J. Los.
Nous avons par suite de 4.2, 5.1, 5.2 et 5.3:
i@, g(@@)]=n(2), ¢lp(@w)z]=yyz).

La proposition 5.5 résulte de la définition des fonctions ¥

. 6 De’mon-stratio_n de la proposition 3.1. Soit 7, une
onction de la suite considérée, n, et 7, deux nombres naturels tels
que |[n;—ns|=n. On a d’aprés 5.4 ‘

19,0, 8, ()= {97110, ()], 9700, (V)] =7 (2, ).

La proposition 3.1 et notre théoréme sont ainsi démontrés

1 Va2

A Construction for Models of Consistent Systems ).
By
L L. Novak (Wellesley, Mass., US.A)).

This paper describes a method for censtructing a model (Sg)
of an extension (§’) of a given system (S) within the syntax of (8).
§ 1 states the conditions which (8) must satisfy to have a model
of this type and also explains the relation between (§) and (8').
This is analogous to that existing between Zermelo-Fraenkel
set theory and von XNeumann-Bernays set theory 2). In § 2
the formal syntax of (S) is built up. It involves no notion of
truth or satistaction and is essentially equivalent to arithmetic
based on the 5 Peano axioms together with the hypothesis that (S)
is consistent. It is therefore a denumerable system. Within this
syntax it is possible to define a predicate T of statements having
gsome of the properties of ,,is true”. This predicate plays an essential
role in the construction of the model. The notion of ,model” is defined
in § 3 and the construction of the model of (8’) in the syntax of (S)
described in § 4. The existence of this model establishes the con-
sistency of (S°) relative to the syntax of (S). Since in syntax there
is only a denumerable number of expressions and the range of the
variahles of (Sp) is restricted to expressions of a certain type of
this syntax, (Sp) is a denumerable model of (8'). Therefore (Sm)
contains a ,,subsystem® forming a denumerable model of (8). Such
a construction is possible for every system (8) satisfying the assump-
tions of § 1 and can be carried out entirely within syntax without
semantical concepts. It therefore gives another proof of the Skolem-
Ldwenheim theorem.
m to the American Mathematical Society December 30, 1948
and April 30, 1949. The author wishes to express sincere thanks to Profs. L. H.
Loomis, A. Mostowski, W. V. Quine and to Dr. J. Myhill for their excellent
suggestions and help. This paper is based in part on a thesis submitted for the
degree of Ph. D. at Radeliffe College in June 1948, which was written while the
author held the M. E. Maltby fellowship (AAUW). Prof. Mostowski has recently

improved the results of this paper and shown that every theorem of (§8’) which
can be expressed in (S) is a theorem of (8). .

2) Cf. Waung [13] where the relations between the two systems are discussed.
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§ 1. The systems (S), (8') and (S2).
(8) may be any system of axioms satisfyin i
conditions: i fhe dolloweg
’ I(i) it contains an infinite number of variables x,y,z, <y’
z’, ", ... whose range is a universe V. (Of course, the variables nJeed,
not be allowed to assume V ag value).
A (i) it containg only a finite number of primitive connectiveg
tr, %ﬁﬁ,jln_;, = <1)ne of which, say &, is =, in addition to the usual
uth-runctional ones and quantification over th ri
e e variables of the
_ (%ii) it is based on a finite number of axioms and axiom schemata,
ineluding thosg for sentential calculus, quantifieation theory an(i
the theory of identity. (More generall , it is sufficient to agsume
that th? s.entence T® is an axiom of (S)1 be expressible in syntax)
) (S? is an extension of (S). It contains not only one, but th;
kinds of variables. The first kind, coinciding with the variableg
of (8) and also de{mted by small Latin letters (with or without
accgnts anfi subsecripts) ranges over V, the second, denoted b
capital Latm. Iette?s (with or without accents and subscripts) mngeys
over a more 1Fc1us1ve universe . Elements represented by variables
of the first kind thusA satisfy all the axioms of (8), but the elements
of W (‘10 not neee{ssamy satisfy them all. (§’) further containg a new
;)urmtwe con'nectlve »°“ such that for every Ain W and for every x
in V, ‘on is a fornjmla. ‘). Variables of the second kind satisty
an‘ a,gl'om schem.a' which can be stated with help of the notion of
pnm'zg'u: propositional formula (abbrev. ppi), defined as follows 5):
et X, y, z denote variables of the first, ki i ,
of the second kind, then 1 % X, 2 variables
() Ax, AX, §,XY, §xY, §X
i) y $i1 Xy, §ixy,... #XyZ, ©Xyz a
(11) ff)r each X of the second kingd, ’Xo’ y is ; pp3f7 e PRLs
(if) if @ and ¥ are ppfs, 80 are ~® and @.¥,
%) We shall here, for the sake of definiteness
Ve | Lere, assume 4 to b ie,
§z...,§n .dla.(?.lc, = triadic. It should perhaps be noted here that 1'11(;‘1',]:&5e Izosai;f’
o nvegtxqu is made that expressions in Roman type are names of corrP o ing
(i. e. s;;mljrly sha}:ied) expressions in italies, (See Note 1 on p. 109) esponding
E »d o % is defined for every 4 in W. For values of 4 i ' )
_ £ . Y, Aoz
v?ell be eqlll‘.lva.lentto.,, §; 4z, (for some 1), so that #0™ mayobe colllllsideres1 . xlzl _y
sion of ,, § over a wider range of functionality. This is the case if 8§ i:n ;‘ ee’;'

if (8) is the Zermelo-F ’
iy raenkel system, (') the von Neumann-Bernays

%) Cf. Godel [2], p. 8.
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(iv) If @ is a ppf, then (Hx)P is a ppf, and so is any result
obtained by replacing # by another variable of the first kind.

(v) only formulas so obtained are ppfs.

The axiom schema in question then states:

(1.1) If @ is a ppf whose only free variable is », then the
closure of

(HZ)(V)(Zov-=0)

is a theorem ©).

(8') further contains axioms of identity and one axiom relating

the two kinds of variables:

(1.2) X=Y -=(z)(Xoez=Yoz),
(1.3) x=y-D-Zox=Zoy,
(1.4) (x) (HX) (x=X).

The system (S,) is obtained from (8) by adjoining to it the
Hilbert s-operator?). If ® is a statement, (sx)® can be read 2s
»an # such that &, in analogy with the reading of (1x)® as .the
such that @“. The axiom schema govering e is:

(1.5) (x) @D @’

where @' is like @ except for containing occurrences of (ex)®
wherever ® contained occurrences of x (x is assumed not to be
bound in D).

