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2. Proof of the theorem. We now demonstrate the fol-

lowing statement of the axiom of choice:

If for each a e 4, X, is o non-void set, then the Cartesian pro-
duct Ppea X, is non-void.

‘We begin by adjoining a single point, say 4, to each of the
sets X,: Let ¥,=X,U{A}. We assign a topology for ¥, by defining
the void set and complements of finite sets to be open. It is clear
that ¥,, with this topology, is compact.

For each a <A, let Z, be that subset of Pges ¥, consisting
of all points whose a-th coordinate lies in X,. Surely Z, is closed
in Puea ¥, since X, is closed in ¥,. Moreover, for any finite subset
B of 4 the intersection NgepZ, is non-void, for, since each X, is
non-void we may by the finite axiom of choice choose x, ¢ X, for
aeB, and set x,=A for ae<A—B. Consequently the family of
all sets of the form Z,, for some a ¢ 4, is a family of closed subsets
of Piea¥,, with the property that the intersection of any finite
subfamily is non-void. Hence, since by the Tychonoff Theorem
PoeaX, is compact, the intersection M,e4Z, is non-void. But this
intersection is precisely P,c4X,, and the axiom of choice is proved.

3. Remarks. 1t is of some interest to note, in the various
proofs of Tychonoff’s theorem, the precise lemmas which require
the axiom of cholce. In each of the proofs which have been published
the axiom of choice is used in the proof of two distinct subsidiary
propositions. In what is probably the most illuminating proof %),
that of J. W. Alexander, these results are:

i) Let & be the family of subsets of a Cartesian product of
compact spaces as defined in Section 1. Then every covering of the
product by members of & has a finite subcovering.

ii) Let & be any family of sets with the property: any sub-
family which covers the union U,.2A4 has itself a finite subfamily
which 2lso covers. Then the family @ of all finjte intersections of
members of K enjoys the same property.

Proposition i) implies the axiom of choice. Indeed, the above
proof uses only i). However, I am unable to discover whether ii) does
or does not imply the choice axiom.

University of California.
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A Paradoxical Theorem.
By.
J. Novak (Praha).

In this paper the following theorem is proved: B being. Mi
ancountable closed subset of the set C of alll countable ordlgsz'
numbers, let f(z) be & single-valued transformation ¢f B onto A‘ )
having the property that j(z)<w for all £ ¢ B. Then there efé ;
a countable ordinal number a4 and an uncountable subset B

; z)=a for all z e B*.
soeh ‘;11112:: ’gl(lez)rem is used in the first instance to prove Theorem 2, -
which in a special case gives this paradoxical result: We take away
one element s, from the given infinite countable set 4,, we add
2 new infinite countable set 4; to the remainder, from the set

U A;—U s, we take away one element: s,, add a new infinite countable

}'<2 . - - . N
?sé% A, and we continue in this way so that from the set}(}uA 2 zgus,,
(unless it is empty) we take away one element s, and then we add
a new infinite countable set A,. Then there exists a countable
ordinal number ¢ such that the set of all given and added elements

is the same as the set of elements taken away 1.e ;.%Al ZL<JH 2

In the second instance the theorem mentioned above is us'e(‘i to
prove Theorems 3 and 4, in which necessary and sufficient c.ondltlons
are given for ordered continuum with the Souslin prope?rty (i.e. every
disjoint system of intervals is countable) to be a hne:fnr set. .O'ne
of these conditions is the existence of a rational dyadic partition
of the ordered continuum with the Souslin property (Theorem 3)
and the second condition is the existence of a closed dyadic par-
tition (Theorem 4).

Theorem 1. Let
(1) By< br<<. <P
be an increasing sequence of ordinal numbers fa<<0Q such that

) Hm fy=Prim »
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£ being the first ordinal number of power x, and lim y<Q. Let
(3) gy gy ey Ugy oo

be a sequence of ordinal numbers a,<Q with the property

(4) a<fs

for all J<Q. Then there ewisis at least one ordinal number ay, 0 the
sequence (3) such that ap=ay, for an wncountable number of I*.

