO, and g differs from
only in the value assigned to . Then Y is the set of all [4,].

Now ((a)d)yD4, is an axiom by H {3,' since 4, is obtail}ed
from ((e)4)y by dropping the initial guantifier anq then ‘replacmg
each free occurrence of a by g(a) — which is a special variable and
so certainly not bound in 4. Hence [Ag];[((a)A),,[,]zc[((a)A),i.DAe]: 0
so that [4,]<[({e)4)y]. That is, y<<[((a)d)y] for all y e ¥.
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Now let a=[B] be any element of X, and suppose that 2=[0]
is such that ¥ ~ a<{z for all y Y. In other words we have [BDA1<[0}
for each p, from which =0D(BDA4,) for each g.

But ¢ and B are certain eligible formulae of Hf and together
have at most a finite number of special variables occurring in them.
Choose u not occurring in either € or B and let ¢: be the value-
assignment such that g,(a)=u; (while ¢, has the same value as p
for all other variables).

We know there exists a formal proof @ of €D (BDA4,). By
systematically replacing each occurrence of %z by a throughout B
we obtain %) a formal proof of 00 (BDA4j), where Ay islike 4, except
for having « in place of each occurrence of y(a). Hence by generali-
zation -(a) (0D(BD4;)); and by two uses of H4 and modus ponens
=02 (BD((e)4)y) (since B and O, being eligible, cannot contain
free oceurrences of ). From this it follows that [{((a)A4)y] = [BIK[CT;
in other words [(a)4)p]=a<z.

This completes the proof that v'((¢)4)=top ¥. The proot
of (iv) is entirely analogous.

‘We have thus shown that @ is an interpretive mapping so that
<X, 0, +, D) is a functional model Furthermore, if A is any eligible
formula 4,=4 s0 that ¢'(4)=[A4]<=0 if 4 is not a formal theorem.

Now suppose that B is not a formal theorem bub that ib is
not eligible it contains free occurrences of the ordinary individual
variables a,...,a,. It follows that (a1) ... (en)B is eligible, and it
cannot be a formal theorem else we could get a formal proof of B
by = uses of H 3 and modus ponens. Hence [(a1)... (an)B]==0.

But [(4)...(05)B]=top ¥,, where ¥ ) is the set of all elements
[((2s)...(2n)B)y,] such that y, differs from @ only in the value assigned
t0 ;. Hence there must be a y ¢ ¥, such that Y=0; i. e. a y, such
that [((ap)...(@n)B)y]3=0. But [((ag) ... (¢n)B)y,J=1t0p ¥,, where ¥,
contains all elements [((a5)...(2n)B)y,] such that v, differs from P
only in the value assigned to a,. Hence there must be such a w, With
[((a3)...(ax)B)y,]+=0. Continuing in this way we see that there must

be a p, in O, such that gu},(B):[B%]#O. This completes the proof
of Theorem IIT.

®) Actually it may be necessary first to change certain of the auxiliary
variables appearing in @. This point is encountered in proving that the rule of
substitution holds in formal systems where axiom schemata are employed and
substitution is not taken as primitive. Cf. The reference mentioned in footnote 7,
p. 56,
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Theorem IV, For any wff A of Hy, A is a formal theorem if
and only if A is valid.
Proof: By Theorems II and III.

6. Extensions of the system H, We ‘descr_lbe 41}e1‘e
a certain type of extension of Hj such that the cla.sswal, mtmélo.ltl‘;
istic, and modal functional calculi can all be obtamid ‘by a fini o
number of such extensions. The extended system, HF, is obtaine
as follows.

a) We add a new primitive symbol, 4. )

b) We add to the definition of ,wit* the clzu}se: S,If..tl..l,-.., n
are wifs 50 is A(4y,...,d,)° (where n is a certain fixed integer
associated with ). N

¢) We add to the axiom schemata H 1—H 6 o finite numbei
of further schemata each of the following form. B is s-ome wif ‘of H ,_
in which the only variables which appear are propositional varlab.les,
and the schema stipulates that each formula s.h.a]l be an axiom
which is obtained from B by substituting specified wffs! one for
each propositional variable, throughout B.

Further axioms are added as follows:

(4:2 45D ((A;DAi) D{A(Ay, “'aAi—*ly Ay Aiga, ) D
3—\'1(411’ "-’Ai—la A;'; Ai—i—l; --'1—An)))-

d) The rules of inference remain just modus ponens and
generalization. -

For any such system H}" we obtain an algeb}'a,lc model
(X, 0,+, +,D) as follows. Let (X, 0, =, D) be. a functional model
for the system H;. Then take 4 to be a function .of 7 arguments
ranging over X, with values in X, satisfying certain postulates as
given below. )

There will be one postulate for each axiom schema resultmg.
irom a wif B of H}F in the way described in ¢) above. The pots:tylate
may be obtained from B by substituting for each propositional
vaﬁable a variable ranging over X, replacing ,A“ throughout by
-+, and writing D, =D, in place of each part D, DD,.

The relationship between the system H}" and the ].nodels
{X,0,~, +,D) will be entirely analogous to the situation as
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dfeseribed for the system Hj, the only change being that to the con-
ditions (i), (ii), (iii) and (iv) we add a condition (v) which »" must
satisfy:

(v) 2" (A4, dn))=+@'(4y), ...,v"(4,)) for all wits Ay .oy dn

From this description it ean be seen that the presence of symbols
from the propositional ecaleulus (other than »2%) is drrelevant for
the characterization of quantifiers which we have given. It is this
faet which provides the justification for our having abstracted from
these symbols and worked with the system of hasic implication.

icm

The Tychonoff Product Theorem Implies the Axiom
of Choice.

By
J. L. Kelley (Berkeley, California, U.S.A)).

Recently S. Kakutani has conjectured that the axiom of
choice is a consequence of that theorem of Tychonoff?) which
states that the Cartesian product of compact topological spaces is
compact. It is the purpose of this note to show that this conjecture
is correct.

1. Definitions. We first review the pertinent definitions.
A topological space is a set X, together with a family J of subsets
(called open subsets), the family J having as members the void
set, X, all finite2) intersections and arbitrary unions of members
of . If we adjoin the requirement that complements of finite sets
be open, the topological space is a Kuratowski closure space?).
In the proof which we give the topological spaces constructed are
closure spaces.

The space is compact (=bicompact) if each covering of X
by members of J has a finite subcovering. (In particular, the void
set A1 with the topology {4}, is compact). If, for each member o of
a set 4, X, is a set, the product Paes X, is the set of all fanctions #
on A for which, for each aed, z,¢ X,. If each X, has a topology
we let § be the family of all subsets of the Cartesian product which,
for some set U open in some X,, are the set of all  with @, ¢ U.
The product is then topologized by calling a set open if it is the
union of finite intersections of members or .

') Mathematische Annalen, vol. 111 (1935), pp. 762-766.

2) In the absence of the axiom of choice it is necessary to define ,finite*.
‘We agree that a set is finite if it may be ordered so that every non-void subset
has both a first and a last element in the ordering. Then the axiom of choice for
finite families of sets can be proved. See A. Tarski, Fund. Math. 6 (1924),
Pp- 49-95, for a full discussion of this and related questions.

%) See C. Kuratowski, Topologie I, Monogr. Mat. 3 (1983), p. 15.
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