It is known that if () is consistent, then (S,) is also consistent.
The proof of this fact consists in giving an explicit construetion
for a contradiction in (§) once a contradiction in (§.) has been
discovered. This proof can be carried out within a syntax such
as the one described in § 2. From now on we shall therefore assume
that (§,) is consistent and build the model of (§8’) in the syntax
of (8,). If a contradiction can then be derived in (8), a corresponding
one can be derived in the syntax of (S,), so that this syntax would
then be inconsistent. But since this is merely the syntax of (S)
plus the statement that (S.) is consistent and we know that the
consistency of (8) implies that of (S§,), this would assert that the
syntax of (S) is inconsistent. This would contradict the basic hypo-
thesis throughout, namely that the syntax of (S) is consistent.
Constructing the model as indicated therefore establishes the con-
sistency of (S’) relative to that of the syntax of (S). Since however

(8} also contains (§), this method allows us to build a model of (S).
T &) CL Godel {2], p- 8, theorem M 1, or Bernays [1], p. 72.
7} Cf. Hilbert-Bernays [5], § L.
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The von Neumann-Bernays system is related to the Zermelo-Fraen-
kel system as (87) is to (S). This can be seen as follows. As primitive connective
in Zermelo’s system we may take e and define = in terms of ¢ by extensionality.
Then the axioms are (cf. W. Ackermann, Mengentheoretische Begriindung der
Logik, Math. Ann., vol. 115 (1937), p. 1 or H. Wang [13]):

Z1: x=y)(xez==Ysz) Z2: (Iw)(X) (Xew=(x=y\/x=1)),

Z3: (Aw)((Au) (uew) (%) (£ewD(HY) (FeWwxCyx+T)),

Z4: (AW)(x) (xew=(Ty) (Xey yez)), Z5: (Hw)(x)(xe w=xCz),
Z6: If®xy is a formula in which x and y are free but z, w and u are not free, then

(3)(3) (@) (@ Xy -8x2) Dy =2) D (AW) (x} (xe W= (1Y) (Yeu & ¥¥)) is an awiom.

If we then add new variables A,B,... and axziom schemata (L.1)-(1.5), we
ean easily show that Mostowski’s or Gddel’s axioms for the von Neumann-
Bernays set theory hold (cf. Gddel [2] or Mostowski [6a]). To do this, we
write Cls X for (T Y) (Y=X), MX for (HY) (X ¢ Y). Al then follows immediately
from (1.4). As the new connective o we also take e, i. e. instead of Ao X we shall

“have X & A. A2 then follows immediately from the definition of MX, A3 from
the definition of = by extensionality. A4, C1, €2, 03 do not involve any
concepts other then those already present in the Zermelo-Fraenkel system
nor class-variables, and therefore hold in the extension of this system. B1-B8
follow from schema (1.1). To show B 1: (BA) () (7) (<x¥>) e A ="X &), note
that the existence of 4 is asserted by taking ® in (1.1) as (Ax) (Hy) (v={xy>-xey).
To show the existence of 0'in B2, take ® as veA-veB, and similarly for B3-BS.
C4 then follows from %6 by (1.5), since by (1.1), there exists a class 4 of pairs
<zy)> such that <wyy e d=duzy.

The following additional remarks were suggested to me by Dr. Hao Wang:
It may be noted that by generalizing the Bernays-Godel procedure (cf. [21,
Dp. 3-15) of proving general principles of class existence and the proof of relative
consistency in this paper, we can obtain a general theorem on the finitization of
proper axioms (axioms not belonging to the theory of truth-functions and quanti-
fiers) of a large class of formal systems. Thus the system of [2] may be considered
as an ,equivalent extension“ of the Zermelo-Fraenkel system ZF in the sense
that all formulas and proofs of the latter can be expressed and carried out in the
former and that we can prove that if the latter is consistent, then the former is.
There is one difference between these two systems: while ZF contains. infinitely
many proper axioms, the system of [2] contains only a finite number. Hence we
may say that in [2] we find an ,equivalent extension® of ZF in which the axioms
are finitized. Now it is not difficult to see that we can prove the following generali-
zation of the above special case: If 4 is a system with one kind of variables, fini-

tely many primitive predicates, finitely many proper axioms and axiom schemata,
and with n-tuplets available, and if each axiom-schema is of the form if & is
a formula, then (D) is an aziom® (not Testricting & to any special kind except
for possibly specifying that certain variables are free or not free in it, and F(®)
being a fixved formula of the system for every fixed @); then we can construct
a system which is an ,equivalent extension® of the given system and in which
there are only finitely many proper axioms. In particular, the theorem applies
to the system (Z*) (including the axioms for identity) on p. 465 of vol. I of [5],
to all systems obtained from [7] when we substitute finitely many axioms for
its principle *200 of set existence, and to the system NQ in [13]; all these systems
have ,equivalent extensions“ with only a finite number of Proper axicms.
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§ 2. The formal syntax of (S) and (S.).
By ,syntax™ will here be meant the.part of the metal%mgu.age
hich is built up from the names of finite numl_)er of b&il(} signs
N primitive syntactic 3-place predicate ,,M (wjvhose
joint denial and quantification 3).
§,2, = and A I8

by means of a
properties are described below), el
i ;imiti tives 815 -oey
It (S) contains n primitive connec 3 Sy bus is
mox(mZh'c (i. e. Ax is a formula), §4y s §n—e arve diadic (1..e._ $ixy ?s
a formula) and = is triadic (i. e. #Xyz is a formula), the list of basic
names will be:
8=, w" =W,
Sy=,2“ =12,

Sy= " =X, y

i v @ __

Sy=,, = Sg=n(“=
4

8,=y)"=) Sg=ul = =
«
Sw:u§z“=§1 S11==:§2 =% -
Qo = &x%==%* 8o = g“=¢g.
Ng4n = 94n=" »'

These form a finite 9-4n sign alphabet, the last sign being
the Hilbert e-operator. .

The primitive syntactie predicate ,M® can be thought of as
having the following properties: . ,

(gi) 1f z is a single sign, (i.e. one of Sy ooy Soan), then Mayz
it o is the alphabetic successor of y. ] )

(ii) If x is a complex expression, Mayz if 2 is the result of

iti 1 i ritten y~2.

writing y followed by # and is wri .

(iii) If # is not an expression at all, Mxyz if z=y. .

