icm[©]

The number ϱ is arbitrary, subject to the limitation indicated. Theorem 10.1. Let B be a Banach space of type \mathfrak{A}_4 such that $T_r f$ converges weakly to f as $r \to 1$, for each feB. Then every linear functional $\gamma \in B^*$ is representable in the form

(10.2)
$$\gamma(f) = \lim_{r \to 1} \frac{1}{2\pi} \int_{0}^{2\pi} f(\varrho e^{i\vartheta}) F(\frac{r}{\varrho} e^{-i\vartheta}) d\vartheta, \quad f \in B,$$

where $r < \varrho < 1$ and $F \in B^0$, The element F of B^0 uniquely determines and is uniquely determined by γ . Furthermore,

(10.3)
$$\|\gamma\| \leqslant \|F\|' \leqslant A_4(B)\|\gamma\|.$$

Under the stronger hypothesis that $\lim_{r\to 1}||T_rf-f||=0$ for each $f \in B$ we have the same representation (10.2). In this case, however, F may be any element of B', and $||\gamma||=||F||'$.

The theorem is merely a restatement of Theorems 8.4 and 9.3.

There will be circumstances under which it is legitimate to make $\varrho \to 1$ under the integral sign in (10.2). Sometimes we may even take the limit with respect to r under the integral sign. The possibility of carrying out these processes depends upon the character of the functions f and F at the boundary of the unit circle.

Bibliography.

- [1] S. Banach, Théorie des opérations linéaires, Monografie Matematyczne, Warsaw, 1932.
- [2] E. Hille, Functional Analysis and Semi-Groups, New York, 1948.
- [3] A. E. Taylor, Linear operations which depend analytically on a parameter, Annals of Mathematics 39 (1938), p. 574-595.
- [4] A. E. Taylor, New proofs of some theorems of Hardy by Banach space methods, The Mathematics Magazine, 23 (1950) p. 115-124.
- [5] E. C. Titchmarsh. Theory of Functions, Oxford, 1932.
- [6] N. Wiener, Note on a paper of M. Banach, Fundamenta Mathematicae 4 (1923), p. 136-143.

(Reçu par la Rédaction le 21. 9. 1949)

Independent fields and cartesian products

by

R. SIKORSKI (Warszawa).

For every $\tau \in T(\overline{T} \gg 2)$ let X_{τ} be a σ -field 1) of subsets of a fixed set \mathscr{L} . We shall say that the fields X_{τ} $(\tau \in T)$ are σ -independent 2) if

$$\prod_{n} X_{n} \neq 0$$

for every σ -sequence³) of non-empty sets $X_n \in X_{\tau_n}$, where $\tau_k \neq \tau_l$ for $k \neq l$.

Suppose μ_{τ} is a σ -measure 4) on X_{τ} . We shall say that the σ -fields X_{τ} ($\tau \in T$) are stochastically σ -independent (with respect to the σ -measures μ_{τ}), if there is a σ -measure μ (called the stochastic σ -extension of all μ_{τ}) on the least σ -field X containing all the σ -fields X_{τ} such that μ is a common extension of all μ_{τ} ($\tau \in T$) and

$$\mu(\prod_{n} X_n) = \prod_{n} \mu(X_n)$$

for every sequence 5) of sets $X_n \in X_{\tau_n}$, where $\tau_k \neq \tau_l$ for $k \neq l$.

¹⁾ A non-void class P of subsets of a set \mathcal{P} is called a *field*, if $P, Q \in P$ implies $\mathcal{P} - P \in P$ and $P + Q \in P$. A field P is called a σ -field, if $P_n \in P (n=1,2,3,...)$ implies $P_1 + P_2 + P_3 + ... \in P$.

²⁾ The concept of the independence of fields has been introduced by Marczewski in paper [7].

[&]quot;) In this paper we shall write, for convenience, a sequence instead of a finite sequence, and a o-sequence instead of a finite or enumerable sequence.

⁴⁾ A σ -measure μ on a σ -field P of subsets of a set $\mathcal P$ is a non-negative function such that $\mu(\mathcal P)=1$ and $\mu(\sum_n P_n)=\sum_n \mu(P_n)$ for every σ -sequence of disjoint sets $P_n \in P$. By omitting the letter σ in the above definition we obtain the analogous definition of a measure on a field.

⁵⁾ Consequently for every o-sequence also.

By omitting the letter σ in the above definitions we obtain the analogous definitions of *independent fields* and of *stochastic-ally independent fields* (with respect to measures μ_{τ}).