Proof. Suppose the contrary: every ordinal number o, appears
in the sequence (3) a countable number of times. Let f.. be any
erdinal number contained in the sequence (1). The set of aﬁ ordinal
numbers &< S, being countable, and each of them appearing in (3)
(according to our supposition) a countable number of times (or
noje appearing at all), because Q is a regular ordinal number, there
exists an index A,.4> 1, such that Ba,<<az for all A2 2p44. Using
the method of induction we can construct an ordinary sequence
of ordinal numbers Ay<<C...<A,< ... such that

Wy < Bry<<ay < fay< <oy < <

(here the ay,-s are ordinal numbers taken from (3) and £, -s from (1)
(satistying the condition (4)) and !

By, <ap for all Az2.; and for every n=0,1,2,...

.As lim ap =lim B, and lim Ba,= B, (according to (2)), where
y=Ilim 2, and because «,< g, (according to (4)), there exists a natural
number m such that 0y<f;,- On the other hand ¥ > Amyq, Whence
Ba,<a,, which contradicts the inequality o,<f; . The theorem
is thus proved. "

Notes. Without the supposition (2) the theorem 1 does not
hold as the following example shows: ay=21, fy=A1--1 for 1<Q. Nor
can we assert that the set of all elements contained in (3) must
be countable. For example a;=41, f;=271+1 for isolated 1>0. and
az=1, f;=21 for all limit numbers 1.

If we denote by B the set of all f; and by A the set of all a,
?hen f(Ba)=a. is & single-valued transformation of B onto 4 Which’
18 not one-to-one. There exists an uncountable subset B*CB such.
that f(fa)=ay, for all fi ¢ B*.
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Theorem 2. Let Z be a non-void abstract set. Let the following
rule for the construction of subseis N,CZ be prescribed: Ff all coun-
table subsets N, S, Az of Z are constructed for all 1<y, where
No=8,=0=%A4, and S;==0 for 1>0, we put N”zngrzlﬁ Sz and
choose S, =0, §,CN, supposing Ny,==0, and then choo’fqe the countable
set 4,CZ—\U A;. Then there ewists a countable ordinal nwmber 9>1

A<y .
with the property Ng=0, that is

Ud,=US;
<8 <
Proof. Suppose the contrary: that no ¢ with the mentioned
property exists. Then N;==0 for 0<<i<<Q. First let us consider the
sets A;. As AyCZ—UA,CZ—A, for i<, the sets A, are dis-
<

joint. Let us denote”the elements of the countable set 4, — as
far as 4,0 — by ordinal numbers
{wld, 0+ 1,...,0i+n},

where in the case when A, is finite, # is a non-negative integer,
whereas in the case when A, is an infinite set, » runs through all
non-negative integers. In this way we get a single-valued correspon-
dence; this correspondence is one-to-one. In fact, let a==y be any
two different elements of the set U 4; (which is non-void because

<2
02=4,CU 43); let wl+m and wld'-+n be two c?rresponding ordinal
<0

numbers. Then either i==1’, which implies!) that wi+4m==wl’+n,
or A=2" and m==n, which also implies wi+m==wi’4-n. Therefore
without a loss of generality we can identify the elements of the
set U 4, with the corresponding ordinal numbers w4 = for those 4

<0
for which A;==0.
Let us now consider the sets §;. Since, according to our

supposition, 830 for 0<1<<f2, we can choose a point

ay=out+meS,CUA,L
Fre

for every 2>0 and A< Q. The correspondence f(f1)= az ¢ Sz, where
fa=wli and 0<J1, is one-to-one. In factl) from wi=wi’ follows
A=1', so that f{ewl) is the only point a,; further1) wi<wi’ implies
A< 4. Therefore, as aye SyCNpCZ—U S,CZ—8; and az ¢ 8;, we
get azazy, i e. fwd)=Hwld). <t

1) F. Hausdorff, Mengenlehre, Leipzig 1927, p. 63.
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Let fi=wl, 0<i<<@, be any countable limit ordinal. Then

f(B)=aze S;CN,CUA,—US8,; hence aze 4, for a suitable in-
i n<li :

dex p<<Ai. Therzfore there is a non-negative integer sm for which
a=op+m. As p<<i, we get az<<f; for 0<<i<Q. Moreover, if we
define a;=0 and fy=1 for A= 0, we see the suppositions in.Theo-
rem 1 have been fulfilled. Therefore according to the theorem quoted
the correspondence f(f:)=a, is not one-to-one. This is a contradiction.