In terlﬁs of this alphabet and this predlcat.e, we ca‘xcl define
what we mean by ,.& 18 a formula®, .y s a frc:e wrwbliz of :0 and so
on. Since this was carried out in great detail by Qulne. )., the de(;
finitions will not be repeated here. A number of additions an
changes are however necessary, as we may have more than oie
primitive connective in the object la'ngua}ge‘ and shall also make
use of the Hilbert s-operator. They are listed below:

T is an atomic logical formula™: )

AL Fmlay: 7L Fmlagt? for T(Ha) (L) (Hy) (Vbl a-l’b%ﬁ-ibﬁ yf‘?
=8,a-V i= 8y -V L=8y"a BV -.or V&= Sgpn~a~fy)
The dots in this definition as in many following ones do. not

refer to an infinite process, but on the contrary, once the axioms

8 (f. Quine [7], p. 201, § 55. Quines notation of Greek letters and corners

is followed here.
%) Cf. Quine [7], Ch. VII, pp. 283-305.
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of (8) are given, we can pick out the primitive connectives and
fill in the dots in this definition. The result will of course be an
expression of finite length. A similar remark could be made concerning
the dots in the list of basic names.

The following list of definitions repeats several of those given
by Quine, but is given here because the notation is slightly different.

Ay TE a7 for T(SeCmSgnS,)T,
4(): I—(‘:)?ﬂ for F(Ss’\:ﬂs'iﬁ’])"z
dmor T~y for T,

AW THpY for T(~ () ~u)T,
AV TEN )T for T~ (C ] g),

A4D: T(EDOx)7 for
N (L A R SR A
d=: T(=p7 for T({tDy)-(zD0)7.
Here ,, | “, ,, V¥, ,0%, ,,-%, ,,~ are name connectives, forming
a name of a statement when applied to names of statements. (See
note 2 on p. 109).

Definitions of the following expressions may be taken directly
from Quine [7]:

r(77 v 'Ni)—la

L is a bound occurrence of 5 in 67 for T(Z BOsnm)\.
TC is a free occurrence of y in 61 for T(Z FOp ).
T¢ is free in 1 : - for T F,)
¢ is a formula™ for TFmlu 7.
¢ is a matriz™ for "Mat .
7 is a statement for TStat .

T2 is a tautology for TTaut .
Tthe closure of {7 for el

By means of above definitions, it is possible to form a name
of any statement of the object language. In particular, each axiom
will have a name, and if they are finite in number, we can explicitly
write down a definition of 7 is an aziom™. If the system contains
an infinite number of axioms it is impossible to enumerate them
all, but it may still be possible to use the vocabulary of this syntax
to characterize the form of those statements which we shall take
as axioms in this syntax. We shall assume here that the definition
of T¢ is an aziom™ can be formulated in this syntax, i. e. that there
exists a formula P of syntax such that ¢ is the only free variable
of P and

AmstP .
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If (&) is based on a finite number of axioms &y, ....,<I>,l this
assumption is satistied, for we can ’c.hen take _P Sll:.npl) as
Tt=@,V..V{=0,", but the assumption is also satisfied in many
other 1caﬂse&. The following definition ean then also be taken from

Quine:
Qu Tz is a theorem of (§)1 for CThs .

Further definitions are %):

Apgr Thst? for " Thsd
Tt ocours in 7 for TZin 72?
¢ is a part of the ewpression 7' for TPyt
TZ begins 7t for TZBxyL

Tzt is like ¢ except for containing occurrences of n' at all places
wheve { contains free occurrences of nV for T(& SZ' o
Tt is a bound variable of 7%
ABV: T BV for TVbE-(Ha)(aBOgL)- ~EF g

Tz is an e-term

AeTm: TeTm & for T(Ha) () (Fmlaa-Tol B-t=8ppif ) 1)
Iz is an atomic formula of (Ss) %
A eFmlay: TeFmlag (1 for M(Ha) (LB) (Hy) (VDla-VOLE-VBLy- V-
Vbla Vbl g-eTm y-\ Vol a-eTm §-Vbly- N -eTm a-Vol -
Foly-\ -Vl a-eTm B-eTmy-N -eTm a-Vbl §-eTmy- V-
eTm a-eTm B-Fbly-V -eTm a-elmf-eTmy:L = S8g"a- V-
t=8ya e NV - L=8ura BV oo V L= Sagnamfy)
¢ is a jormula of (S:) and ¢ is o statement of -(SE)_‘ (abbrev.
TeStat L) are then defined in the same way as Tz is a formula’,
and T is a statement except that in the definitions we put "eF'mla, ol
instead of THmlgy o
Tthe formula obtained by substituting 5 for every free occurrence
of the only free variable of {™:

A8 TS for T(d)(Ta) () (aF & fFL-D-a=p)- 88T

10) Definitions of expressions nof explicitly defined here are carried over
from Quine [7], Ch. VIIL. o

1y By (Fmla {1is of course meant f 4s a formula of (S)1. The de.fu.utu?n
A eFmla is based on the Liypothesis that the definition of [Fmla £1 precedes it.
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In the following, @, ¥, X with or without accents or sub-
seripts will represent statements or matrices, @, ¥, X names of stat-
em.ents, a, g, y, u, v ete. variables and «, B, v names of variables
If R is a formula of the metalanguage, "l=E" shall mean the closure;
of R is a meta-theorem%2). The axioms on which this formal syntax
is based will be the following:

d. Adxioms of Quaniification Theory in the Syntax:

Let B and P be formulas of the metalanguage.

M 100: If R is tautologous, |=R.

M 101: =T(u) (»)RD(») ()R .

M 102: =T{u) (RDP)D - (w)RD(p) P

M 103: If u is not free in R, =TRD(u)RM.

A 104: If R’ is like B except for containing free occurrences
of v wherever R contains free occurrences of u, then |=T(u)RDR.

© M 105: If TRDOP and R are meta-theorems, so is P.

From these follow metatheorems corresponding to the usual
theorems of quantification theory.

B. Axiom of Identity:
) M1: If R is like P except for containing free occurrences of »
in place of some free occurrences of u, ="pu=v-O.P=R".

0.‘ Axioms of Existence:3)

2: =rEt s

M3: =FEL S,

M(10+n): I‘=rE' Sg.[_,,—l

M(11+n)! IZI—E! /L'E!’V‘D '.E!(lLL«l«')—I

M(lz-]—n): FI_/[‘V#: Sl-...-/JJA'V='=Sg+n'Sl='F Sz'Slﬁ:Ss'--;'SHn'—":SfH-n‘

W vy -y

D. Induction.

In order to state this axiom without the use of set theory in
Fhe syntax it is necessary to set up & model for the natural numbers
in the syntax. That this can be done in a syntax such as the one
used here was shown by Quine?4) who gives a definition of Ta is
a natural number! (abbrev. TNn o) in terms of concatenation.