In this paper I shall prove several theorems which explain the structure of families of σ -independent σ -fields and of stochastically σ -independent σ -fields. Known examples of σ -independent σ -fields and of stochastically σ -independent σ -fields are some σ -fields defined in cartesian products (see lemmas 3(i), 3(ii), 6(i), and 6(iii)). I shall show that, roughly speaking, every family of σ -independent σ -fields or of stochastically σ -independent σ -fields is of this product type ") (Theorems III-IV and VI-VIII). Therefore the study of families of σ -independent σ -fields and of stochastically σ -independent σ -fields can be reduced to the study of some σ -fields in cartesian products. For instance, Banach's theorem ") on the extension of σ -measures defined on σ -independent σ -fields can be deduced from an analogous theorem on σ -measures in cartesian products (see 6 (ii)).

The same results hold for independent fields and stochastically independent fields. Since all theorems (and their proofs 8)) on the finite independence are completely analogous to those on the σ -independence, I shall formulate only the theorems on σ -independence. In order to obtain analogous theorems (and their proofs) on the finite independence it is sufficient to omit everywhere the letter σ .

I. Independent fields.

§ 1. Definitions. A mapping h of a σ -field P (of subsets of a set \mathscr{D}) in another σ -field 9) Q (of subsets of a set \mathscr{D}) is called a σ -homomorphism, if P^{0} denoting the complement of P, i. e. the set $\mathscr{T}-P$, we have

$$h(P^0) = h(P)^0$$
 for each $P \in P$
 $h(\prod_{n} P_n) = \prod_{n} h(P_n)$ for each σ -sequence of $P_n \in P$.

⁶) A similar theorem on independent functions has been proved by van Kampen [11], p. 434.

and

Every isomorphism is a one-one σ -homomorphism ¹²) and conversely.

An isomorphism h of P on Q is called an equivalence 11) if there exists a one-one mapping φ of $\mathscr P$ on $\mathscr Q$ such that $h(P) = \varphi(P)$ for every $P \in P$.

A σ -field P (of subsets of \mathscr{P}) is said to be reduced provided that for every pair $p_1, p_2 \in \mathscr{F}$ there is a set $P \in P$ such that $p_1 \in P$ and p_2 non $\in P$.

P is said to be σ -perfect provided that every two-valued ¹³) σ -measure μ on P is trivial, i. e. there is a point $p_0 \in \mathcal{F}$ such that $\mu(P) = 1$ if and only if $p_0 \in P$.

If $S \subset \mathcal{P}$, the symbol SP will denote the class of all sets SP, where $P \in P$. SP is a σ -field of subsets of S.

A subset S of \mathcal{S} is called *dense in* \boldsymbol{P} if $SP\neq 0$ for every non-void set $P \in \boldsymbol{P}$.

Obviously

(i) S is dense in P if and only if the σ-homomorphism

$$g(P) = SP$$
 for $P \in P$

is an isomorphism of P on SP.

In this paper $\{X_t\}_{\tau\in T}$ will denote a given family of σ -fields X_τ (distinct or not) of subsets of a fixed sed \mathcal{Z} . The symbol X will always denote the least σ -field containing all fields $X_\tau(\tau \in T)$.

The following lemmas are obvious:

- (ii) If the σ -fields $X_{\tau}(\tau \in T)$ are σ -independent and if h is an isomorphism of X on a σ -field Z, the σ -fields 14) $h(X_{\tau})$ $(\tau \in T)$ are also σ -independent.
- (iii) If the σ -fields X_τ are σ -independent and if S is dense in X, then the σ -fields $SX_\tau(\tau\,\epsilon\,T)$ are also σ -independent.

⁷⁾ Banach [2], Theorem 1.

⁸) The only exception is Theorem V, the proof of which is simpler in the case of the independence than in the case of the σ -independence.

 $^{^9)}$ More generally: of a $\sigma\text{-complete}$ Boolean algebra P in another $\sigma\text{-complete}$ Boolean algebra Q.

 $^{^{10}}$) More generally: of a Boolean algebra $m{P}$ in another Boolean algebra $m{Q}$.

¹¹⁾ See Marczewski [6], p. 136.

¹²) A σ -homomorphism h is one-one if and only if h(P) = 0 implies P = 0.

A measure is two-valued if it assumes only the numbers 0 and 1.

 $h(X_r)$ is the class of all sets h(X) where $X \in X_r$.

§ 2. The extension of homomorphisms and isomorphisms. Let P_0 and Q_0 be two classes of subsets of sets \mathcal{P} and \mathcal{Q} respectively, and let P and Q be the least σ -fields (of subsets of the same sets containing P_0 and Q_0 respectively. Suppose f is a mapping of P_0 on Q_0 .