The theorem 1 will now be applied to the ordered continua.
The intervals will play an important part?). Let I be an ordered
continuum 2). By dyadic partition 4 we mean the following process:

The continuum I will be called the interval of order 0. Let
us choose a point @ inside I which divides I into two closed intervals
I, and I, of order 1 such that

I,OI,=I and I,NI,=a

the first of which is to the left from the other. Having already
defined the intervals I . it (5<<A), where 4¢=0 or =1, for
all orders A<Ca, we shall define the intervals Lbl’x--~!‘g~~~ (6<a) of
order « in this way:

1% ¢ is an isolated ordinal. In this case we choose a point
inside every interval I, el (<< a—1) of order a1 which divides
this interval into two closed subintervals of order « iy ... #s..0 and
Ifoil el the first of which is to the left of the other.

20 ¢ is alimit ordinal. Let us form all products lr;laf,-o,-,._,,-g (§<),

where i;=0 or =1. Each product like this is either a closed interval
or a point; in the former case we call it the interval of order a and
denote it by Iys..5.. (§<a).

We continue this construction as long as there is at least one
interval of order a. Because all possible intervals of the continuum I
are as many as the different pairs of points of I (viz. the cardinal
number of the set I), there exists the least ordinal § >0 such that
we get no interval of order §. This 6 will be called the order of the
partition A. Evidently, é is a limit ordinal of a power which does
not exceed the cardinal number of I. The system of all closed inter-
vals of orders a<¢é will be denoted by &, and will be called the
dyadiz system of intervals.

?) The point-set consisting of only one point will neither be counted among
the intervals nor among the ordered continua.
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The following statement can be easily verified:
It is Tipgy.tp. (§<a)Clpp..pp. (E<P) if and only if:

B<La and =3¢ for E<f.
Using this statement we prove

Lemma 1. Any two different intervals of the same order a are
disjoint or they have only one point in common.

Proof. Let Iy, . g ((<a) and Iy .. jg.‘.(f < a) be two different
intervals of the same order a. Then there exists the least index
B<a such that ;=7 for £< B, whereas iz==jz. Therefore

Iioi‘lu.ié‘..(‘s <a) CIioil...isn... i and Ijoji...j;-...(§< a) CIioil‘..ig...jﬂ-

The common part I,h,l__‘is.m,'gmf Jodgedgeig contains only one

point; thus the lemma is proved.

Lemma 2. Let Sa be a dyadic system of intervals of an ordered
continuum I. Then the end-points of all intervals in &, form a dense
subset in I.

Proof. Suppose, the contrary: there exists an interval JCI
containing no end-point. Then there exists a decreasing transfinite
sequence

IDI[OD Gan 3110i1---i§---(5<a):-) [

of intervals in ©4 of all orders a<< 6 such that the interval J is con-
tained in the common part of all intervals appearing in the sequence,
¢ being the order of the dyadic partition 4. Therefore this common
part is an interval in S4 of order §; this contradicts the definition
of the order 6. '

Definitions. The partition A of an ordered continuum T
and the corresponding dyadic system &, of closed intervals will be
called rational, if for every element ¢ Ga, J =TI there is an element
J’==dJ, J' € G4 such that J is contained in J’ but not inside J’.

The ordered continuum K is said to posses the Souslin pro-
perty (8), if there is no uncountable disjoint system of intervals
in K.

Theorem 3. The ordered continuum K possesing the Sousln
property (8) contains a countable dense subset if and only if there
exists at least one rational dyadic partition of K.

Fundamenta Mathematicac, T. XXXVIL. 6
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Proof. The condition is necessary. In fact, every dyadic
partition of a linear continuum, whose norms &,—0 for n-— oo,
is a dyadic partition of the order w. Every dyadic partition like
this is evidently rational.