12) A yeta-meta-mathematieal definition of ,RB is @ formula of syniaz®” can
?f course easily be given, but it is omitted here, since the meaning of the phrase
is evident. A similar remark applies to the term ,closure®,

1) Cf. Tarski [11].

1) Cf. Quine [8].
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Writing "R, to denote 2 formula of the meta-language in which
the natural number a occurs as a free variable, the induction postulate -
reads:

Masiny: If Ray Rats and R, are like R, except for containing
free occurrences of u, a+1 and 1 resp. wherever Rq contains free
occurrences of a, then

= () (X @ -Ra-DRgy1)-Ry-Nu p-DRy)

Induction is needed as an axiom since it is used in the derivation
of many meta-theorems *3).

D. Axiom of Consistency.

‘M(I'H-H): S=F(H (D\ (Stat (DH\I.ThSq))_‘,

This last axiom states that not all statements are theorems
of (8), which is equivalent to the assertion that (8) is consistent.

The predicate ,, T of statements of (S.) which plays such an
essential role in the construction of the model will now be defined.

The statements of the objeet language of (8.) can be written
down in order, for instance arranged lexicographically. ,, T is then
induetively defined as follows '6):

(i) If ®, is the first element of this sequence of statements,
TO, = ~ Thg,(~Dy).

(ii) If ®y,..,Px are all the stalements preceding @, for which
T®;, (1<i<k), then ’

T Q= ~Thg (@y- oo Tp D - D).

This can be expressed formally in syntax without using set-
theoretic notions, but a unumber of preparatory definitions are
necessary:

s is a single sign h:

4 88g: TSSg for =8V Voi=Supa

1) Cf. Quine [7], p. 90, proof of *111, p. 91, proof of *112, p. 99, proof
of *121 and many others.

1) Cf. Tarski [10], p. 394, Satz I. 56 (due to Lindenbaum). See also
note 3 on p, 109,
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) ’I“he following definitions are based on the notion of Tramed
ingredients” due to Quine 7). If  is an expression (not nec’éqsarﬂ‘r
a formula) of the meta-language, then v is a framed ingredieI;t of)
(abbrev.. Ty Ing {7 if it is a part of ¢ preceded and followed b thc
expression 8~8; (i.e. a pair of empty parentheses), but doeg7 noi
ftself have the expression §;~S; as part. By this dgvice Wel ¢
}nstead of referring to the elements yx; of the sequence o’f ex re?;’
1(:ns Has-sfin SPeak of the framed ingredients of the exprel:sﬁm;
8877”881~y = 8s~S,. In contrast to the notion; of
smSequence” and ,elementhood®, Ty Ing {71 is definable in a synta;
such as the one presented here. Framed ingredients a.rey 1
repeatedly in the following definitions: e el

) . ; " . .
{rngrgdjmft ):,a;;]}e(é{ngredzmt 7 of { immediately precedes the framed

AImPr: TyImPren™ for T(yIngl-w' Ingl -8~y PEyT
¢ is the first framed ingredient of

A4 Flng: . TCFIng n ' for T¢ Ingy-(u) (eIngn-uaf:D & Pry p)
L is the last framed ingredient of 7
A LIng: ‘ CLIngy? for TCIngn-(u)(u Ingn-p=:0 - u Pr, g0
¢ ds the mewt but one ingredient after nin 6k
A NIng: "¢ NIngsn1 for T¢Ingé-y Ing 6-(Hu) (u Ing 8-
88188y Ps).
¢ is shorter than # if there is a se
. quence 6 such that (i) the
;f)n"stf and last elements of § begin 7, (ii) if 4 is an element of 5(V5)fhi0h
be%ms 7, .then the next but one element following u also begins 7
E £1 cznta.ms one more sign, (iii) if 4 is an element of 6 which begins ,
hen the ne.xt but one element following x also begins Z, but contains,
one more sign, 'and (iv) if u is the second element of the sequence,
then u is the first sign beginning ¢, i. e.: ’
T ds shorter than 77

dsh: TCshyl for T(H) ((u) (nFIng 8-V -uLIng 8-O-uBy)-
(@(ﬁiﬂw 0-uBn-D-(y) (y NIngs u-2-yBy-(HB) (88g B-
zgﬁﬁ;(gg)-lgﬂ) (wIng 6-pBL-D-(y) (y NIngs u-D-yBL-
gB-y=pB)))( Ingo- g 6 ’
Dbt ohrs u) (v) (u Ing 8-y FIng 8-y ImPrsp-
1) Cf. Quine [7], p. 296. This notion is th defined i i
also contains no set theory and is virtually identic:lr ivit;x ﬂfg ;Eeap:z:;ﬁxedv;h:i&
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Ty precedes o in the finite alphabet of n+11 sig«ns"‘f

V : ‘ /-
5= Suam) V (y= g (6= 8, V - =8¢ V oo - V - 0= Sug)) Y
() V (7= S104n 6= S1t4n) -

Tthe statement ¢ precedes the statement 7

A-Prec: ¢ Precy' for TeStatl-eStatn Ishn- NV (~Esh i~y shi-
(F ) (L y) (Hy') (E ) (L&) (BAP 6"+ (L= w67y =470y
N f= b= N L=y =8y "))
 will be the conjunction of all the framed ingredients of 7 if’
it is the last element in the sequence:

N Mgy MiHes Nay M2 Wyt e ln

where 7, is the i framed ingredient of 7; 1. e. if there is a sequence y
such that (i) the first element of y is also the first element of n, (ii)
the second element of y is the second element of #, (ili) if x is any
element of y, then either (a) x is the conjunction of its 2 predecessors
and the element preceding n is the immediate predecessor in % of
the element following g, or (b) « is an element of  and the element
following u is the conjunction of u and predecessor and the element
next but one after z in y is the element of 5 which follows x, (iv) £ is
the last element of this sequence:

T is the conjunciion of the framed ingredients of o

A Conj: T ConjyV for T(Hy) () (uFIngy = -pFIng)-:
(B) (1) (w FIng y-D-uImPry f)-=-(6) (6 FIng - D-
5 ImPry B))-() (1 Ing y-D:-(B) (8) (0)(6 Ing 7+ ImPry 6-
8 ImPry - uImPry 6-2-p=(f-06)-6 ImPr; 6): Vi,
(B).(8) (8) (8 ImPry - i ImPry 6- 1 Ing -6 ImPr, :0-
x ImPr, B-6={(u-0)))- Ling )L