I have proved in my paper [10] (Theorems V and II) that

(i) The mapping f can be extended to a σ -homomorphism h of P on Q, if and only if

$$\prod_{n} P_{n}^{i_{n}} = 0 \quad implies \quad \prod_{n} f(P_{n})^{i_{n}} = 0$$

for every σ -sequence of $P_n \, \epsilon \, P_0$ and for every σ -sequence $\{i_n\}$ of numbers 0 and 1 15).

This theorem implies the following:

(ii) ¹⁰) In order that the mapping f can be extended to an isomorphism h of P on Q it is necessary and sufficient that for every σ -sequence of $P_n \in P_0$ and for every σ -sequence $\{i_n\}$ of numbers 0 and 1

(a)
$$\prod_{n} P_{n}^{i_{n}} = 0 if and only if \prod_{n} f(P_{n})^{i_{n}} = 0.$$

The necessity is obvious.

In order to prove the sufficiency suppose the condition (a) is satisfied. If $f(P_1) = f(P_2)$, then $f(P_1) \cdot f(P_2)^0 = 0$ and $f(P_1)^0 \cdot f(P_2) = 0$. Consequently, by (a), $P_1 \cdot P_2^0 = 0$ and $P_1^0 \cdot P_2 = 0$, that is, $P_1 = P_2$. This proves that the mapping f is one-one. By (i) and (a) the mappings f and f^{-1} can be extended to σ -homomorphisms f (of f in f and f of f in f and f of f in f and f in f in f in f and f in f in

(b)
$$gh(P) = P$$
 and $hg(Q) = Q$

Theorem I ¹⁷). For every $\tau \in T$ let h_{τ} be a σ -homomorphism of X_{τ} in a σ -field Q. If the σ -fields X_{τ} are σ -independent, then the σ -homomorphisms h_{τ} can be extended to a σ -homomorphism h of X in Q.

This follows immediately from (i) and (*).

Theorem II. Suppose the fields X_{τ} ($\tau \in T$) are σ -independent, and, for every $\tau \in T$, let h_{τ} be an isomorphism of X_{τ} on a σ -field Z_{τ} of subsets of a set \mathcal{Z} . If the σ -fields Z_{τ} ($\tau \in T$) are also σ -independent, then the isomorphisms h_{τ} can be extended to an isomorphism h of X on the least σ -field Z containing all the fields Z_{τ} .

If Z is σ -perfect and X is reduced, there exists a set $S \subset \mathcal{Z}$ dense in Z such that the mapping

$$g(X) = S \cdot h(X)$$
 for $X \in X$

is an equivalence of X on SZ.

If both X and Z are σ -perfect and reduced, then $S=\mathcal{Z}$, and h=g is an equivalence of X on SZ.

The first part follows immediately from (ii) and (*).

Suppose \hat{Z} is σ -perfect and X is reduced. Then the converse isomorphism h^{-1} is induced ¹⁸) by a point mapping φ of \mathcal{Z} in \mathcal{Z} , i.e.

$$h^{-1}(Z) = \varphi^{-1}(Z)$$
 for every $Z \in \mathbb{Z}$.

Let $S = \varphi(\mathcal{X})$. Since **X** is reduced, φ is one-one. We have

$$X = h^{-1}h(X) = \varphi^{-1}(h(X)) = \varphi^{-1}(g(X))$$
 for every $X \in X$;

hence $g(X) = \varphi(X)$ for every $X \in X$, that is, g is an equivalence of X on SZ. Since the mapping $gh^{-1}(Z) = SZ$ is an isomorphism of Z on SZ, the set S is dense in Z on account of § 1 (i).

Now suppose X and Z are σ -perfect and reduced. Then, by symmetry, there is also another mapping ψ of $\mathcal Z$ in $\mathcal X$ such that

$$h(X) = \psi^{-1}(X)$$
 for every $X \in X$.

Consequently $\varphi^{-1}\psi^{-1}(X) = X$ and $\varphi^{-1}\psi^{-1}(Z) = Z$ for every $X \in X$ and for every $Z \in Z$. Since X and Z are reduced, we infer that $\varphi = \psi^{-1}$. Thus $S = \varphi(\mathcal{X}) = \psi^{-1}(\mathcal{X}) = \mathcal{Z}$, q. e. d.

¹⁵) For convenience we assume that $P^1 = P$, and P^0 is the complement of P, as in § 1; analogously for Q.

¹⁶⁾ For the case of finite additivity this theorem has been proved by Kuratowski and Posament [4], p. 282-283.

¹⁷⁾ See Sikorski [10], Theorems VII and III.