The condition is sufficient. Let A4 be a rational partition of
the ordered continuum K. Our task is to prove that the dyadie
system & is countable. Suppose the contrary: that the dyadie
system &5 is not countable. According to Lemma 1, for every
ordinal a, the subsystem &,C & of all intervals of order « is
countable, K possessing the Souslin property (8). Therefore there
exist intervals in S, of all countable orders a< Q.

Let us denote by TCSa the subsystem of intervals of all limit
orders f,=wi, 0<<i<®, such that for every limit order g, there
exists only one interval in T of order £,. Therefore, 4 being a rational
partition, it is possible to choose for every limit ordinal 8, the least
ordinal ap=f(f,) such that the only interval in T of order g, is

contained in—but not inside — an interval in S, of the (least) .

order a;. According to the statement on page 81, evidently a;< g,
for 0<<i<Q. Further lim f,= Bym, for lim»<Q. If we put «,=0
and B,=1, all conditions of Theorem 1 are fulfilled. According to
this theorem there exists an index 2, such that f(fz)=a, for
uncountably many indices A*. Two cases are possible:

1° The subsystem of all intervals in &, of order a, is unco-
untable. But according to the lemma 1 this contradicts the Souslin
property (S).

20 The subsystem of all intervals in S, of order a, is countable.
In this case there exists an interval I’ e S, of order a, such that
uncountably many intervals of the system ¥ are contained in — but
not inside — 1. All these intervals can be divided into two groups.
All intervals with the common left end-point belong to the first
group, and all intervals with the common right end-point belong
to the second group. At least one of both groups is uncountable.
Consequently there exists an uncountable decreasing or increasing
sequence of different intervals. This, again, contradicts the Souslin
property (8). Thus we have proved that the system G, is countable.
According to lemma 2 a countable dense subset is contained in I.

Definition, Let 4 be a dyadic partition of order 4 and S; —
the corresponding dyadic system of intervals of the ordered conti-
nuum I. Let HCI be the set of end-points of all intervals in &;.
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For any point 2 ¢ I let us denote by the symbol ¢(2) the least ordinal
number such that there is in &4 no interval of order a> ¢(s) and
containing the point z. The relation o<Cg(#)<d for all zel can
be easily proved. The dyadic partition A is said to be closed, if the
set of ordinals ¢(H)—0¢ is cloged (in the order topology) in the set
of all ordinals £<é.

Theorem <£. The ordered coniinuum K possessing the Souslin
property (S) contains a countable dense subset if and only if there
exists at least one closed dyadic partition of K.

Proof. Every dyadic partition of the linear continuum with
norms 6, -0 for #—oo is closed; indeed its order is d=w, the
set ¢(H) contains only one ordinal w, and the empty set ¢(H)—é
is a closed set.

Now, let us prove the sufficiency of the condition. Let 4 be
a closed dyadic partition and &, the dyadic system of intervals
of K. As the orderved continuum K possesses the Souslin property
(S) the inequality ¢(x)<<2 holds for all @« K; furthermore every
subsystem of intervals in S; of any countable order « is countable.
Under the assumption that there exists no dense subset in I
the order of the partition is =2, according to Lemma 2. As
¢(%) > a for any end-point z of any interval in &, of order a, the set
¢(H) is uncountable and can be arranged in the following form as
an increasing transfinite sequence

Bo< By con < < o (0<i<2)

According to our supposition the set g(H)—dJ=g(H) is closed in
the set of all countable ordinals £<Q. Consequently lim f,= fum»
for lim y<<Q. To any ordinal f; e ¢(H) we let correspond one end-
point x; ¢ H such that g(xz)=4§;. In this way we get a one-to-one
correspondence. Let us denote by f(8:)=a, the only ordinal such
that a; is the end-point of an interval in &, of the least order az.
Evidently az<<fa for A<<f. According to Theorem 1 there exists
an index 2, such that f(fz)=ua,;, for uncountably many indices xs..
Therefore there are uncountably many end-points ;- of intervals
in & of the order a, which, according to Lemma 1, contradicts
the Souslin property (S).
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