Then 77 if there is a sequence y such that (i) every element w
of y is a statement and if B precedes p in y, then B precedes u in
lexicographie order, (ii) if g is the first statement in this ordering,
then x is an element of y if and only if the negation of x is not
a theorem, (iii) if ;¢ is any other element of the sequence and 6 is
the sequence of elements of y preceding p, then FOonj 8D~y
is not a theorem, but if § is any statement preceding  in lexico-
graphic order and not an element of y, then TCQonj 6D ~u'l
is a theorem, (iv) ¢ is the last element of that sequence:

Fundamenta Mathematicae, T. XXXVIL 7
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AT: T for T(Hy) ((u) (v Ing y-D-Stat iz (B) (8 Pryu-D.
B Prec )+ (u) (eStat - (B) (eStat B-D - Pree f\ u=p)-:
wlng y =-~Ths~u)-(u) (p Ing y-~pFlng y-D: (5) (3Py.
NS,;JP(SB-(?B)'-JNTIZSE (Conj 8-D-~p))-(B) (ﬂPTec,u-
eStat B ~f Pry u-D-(X y) (nPy - ~uPy-nBy- Th, .
8D ~u))-t LIng 3)7. 1By - Ths, (Conj -

An immediate consequence of this definition i
. > on is
@ is a theorem, then 70, i.e. hat whenever

(1) L F(®@) (Ths, @O - TOY.
Also
(11) = T(®) (~T(~ D) - = TP)"
and
(I11) =) (W) (T(D-F) - = TD. T¥).

Proof of (IIS. @ is shorter than ~®, so that i i
. of (IT) ~®, so that if T, ¢ is contai
in the conjunction ¥ of all statements X such t];at TXnaigle§
gpecedes ~<I?. Hence (FD~(~®)) is a theorem, so that ~(T~®)
onve.rsely, if ~T(~®), then Thg (¥D~(~®D)), i.e. Thg (‘FD(D).
?f,fe;?feﬁf Il)lre(ieies ~®, ~Thg (¥'D~®), where ¥’ ig tﬁe con-
Y all statements X' X! !
Junstion o nts X' such that X' and X' precedes ©.
. Proof of (IIT). Let ¥, ¥, ¥, be the conjuncts of all statements X
:sm;7 (Dthat I'X and X precedes @, ¥, (9.¥) resp. If Z(®-¥) but
;ery,ssa}?;n Tis‘?-(%\yg/\,d))' ® however precedes (®-F), so that
ment in ¥, is also in ¥, i.e. Th
. e. 5,(F3 D ¥,). Hene
;’ﬁfg(?&l\@), a'nd Ths (¥ D ~(D-¥)), and 'thereff)re {1\)}1’(@.11;
s ; ?If;s J:}?at Jifnﬁ’(%‘?), then T'®. Similarly one can show that
‘%), then - If therefore 7(®:¥), then 7® and TY¥
versely, if 70.T% but T(D-¥) ’ = ey
~ -¥), then Thg(¥;-D.~(D. ¥
Ig;lzt (?;r a.zl)d § ssre co(gp‘%nents of the conjunction ‘{":, 50 th;t th(li;
5, (T3 @V D.~(®.¥)), which is a contradicti
and TV together imply T(7(I>~‘P‘). niadiction. Hence 19
These proofs depend on the manner i i
s @ er in which the statement
ﬁgeﬁigrei‘, E;llt 1tt15 easy to see that analogous proofs hold for :]ilys
e statements. They also depend i
hypothesis that (8) is consistent oth man the Lypetien
t : For they both use the hypothesi
s 5
that if a statement of (.S,) is provable, then its denial is not gfovablés
?

which i8" equivalent to assumin i
That (8) s oent g (S.) congistent, and therefore
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(I), (1) and (III) show that the class of statements @ such
that T® is an extension of the class of all theorems of (8;) to a com-
plete class. Although rp@7 is bere defined for statements of (),
o similar definition could be made for the statements of other con-

gistent systems.
Corollaries of (I), (II) and (III) are:

(xv) (@) (eStat @-D-TOV T(~ @))7
) L(eStat ®- D - ~ (T @ T(~0))
(VI) ErT(@VY)-=-T OV T
(VII) b Ths(®D¥)-T®:D-T¥0.

§ 3. Models.

Many definitions of what is meant by a model of a system
have been given. Most of these however involve semantic ideas
such ag satisfaction and truth, which I have tried to avoid here *8).
Tn terms of strictly syntactic notions (using this narrow sense of
the word ,,syntax®), a great many definitions are still possible though
they are not as satisfactory. Two such definitions are suggested bere.

Definition 3.1. A set of statements (Sy) forms a pseudo-
model for the system (8), if to every statement @ of (§) there cor-
responds a unique statement @y of (&) such that (i) if @ cor-
respords to @y and ¥ to ¥y, then (@] ¥) corresponds to (P} Var)s
(i) if Ths®, then Ths, Du.

This is rather a liberal definition, but sufficient for investi-
gations of consistency. For if (8) is inconsistent, then there exists
a statement @ of (8) such that both ® and ~ @ are theorems of (8).
But condition (i) of the above definition assures us that if @ cor-
responds to @y, then ~ @ corresponds to ~®y, and © and ~Q@
are both theorems, so that by (i), ®» and ~ @y must both be
theorems of (Su). Hence (&) is also inconsistent. Existence of
a consistent model in this sense therefore assures the congistency
of (8).

Definition 3.2. A set of statements (Sy) forms a real model
of (8), if (i) (Sa) is a pseudo-model of (8), and (ii) if from Ths®
follows Ths'¥ in (S), then from Thg, @y follows Thsy¥u in (Sy)-

A more conventional definition which however depends on
the notion of truth would be the following 8):

18) Cf. for instance Kemeny [6] or Tarski [12].
7*;
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Definition 3.8. A set of statements (Sy) forms a ‘model
of (8) if (i) to every statement @ of (§) there corresponds a unique
statement @, of (Sy), (ii) if @ is an axiom of (S), then @y is true
in (Su), (iii) if ® can be deduced from ®,,...,0, and if @yy,..., D,
are true in (Sy), then @ is true in (Sy). '

Here a model is defined to be a set of statements, and therefore
a fortiori a denumerable set. Usually, a mcdel is defined to be a set
of elements satisfying certain conditions, whereas here a model is
taken to be the set of statements about such a set of elements;
By a denumerable model is therefore meant a set of statements about
a denumerable set of elements. '

Definition 3.2 is in a certain sense more restrictive than de-
finition 3.3, for it not only requires all axioms and theorems of the
model to he true, but also that they be theorems of the model.
The model of (§') to be constructed will satisfy this condition.