¹⁸⁾ See Sikorski [9], p. 7, p. 12 (theorem 2.1), and p. 10 (theorem 1.2).

§ 5. Independent fields in cartesian products. Besides the family $\{X_{\tau}\}_{\tau\in T}$ we shall also consider another family $\{Y_{\tau}\}_{\tau\in T}$ of σ -fields. Every Y_{τ} is a σ -field of subsets of a set \mathscr{Y}_{τ} (the sets \mathscr{Y}_{τ} may be distinct or not).

 \mathscr{Y} will always denote the cartesian product of all sets \mathscr{Y}_{τ} ($\tau \in T$).

If $Y \subset \mathcal{Y}_{\tau}$, the symbol $\mathfrak{c}_{\tau}(Y)$ will denote the set of all points of \mathscr{D} whose τ -th co-ordinate belongs to Y.

The symbol Y_{τ}^* will denote always the class of all sets $\mathfrak{c}_{\tau}(Y)$, where $Y \in Y_{\tau}$. Y_{τ}^* is a σ -field of subsets of \mathscr{S} , and the mapping \mathfrak{c}_{τ} is an isomorphism of Y_{τ} on Y_{τ}^* .

The least σ -field (of subsets of \mathscr{D}) containing all the fields Y_{τ}^* ($\tau \in T$) will be denoted by Y_{τ}^* .

(i) The σ -fields Y_{τ}^* ($\tau \in T$) are σ -independent.

More generally:

- (ii) If a set $S \subset \mathcal{Y}$ is dense in Y^* , then the σ -fields $S Y_{\tau}^*$ are σ -independent.
 - (i) is obvious. (ii) follows from § 1 (iii).

Theorem III. Suppose the σ -fields X_{τ} are σ -independent and, for every $\tau \in T$, X_{τ} is isomorphic to Y_{τ} , thus to Y_{τ}^* also. Let h_{τ} be an isomorphism of X_{τ} on Y_{τ}^* . Then the isomorphisms h_{τ} can be extended to an isomorphism h of X on Y^* .

If **X** is reduced and **Y*** is σ -perfect ¹⁹), then there is a set $S \subset \mathscr{Y}$ dense in **Y*** such that the mapping

$$g(X) = S \cdot h(X)$$
 for $X \in X$

is an equivalence of X on SY^{20}).

If both X and Y^* are reduced and σ -perfect, then $S = \mathcal{G}$, and h = g is an equivalence of X on Y^* .

Theorem III follows directly from (i) and Theorem II. It shows that every family of σ -independent σ -fields may be considered as such a family of the type mentioned in (i) or (ii).

We note that

- (iii) Y^* is reduced if and only if every σ -field Y_{τ} is reduced.
- (iv) Y^* is σ -perfect if and only if every σ -field Y_{τ} is σ -perfect.
- (v) Every σ -field is isomorphic to a σ -perfect reduced σ -field.

The easy proofs are omitted.

In the first part of Theorem III we may assume e. g. $\mathcal{G}_t = \mathcal{X}$ and $Y_t = X_t$. In this case Theorem III can be expressed more precisely as follows:

Theorem IV. Suppose $\mathcal{Y}_{\tau} = \mathcal{X}$ and $Y_{\tau} = X_{\tau}$ for every $\tau \in T$, and let S be the diagonal of \mathcal{Y} . Then there is an equivalence g of X on SY^* . The σ -fields X_{τ} ($\tau \in T$) are σ -independent if and only if S is dense in Y^* .

The required equivalence is induced by the mapping φ which transforms a point $x \in \mathcal{X}$ in the point of \mathcal{Y} , all co-ordinates of which are equal to x.

If S is dense in Y^* , then the σ -fields SY_{τ}^* ($\tau \in T$) are σ -independent on account of (ii). The σ -fields X_{τ} ($\tau \in T$) are also independent on account of § 1 (ii).

Conversely, if the σ -fields X_r are σ -independent, then, on account of Theorem III, there is an isomorphism h of Y^* on X such that $X = h(c_r(X))$ for every $X \in X_r$. Hence

$$gh(c_r(X)) = g(X) = Sc_r(X)$$
 for every $X \in X_r$,

and consequently

$$gh(Y) = SY$$
 for every $Y \in Y^*$.

The mapping gh being an isomorphism we infer from 1(i) that S is dense in Y^* .