It (5) and (Sy) have a common syntax, then hoth of these
definitions can easily be seen to be definable in that syntax, for
all the concepts used in-these definitions are syntactically definable
and the definitions of § 2 carry over (mutatis mutandis). The de-
finitions are however stated here in an informal meta-language,
for we do not want to exclude the possibility that the object lan-
guage of (Sy) should be the meta-language of (), or perhaps even
the meta-meta-langnage of (§), etc., nor that they might be two
quite unrelated languages. In the case here, the language of (Sy)
will be part of the syntax of (S), but by arithmetization this could
of course be made part of the object language of (8), provided (&)
contains arithmetie. Even if (S) does not contain arithmetic, (Su) can
still be represented in the object language of a system which does
contain arithmetic. )

§ 4. Construction of the model.

From now on, let us use the variables @, ¥,, X, for s-terms.
‘With help of the Hilbert-Bernays theory of s-terms, the following
two theorems can be proved: i

(4.1)
(4.2)

= Ths(E ) @O - (8 X3) (Ths, S3° )7
=" Ths («) ® - D - (Xe) (Ths, S2 @),

icm
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Proof-of (4.1). Since (8,) contains all the axioms and state-

ments of (8),
(1) =T Thg(Ha) ®-D - Ths, (Ha) @

The fundamental condition on e-terms can be stated as
®

(i) =T Thg, ((H2) @287 @

Combining (i) and (ii), we obtain (4.1).

Proof of (4.2). By (i),
(iii) =T Ths'a)®-D-Thg, (x,®7.
Trom one of the theorems of guantification theory follows
that if The(x)® and =« is an element in the range of 2z, then
The, S5O, i.e.

(iv)  =Th,(2)®-D-(«') (Ths, (A (a==')-D- Ths,Sg @Y.

But one of the fundamental theorems on e-terms states that

) (X,) (The, (@ o) (2= X)),
80 that on combining (iii), (iv) and (v),
- X
M Thgla) @ D (X,) (Thg, S°0)

The following lemma, though at present irrelevant, will prove
usefal (cf. step 3 below):

Lemma: If (@) is a string of quantifiers, B, S are statements
of the meta-language and [="(RDSY?, then =T((@)RD(Q)S)™

Proof. By induction on the number of quantifiers in @),
using the following two theorems of quantification theory *):

Theorem A: If =T(RDS)7, then =T(u)RD(u)S™.

Theorem B: If-= (RDS), then =T(Hp)RD(Hp)SL

Transformation of Axioms and Theorems:

Each step in the construction of the sentence @y of the model
eorresponding to the sentence @ of (8) will first be described and
then carried out taking @ as

(o) (F B) (=G -

1%) Cf. Quine [7], *102, p. 88, *149, p. 107.
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) 'It is here assumed that @ is a theorem of (8) and that () hag
identity as a primitive connective.

- Step 1: Beplace the sentence under consideration by an
equivalent one in praenex form. This is always possible20). Since
the. sentence @ here is already in praenex form, step 1 may be
omitted in this particular case. l

. Step 2:' Use (4.1) and (4.2) repeatedly until the part of the
axiom following ,,Ts“ contains no explicit quantifiers21), i. e.
socomes Ths (@) (EE) (=B V - ~(a=a)

(Xe) (Ths, (HB) (Xe=B- V - ~ (X=X
and finally ’ (o=t
(1) (X (HWe) (Ths, (Xe="TF, V - ~ (X, =X,))).
Step 3: Combining the lemma and the fact that =r
8 Thg ®DT @7
replace ,Thg™ by ,T“ in the statement obtained i . .
example, from (1) and ol in step 2. For

= Thsy (K=Y, e~ (Xo=Xe)) D T(Xo="F,e V e~ (X, =X,))) 1
follows
(2) ETX) (EF T (Ke=V, V e~ (X=X N

Step 4: Using the distributive i )

Us . properties of ,, 7% (cf. 2, (11
and (_IH)), dlstr%bute it until the expression ,,governed(“ by’ (T‘2
contains no explicit truth-functional connectives, e. g. (2) beco;nes

‘:[—Xe & — . . - —
and they X (EFI(TXe=Wo)+ V-2 (~(X, =X,))) T

(3) FEIX) (BN (T (Xe=Y0o) V-~ T(X,=X,)).
Step 5: This step is reall i
‘ . y superfluous, but in order to make
the'.st.atemt.ents obtained in step 4 look more like the original and
exhibit their relationship more clearly, write .
MX=yT)T for TO(X="¥,
T(AX)™ T T(AX)T,
) Cf. Hilbert-Ackermann [4], p. 67.

) After the first quantifiers has b
t.
of (4.1) and (4.2) are used: fon talken ot the

4.1

for

following versions

= rTh,se(ft[u) ®-)-(TXy) (Thsasf"fb)

25 b= "Ths, (&)@ D+ (Xo) (Ths, S ).

These follow immediately from (ii), (iv) and (v).

icm

Models of consistent systems 108
and 8o on for the other primitive connectives and substitute then
in the statement obtained in step 4. Thus (3) becomes

(4) E:—'r(Xe) (HE\FE) (X c:.nqut' Vo~ (XP:MXe) )—‘~

The statement so obtained will be the @, corresponding
to ®. Note that although @ is a theorem of the object language,
T, is a sentence of the metalanguage, and in fact a meta-
theorem. A model (Sx) of () is then formed by all the statements
7@, which can be obtained by such transformations from theorems
of (8). To see this, we set up a correspondence between statements
of (8) and of (Sx) as follows: If ® is a statement of (§) containing
the variables a,b.. and the connectives A, ..,y then the corres-
ponding statement r@,7 of (Sy) will have in their place Koy Xy oen
and Ag....%u Tesp., distinet variables being replaced by distinct
~variables. Truth functional connectives and parentheses remain
unchanged. (S3) may be shown to be a model of (S) by the methods
used below to show that (S83) is a model of (8°). -

(83) must now be enlarged to a model (8% of (8'). To do
this, we consider axiom- and theorem-schemata which can be
~written in the form

(@) () (A @ Ths () () (Hon) ¥)T

where T(®,) (...) (H @) represents 2 string of quantifiers, possibly
existential and universal mixed, ®,..,®, are matrices each con-
taining one free variable, ¥ is a formula of (§) which may contain
D, ..., as parts and in which ay...,2, occur as free variables but
in which no others are free, and (o) (...) (Hay) is & string of quan-
tifiers (again possibly universal and existential mixed).

We shall from now on assume that all matrices @, ¥, ... contain
exactly one free variable.

An example of this type of schema is given by

1{5) =) (W) (The () (850 =-~8*¥))
The result of transforming (5) is
{8) =T (@) (AF) (X,) (T(5%e @) = ~ T(BXW))T

or, “writing T® o ,X,1 for T7(5%e@)T:

0 =T (@) (M F) (X (Do Xer =~ FourXe)
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The axiom schemata of Zermelo’s system are of this form 2y,
a8 are many theorem schemata.

The statements of (S%), the medel of (8') will then be taken
to be all the statements of the syntax of (§) which can be obtained
by such transformations from theorems and schemata of (8).

We now set up a correspondence between statements of (8*)
and of (8%) as follows: If @ is a statement of (§8) containing the
variables A,B,...,a,D,... and the connectives ,4,..., N
then the corresponding statement @, of (S3) will have in their
place Wy, Wy, ., X, X0,oe, and Ay, g, oMy =y Tesp.,
distinct variables of @ being replaced by distinct variables. Truth-
functional connectives and parentheses remain unchanged. | op’”
and ,=y“ have not yet been defined in general. The necessary
defi;;itinns and preparatory definitions fcllow. We write:

F@oy X1 for TT(@oX, )7

TO=YT for T(«}(8%D =8*W¥)1
To=X,1 for T(a)(8*®=.ua=X,"
FO=x¥7 for TO=¥)1

TO=, X7 for TPO=X,)"

3 €«

One can easily show in the syntax of (S) that

(8) ET(HO) (Thg(a) (D o a = 8*F))7

éimply by taking ® as ¥ and applying M 104, writing ®oa for S*@.
Transforming (8), imagining ¥ written out in full gives:

(9) FIE®) (X,) (@ o X, = §%e Wy,

where the quantifiers of ¥y will all be restricted to e-terms.
For exgmp]e, the sentence of (8} corresponding to the sentence

A)(H B){(: Aoil= - ~ o
would thus be (x Yo 1 Bew)

(D) (L) (X) (Bop Xy == - ~ WoyX,.

22) Cf. Wang [13). Z6 on P. 151 can be written
b= (@) (s (1) (@) B) (1) (S0 570 0) 5 g 1) (o) () (asdm(TP) (pep- SPD ).
Evidently steps 1,...,5 apply to axioms as well as theorems, since all axiome

are theorems, The correspondent to the transforms of this i
sehy 2
seen to be N 6 (Godel’s C4). homa e castly be
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Thus, except for alphabetic variation, each statement of (S}
¢orresponds to a unique statement of (8)). Moreover, theorems
and axioms of (8) are transformed into meta-theorems, that is,
if @ is a theorem of (§') and if its correspondent @, is obtainable
by transforming some theorem cf (8), then @, is a meta-theorem.
Tt is however still necessary to show that the correspondents of all
axioms and theorems of (S8’) can be obtained in this manner from
axioms and schemata of (8) or (S,).

The axiom schema (1.1) (cf. §1) of (&) correspends to the
schema of statements of (S3) of the same type as (9) above, and
each statement of this form can be derived frem a corresponding
one of (8) ¢f the form of (3). The axioms of identity of (8) cor-
respond to
(10) (@ W) = (X) (@ oy X = F oy X,)T
(11) =TX,=yX D Doy Xe =0 oy X\

respectively, which derive from the schemata

=T Ths(P=Y"=(2) (3%D = {*F)7
and .
=T hg() (8) (2= D540 = SB@)L

The correspondent of (1.4) however is not derived from a schema
ot (S), but from one of (S,), for in the syntax of (S,) we certainly
have

=T(X, (T @} (Ths, (X, =®))7,

simply by taking @ as (x=X,) and applying M 104.

All the correspondents of axioms and schemata f (§) aze
thus seen to be metatheorems. (S3) will then be a real model of
{S’) if the rules of deduction of (§') and (S3) also correspond. But
this can easily be seen to he the case, since in both systems the
tules of deduction are hased on quantification theory, as for instance
determined by Quine’s *100,...,%105 2) -and ‘their paraphrases-in ’
syntax M 100,...,M 105 {cf. §2). (Sk) is therefore a rveal model
of (87).

The statements of (Sy) which contain only quantifiers re-
stricted to e-terms will correspond to statements of (§), and it ig
‘evident that theorems of (S) will, after transformation according

) Cf. for instance Quine [7], Ch.II, for a development 'of first order
functional calculus from these axioms.
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to steps 1,...,5 correspond to metatheorems of (Su). Every theorem
of (8) will have such a correspondent, since every theorem can
be thus transformed. (S3) will therefore contain a subset of state-
ments forming a model (S5) of (8).

It may be interesting to note that the ra,nge of the variables
in the model comprises in effect the ,nameable” classes of (8,), if
by a ,nameable” class we mean one definable by a matrix of (S8,).
In other words, the nameable classes of (8,) form the universe of
a model of (§).

§ 5. Existence of models and relative consistency.

In the statement of the following theorems we shall write
L(8)¥ for a system satisfying the conditions of § 1, i. e. containing
a finite number of connectives (among which must be ,=" and the
usual truth-functional connectives), and an infinite sequence of
variables formalized within quantification and identity theory,
and which is such that the definition of ¢ is an aziom of (8)7 can
be formalized in the syntax of (S§). (The word ,syntax® is again
used in the sense of § 2 and denotes a meta-theory without set theory
and semantic notions such as ,truth®, but containing the hypo-
thesis ,,(8)4s consistent™). (8,) Will be the system obtained by enlarging
(8) 80 as to include the Hilbert e-operator, (8’) the system obtained
by enlarging (§) by adding a new type or variables and a new con-
nective satisfying (1.1), (1.2), (1.3) and (1.4). Most of the following
proofs will only be sketched

Theorem 1. If the syntax of (S) is consistent, then (S') has
a real consistent model in the syntax of (S,).

Proof. The method described above shows how to construet
such a model.

Theorem II. If the syntax of (S) is consistent, then (S') has
a denumerable real consistent model.

Proof. For this syntax contains only a denumerable number
of expressions.

Corollary IL1. (S) has o denumerable real model.

Theorem IIL. If arithmetic of natural numbers and (S) are
consistent, then (8') is consistent and has a denumerable consistent

real model which is constructible in arithmetic under the arithmetical
assumption eguivalent to (S) is consistent”.
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Proof. The syntax of (8) withont Mysi, is equivalent te
arithmetic based on the 5 Peano axioms?). In the syntax of (8)
+we can show that (S,) is consistent 25). But within (S,) we ean build
a model of (§), so that (8’) must be consistent. The entire syntax
of (8) is then equivalent to the arithmetic system obtained by
adding the arithmetical equivalent of ,(S) 4s consistent” to the 5Peano
axiorus. By using Godel arithmetization 8), this entire construetion
could have been carried out in arithmetic.