II. Stochastic independence.

§ 4. Definitions. If μ is a σ -measure 4) on a σ -field P of subsets of a set \mathcal{F} , the symbol $I(\mu)$ will denote the ideal of all sets P such that $\mu(P) = 0$. For $P \in P$ the symbol $[P]_{\mu}$ will denote the element A of the Boolean algebra $P/I(\mu)$ such that $P \in A$. Analogously, if $K \subset P$, the symbol $|K]_{\mu}$ will denote the class of all elements $[P]_{\mu}$ where $P \in K$. The symbol μ° will denote the σ -measure on $P/I(\mu)$ defined by the formula

$$\mu^{\circ}([P]_{\mu}) = \mu(P).$$

¹⁹⁾ These conditions are little restrictive (see Lemmas (iii)-(v)).

²⁰⁾ If X_{τ} ($\tau \in T$) are not σ -independent, then there is also an equivalence of X on a σ -fields SY^* , but the set S is not dense in Y^* .

179

For any set $Q \subset \mathcal{P}$, $\mu_e(Q)$ will denote the lower bound of numbers $\mu(P)$, where $Q \subset P \in \mathbf{P}$. Let $S \subset \mathcal{P}$ and $\mu_e(S) = 1$. The function $\mu_e(Q)$ restricted to $Q \in S \mathbf{P}$ will be denoted by μ^S . It is a σ -measure on $S \mathbf{P}$.

Let ν be another σ -measure defined on a σ -field Q. The measures μ and ν are said to be isomorphic (equivalent) provided there is an isomorphism (equivalence) h of P on Q such that $\mu(P) = \nu(h(P))$ for every $P \in P$.

The measures μ and ν are said to be almost isomorphic provided there is an isomorphism h of $P/I(\mu)$ on $Q/I(\nu)$ such that $\mu^{\circ}(A) = \nu^{\circ}(h(A))$ for every $A \in P/I(\mu)$.

The symbols \mathcal{L} , X_{τ} , X_{τ} , \mathcal{L} will have the same meaning as before. μ_{τ} and ν_{τ} will always denote σ -measures on \mathcal{L} , or \mathcal{L} respectively. The symbol ν_{τ}^* will denote the σ -measure

$$\nu_{\tau}^{\star}(c_{\tau}(Y)) = \nu_{\tau}(Y)$$
 for $Y \in Y_{\tau}$

induced on Y_{τ}^* by ν_{τ} .

 μ and ν will denote the stochastic σ -extensions of all μ_{τ} and ν_{τ}^* respectively whenever they exist.

We suppose always $\bar{T} \gg 2$.

The following lemma is obvious:

- (i) If the σ -fields X_{τ} are stochastically σ -independent with respect to the σ -measures μ_{τ} , and if $\mu_{e}(S) = 1$, then the σ -fields SX_{τ} ($\tau \in T$) are stochastically σ -independent with respect to μ_{τ}^{S} .
- § 5. The extension of isomorphisms. We shall now prove the following

Theorem V. For every $\tau \in T$ let λ_{τ} be a σ -measure on a σ -field \mathbf{Z}_{τ} of subsets of a set \mathbf{Z} . Suppose the σ -fields \mathbf{X}_{τ} and \mathbf{Z}_{τ} ($\tau \in T$) are stochastically σ -independent roith respect to the σ -measures μ_{τ} and λ_{τ} respectively. If μ_{τ} is almost isomorphic to λ_{τ} for every $\tau \in T$, then the stochastic σ -extensions μ and λ (of all μ_{τ} and λ_{τ} respectively) are also almost isomorphic.

The Boolean algebras $X_{\tau}|I(\mu_{\tau})$ and $Z_{\tau}/I(\lambda_{\tau})$ being isomorphic to the Boolean algebras $[X_{\tau}]_{\mu}$ and $[Z_{\tau}]_{\lambda}$ respectively, there is an isomorphism h_{τ} of $[X_{\tau}]_{\mu}$ on $[Z_{\tau}]_{\lambda}$ such that

$$\mu^{\circ}(A) = \lambda^{\circ}(h_{\tau}(A)) \text{ for } A \in [X_{\tau}]_{\mu}.$$

If $0 \neq A_n \epsilon [\mathbf{Z}_{\tau_n}]_{\mu}$ and $0 \neq B_n \epsilon [\mathbf{Z}_{\tau_n}]_{\lambda}$ $(0 < n \le m < \infty)$, and $\tau_k \neq \tau_l$ for $k \neq l$, then

$$\mu^{\circ}(\prod_{n=1}^{m}A_{n}) = \prod_{n=1}^{m}\mu^{\circ}(A_{n}) \neq 0 \quad \text{and} \quad \lambda^{\circ}(\prod_{n=1}^{m}B_{n}) = \prod_{n=1}^{m}\lambda^{\circ}(B_{n}) \neq 0;$$
hence
$$\prod_{n=1}^{m}A_{n} \neq 0 \quad \text{and} \quad \prod_{n=1}^{m}B_{n} \neq 0.$$

Consequently the isomorphisms h_{τ} can be extended ²¹) to an isomorphism h_0 of $[X_0]_{\mu}$ on $[Z_0]_{\lambda}$, where X_0 and Z_0 denote the least fields containing all σ -fields X_{τ} and Z_{τ} ($\tau \in T$) respectively. Obviously

(c)
$$\mu^{\circ}(A) = \lambda^{\circ}(h_0(A))$$
 for $A \in [X_0]_{\mu}$.