Corollary IIL.1. If (S) contains arithmetic amd (8) is cou-
.gistent, then (S') s consistent.

" Corollary ILL.2. If the Zermelo-Fraenkel system of sei-
theory 1is comsistent, then so is the von Neumann-Bernays-Gadel
system.

Proof. Take (6\ and (8) of Cor. 111.1 as Zermelo-Fraenkel
and von Neumann-Bernays-Ggdel set theory resp.?7).

Lemma I. If (8) is complete, so 18 (Ss).
Proof. For the statements of (8. are deductively equivalent
to the statements of (8)38).

Definition 5.1. If two models of a system (S) ave in the
game language, they are called distinct, if there is a statement
which is a theorem of one and not of the other.

Theorem IV. If (8) is complete and consistent, then the real
-model of (S') obtained by the method o § 4 is uniquely determined.

Proof. The only step in the constrnction which is arbitrary
is the manner of ordering statements previous to defining ,, 7. If (§)
is complete, ,7“ is independent of the ordering of the statements;
for this ordering determines only for which undecidable statements
® ,7'®“ will hold.

Theorem V. If (S) is incompleie, but has only & finite number N
of distinct complete extensions, then there are N distinet models of (8)
obtainable by the method of § 4.

sy Cf. Tarski [12].

) Cf, Hilbert-Bernays [5], §1.

=) Cf. Gddel [3].

27) The formulation of these two systems by Wang [13] shows that the
relation of (§) to (8’) is the one required by the conditions of §1.

38) Cf. Hilbert-Bernays [5], § 1.
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Proof. Using Lemma I, it is easily scen that if (§) has this
property, so does (S.). Let (8,),...,(Sx) be the N complete extensions of”

(8.). For each of these there exists a unique predicate ,T;* (t=1,...,N)
and ail these predicates are distinet (i. e if 44=7, then there is at
least one statement ® such that T,® but not T;®), for the extensions
(84)s-,(8y) arve distinet. There are therefore at least N models.
But for any such predicate ,T“ the class of all statements such
that 7@ is a complete extension of the ciass nf all theorems of ( &),

and therefore must comeide with the theorems of one of the systems.

{8)). There are therefore exactly N difterent predicates 7% and
AN different models of (S).

Theorem VI. If (8) is incomplete. but if there is a denumerable
number of distinot consistent complete extensions of (8) then (8) has
a dennmerabls number of real models obtainable by the method of § 4129).

Froof. For there is a one-to-one correspondence hetween
models of (8) and distinet predicates ,7“ and also between distinet
predicates T and complete extensions of ().

Theovem VIL If (8)is essentially incomplete, then there ewists
at least @ continuum of denumerable models of (8) (but only a de-
numerable number of these are actually definable in syntax (or
arithmetic), since it is a denumerable system). '

Proof: Assume (S) is essentially incomplete, and @, the first
undecidable statement of (§) for some ordering of the statements
of (8). Let (8, ®,) be the system obtained by adjoining @, to (8),.
(8,~®,) the system obtained by adjoining ~®@, to (8). These two.
new systems are also both essentially ineomplete. Let @, be the
next statement undecidable in (§, @,), ®, the next statement un-
decidable in (8, ~®;)2). Then the systems (§, @y, By), (8, By, ~D,),.
(8 ~Dy, @), (8, ~@), ~D,) are also all essentially undecidable.
Continuing this procedure, we shall have 2" different essentially
Pndecidable systems affer the st stage. But (§) was essentially
incompletable, so x, such steps are possible, resulting in & continuum

) 29) Such a situation was described by Tarski [11]. In this cé,se, all the 1‘e;
quired predicates ,, T can easily be defined in syntax. The same theorem will

_ hold if there exists ouly a finite number of infinite extensions of (S).
) &, and @; are not necessarily identical.
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-of different complete extensions of (S), and therefore a continuum

of models. But of course only a denumerable number of these models
arée constructible, if by ,constructible® we mean here that the re-
quired predicate can be defined in syntax.

Notes added during proof. 1 (to p. 88). In the case of
truth-functional connectives ,.§“ and .o* it was not possible to
print the symbols in two different types. It is hoped that this will
not prove too confusing in §2 and §4.

2 (to p. 92). Because of typographical difficulties, the cor-
responding truth-funetional connectives which form statements from
statements are however similaily shaped.

3 (to p.95). Henkin [3a] uses essentially the same predicate.
Henkin’s paper gives another procf ¢f the Skolem-Léwenheim
theorem, which is however different from the ome given here.
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Some Impredicative Definitions in the Axiomatic
Set-Theory.

By

Andrzej Mostowski (Warszawa).

Let (8) denote the Zermelo-Fraenkel set-theory based on
the following axioms

(4y) (2, 2,) [(®5) (@ € 3y=05 € By) D5, =],

(da)  (21,25) (Umg) (2y) [, € y=(m,=2,V B, =,)],

(d3) (1) (Hawp) (25) [ € B=(2,) (@4 € %D, € 3,)],

(44) () (Hap) (@) [ € o =(Um,) (@3 € B4, € 2,)],

(dy) (M) (Hay) (5 € - () {@ € 2, D (Hatg) [y 55 € 2,

() (g € 2Dy € 3)1}),

(-As) (a"k) (wlzp '“ﬂfkp) {(“"1) [a’l €D (Hmm) (wn) (¢ == mm)] D
D(qu) (@n) [0 € qu(Hml) (e mk'®)]}9

(4y)  (xy, ...,a"kp) {(Hap) @D (Hay) (D () (@€ 2 D~ D)} ).

(4¢) and (4,) are axiom schemata. The letter @ in (4¢) replaces
any expression (with free variables a;, Ly Lays ooy Thyy and xp2)
built up according to the following rules: If i and § ave integers,
then @;ez; and #;=x; are formulas; if @ is a formula and § an integer,
then (Xz)0 is a formula; if @ and Z are formulas, then so is 0\Z3).
We assume that #, is not free in @.

The letter @ in (4,) replaces a formula with free variables
By Thys s Bp, a0Ad D’ veplaces the formula resulting from @ by sub-
stitution of the letter x; for x; on every place where x; is free in @.
It is supposed that «; is not bound in @. :

1) (4,) is the axiom of extensionality, (4,) — the pair-axiom, (43) — the
powerset axiom, (4,) —the sum-set axiom, (4,) —the axiom of infinity, (44) —
the axiom of replacement, and (4,) — the restrictive axiom (the ,Axiom der
Fundierung“ of Zermelo).

*) x must not necessarily be a free variable of @.

%) Other logical connectives can be defined by the stroke | in the well-
-known manner. -
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