Consider the Boolean algebras $A = X/I(\mu)$ and $B = Z/I(\lambda)^{22}$) as metric spaces with Nikodym's metrics ²³)

$$\begin{split} \delta(A_1, A_2) &= \mu^{\circ}(A_1 - A_2) + \mu^{\circ}(A_2 - A_1) & \text{for } A_1, A_2 \in A, \\ \vartheta(B_1, B_2) &= \lambda^{\circ}(B_1 - B_2) + \lambda^{\circ}(B_2 - B_1) & \text{for } B_1, B_2 \in B \end{split}$$

respectively.

The set $[X_0]_{\mu}$ is dense in the space A. In fact, the construction of the common extension μ is the following: first extend the σ -measures μ_{ε} to a measure μ_0 on X_0 on account of $(\overset{*}{\star})$; further apply Caratheodorn's exterior measure method. Therefore for any $X \in X$ and $\varepsilon > 0$ there is a set $X_0 \in X_0$ such that

$$\delta([X]_{\mu},[X_0]_{\mu}) < \varepsilon$$
.

By symmetry, the set $[\mathbf{Z}_0]_{\lambda}$ is dense in \mathbf{B} . By (c), h_0 is an isometric mapping of $[\mathbf{X}_0]_{\mu}$ on $[\mathbf{Z}_0]_{\lambda}$. The spaces \mathbf{A} and \mathbf{B} being complete ²³), the mapping h_0 can be extended to an isometric mapping h of \mathbf{A} on \mathbf{B} . Since the addition and the complementation are continuous operations in \mathbf{A} and \mathbf{B} , the continuous extension h is also additive and complementative, i. e. h is an isomorphism of \mathbf{A} on \mathbf{B} .

²¹) This follows from Theorem III in my paper [10]. The exact proof is similar to that of the first part of § 2(ii).

²²) Z denotes here the least σ -field containing all the σ -fields Z_{τ} ($\tau \in T$).

²³) Nikodym [8], p. 137-139. See also Hahn and Rosenthal [3], p. 31-32.

We have

$${}^{\bullet} \mu^{\circ}(A) = \delta(A, 0) = \vartheta(h(A), 0) = \lambda^{\circ}(h(A)) \quad \text{for} \quad A \in A.$$

This proves that μ and λ are almost isomorphic.

§ 6. Stochastically independent fields in cartesian products. It is well known 24) that

(i) The σ -fields Y_{\star}^{*} in the cartesian product $\mathscr G$ are stochastically σ -independent with respect to arbitrary σ -measures ν_{\star}^{*} .

Theorems (i) and III imply the following theorem of Banach 25):

(ii) If the $\dot{\sigma}$ -fields X_{τ} are σ -independent, they are also stochastically σ -independent with respect to arbitrary σ -measures μ_{τ} .

Theorem (i) and lemma 4(i) imply that

(iii) If $S \subset \mathcal{Y}$ and $r_e^*(S) = 1$, then the σ -fields $S Y_\tau^*$ $(\tau \in T)$ are stochastically σ -independent with respect to r_τ^{*S} .

The following two theorems show that, conversely, every family of stochastically σ -independent σ -fields may be considered as such a family of the type mentioned in (i) or (iii).

Theorem VI. If the σ -fields X_{τ} are stochastically σ -independent with respect to μ_{τ} ($\tau \in T$), and if for every $\tau \in T$ the σ -measure μ_{τ} is almost isomorphic to ν_{τ} , then the stochastic σ -extensions μ and ν^* are also almost isomorphic.

This follows immediately from (i) and Theorem V.

Theorem VII. Suppose the σ -fields X_{τ} are stochastically σ -independent with respect to μ_{τ} ($\tau \in T$), and for every $\tau \in T$ the σ -measure μ_{τ} is isomorphic to ν_{τ} . If X is reduced and Y^* is σ -perfect 19), then there is a set $S \subset \mathscr{Y}$ such that $\nu_e^*(S) = 1$ and μ is equivalent to ν^{*S} .

Let h_{τ} be an isomorphism of Y_{τ}^{\star} on X_{τ} such that

(d)
$$\nu_{\tau}(Y) = \nu_{\tau}^{\star}(\mathfrak{c}_{\tau}(Y)) = \mu_{\tau}(h_{\tau}(\mathfrak{c}_{\tau}(Y))) \quad \text{for} \quad Y \in Y_{\tau}.$$

$$h(Y) = \varphi^{-1}(Y)$$
 for every $Y \in Y$.

Let $S = \varphi(\mathcal{X})$. Since **X** is reduced, φ is one-one. By (d)

$$\mu(\varphi^{-1}(Y)) = \nu^*(Y)$$
 for $Y \in Y^*$.

Consequently $\nu_e^*(S) = 1$ and the mapping

$$g(X) = \varphi(X)$$
 for $X \in X$

is an equivalence between μ and r^{*S} , q. e. d.

In Theorem VI we may assume e. g. $\mathcal{Y}_r = \mathcal{X}_r$, $Y_r = X_r$, and $v_r = \mu_r$. In this case Theorem VI can be formulated in the following more precise form:

Theorem VIII. Suppose $\mathscr{J}_{\tau} = \mathscr{X}_{\tau}$, $\gamma_{\tau} = \chi_{\tau}$, $\gamma_{\tau} = \mu_{\tau}$, and let S be the diagonal of \mathscr{S} . The fields X_{τ} are stochastically σ -independent if and only if $\nu^*(S) = 1$. If this equality is true, then μ is equivalent to ν_{τ}^{*S} .

By Theorem I and 5(i) there is a σ -homomorphism h of Y^* on X such that

(e)
$$h(c_{\tau}(X)) = X$$
 for $X \in X_{\tau} = Y_{\tau}$.

By Theorem IV there is an equivalence g of X on SY^* such that

$$g(X) = S \cdot c_{\tau}(X)$$
 for $X \in X_{\tau}$.

Consequently

(f)
$$gh(Y)=SY$$
 for every $Y \in Y^*$.

Suppose X_{τ} are stochastically σ -independent. Then (e) implies

(g)
$$\nu^*(Y) = \mu(h(Y))$$
 for every $Y \in Y^*$.

If $Y \in Y^*$ and $S \cdot Y = 0$, then, by (f), gh(Y) = 0; hence h(Y) = 0. By (g), $v^*(Y) = 0$. This proves that $v_*^*(S) = 1$.

Now suppose $\nu_e^*(S)=1$. By 6(iii) there is a stochastic σ -extension ν^{*S} of all ν_e^{*S} ($\tau \in T$) on $S Y^*$.

²⁴⁾ Łomnicki and Ulam [5], p. 245 and 252; Andersen and Jessen [1], p. 22.

²⁵) Banach [2], p. 160, Theorem 1. Analogously, (i) and Theorem III, formulated for the finite independence, imply immediately Marczewski's Theorem II of his paper [7], p. 126.

We have

$$\mu_{\tau}(X) = \nu_{\tau}(X) = \nu_{\tau}^{\star}(\mathfrak{c}_{\tau}(X)) = \nu^{\star}(\mathfrak{c}_{\tau}(X)) = \nu^{\star}S(S \cdot \mathfrak{c}_{\tau}(X)) = \nu^{\star}S(g(X)) = \nu_{\tau}^{\star}S(g(X)) = \nu_{\tau}^{\star}S(g(X))$$

for every $X \in X_{\tau}$. Thus the formula

$$\mu(X) = \nu^{*S}(g(X))$$
 for $X \in X$

defines a stochastic σ -extension of all μ_{τ} ($\tau \in T$) on X, that is, the σ -fields X_{τ} are stochastic σ -independent with respect to μ_{τ} .

Appendix.

Another proof of Theorem I.

(A) For every $\tau \in T$ let h_{τ} be a σ -homomorphism of Y_{τ}^* in a σ -field Q of subsets of \mathcal{Q} . If the σ -fields Y_{τ} are σ -perfect, then the σ -homomorphisms h can be extended to a σ -homomorphism h of Y^* in Q.

Every σ -field Y_{τ} being σ -perfect, every σ -homomorphism

$$g_{\tau}(Y) = h_{\tau}(c_{\tau}(Y))$$
 for $Y \in Y_{\tau}$

is induced ¹⁸) by a point mapping φ_{τ} of \mathcal{Q} in \mathcal{Y}_{τ} , i. e.

$$g_{\tau}(Y) = \varphi_{\tau}^{-1}(Y)$$
 for $Y \in Y_{\tau}$.

The mapping $\varphi(q) = \{\varphi_{\tau}(q)\}_{\tau \in T}$ of \mathcal{Q} in \mathcal{Y} has the property

$$\varphi^{-1}(c_{\tau}(Y)) = \varphi_{\tau}^{-1}(Y) = g_{\tau}(Y) = h_{\tau}(c_{\tau}(Y))$$
 for $Y \in Y_{\tau}$.

Consequently, the σ -homomorphism h of Y^* in Q, defined by the equality $h(Y) = \varphi^{-1}(Y)$ for $Y \in Y^*$, is a common extension of all h_{ε} .

(B) Suppose Y_{τ} is a σ -perfect σ -field isomorphic to X_{τ} ($\tau \in T$). Let h_{τ} be an isomorphism of Y_{τ}^* on X_{τ} . If the σ -fields X_{τ} are σ -independent, then the isomorphisms h_{τ} can be extended to an isomorphism h of Y^* on X.

By (A) there is a σ -homomorphism h of Y^* on X which is a common extension of all h_{τ} . It is sufficient to prove that $h(Y) \neq 0$ for $0 \neq Y \in Y^*$.

Let K denote the class of all cartesian products $Y_0 = P Y_\tau$, where $0 \neq Y_\tau \in Y_\tau$, and the inequality $Y_\tau \neq \mathcal{Y}_\tau$ holds for an at most enumerable set of elements τ only.

We have

$$h(Y_0) = \prod_{\tau \in T} h_{\tau}(Y_{\tau}) \neq 0$$

since $0 \neq h_{\tau}(Y_{\tau}) \in X_{\tau}$, and the inequality $h_{\tau}(Y_{\tau}) \neq \mathcal{X}$ holds for an at most enumerable set of elements τ .

Let Y_0^* be the class of all sets $Y \in Y^*$ with the property: if $y \in Y$, then there is a set $Y_0 \in K$ such that $y \in Y_0 \subset Y$.

It is easy to see that:

- (a) the least field containing all fields Y_{τ}^* is contained in Y_0^* ;
- (b) if $Y_n \in Y_0^*$ (n=1,2,...), then $Y_1 + Y_2 + ... \in Y_0^*$ and $Y_1 \cdot Y_2 \cdot ... \in Y_0^*$.

Consequently, $Y_0^* = Y^*$. Therefore every set $0 \neq Y \in Y^*$ contains a subset $Y_0 \in K$ and $0 \neq h(Y_0) \subset h(Y)$, q. e. d.

Theorem I follows immediately from (A), (B) and from every σ -field being isomorphic to a σ -perfect σ -field ²⁶).

References.

- Andersen, E. S. and Jessen, B., Some limit theorems on integrals in an abstract set, Det Kgl. Danske Videnskabernes Selskab, Mathematik--Fysike Meddelelser 22, nº 14 (1946).
- [2] Banach, S., On measures in independent fields (edited by S. Hartman). Studia Mathematica 10 (1948), p. 159-177.
- [3] Hahn, H. and Rosenthal, A., Set functions, The University of New Mexico Press, Albuquerque 1948.
- [4] Kuratowski, C. et Posament, T., Sur l'isomorphie algébro-logique et les ensembles relativement boreliens, Fundamenta Mathematicae 22 (1954), p. 281-286.
- [5] Łomnicki, Z. et Ulam, S., Sur la théorie de la mesure dans les espaces combinatoires et son application au calcul des probabilités, I. Variables indépendantes, Fundamenta Mathematicae 23 (1954), p. 257-278.
- [6] Marczewski (Szpilrajn), E., On the isomorphism and the equivalence of classes and sequences of sets, Fundamenta Mathematicae 32 (1939), p. 133-148.

²⁶) See e. g. Sikorski [9], Theorem 2.2, p. 12.

R. Sikorski.

184

- cm[©]
- [7] Marczewski (Szpilrajn), E., Indépendance d'ensembles et prolongement de mesures (Résultats et problèmes), Colloquium Mathematicum 1 (1948), p. 122-132.
- [8] Nikodym, O., Sur une généralisation des intégrales de M. J. Radon, Fundamenta Mathematicae 15 (1930), p. 151-179.
- [9] Sikorski, R., On the inducing of homomorphisms by mappings, Fundamenta Mathematicae 36 (1949), p. 7-22.
- [10] On an analogy between measures and homomorphisms, Annales de la Société Polonaise de Mathématique 23 (1950), à paraître.
- [11] van Kampen, E. R., Infinite product measures and infinite convolutions, American Journal of Mathematics 62 (1940), p. 417-448.

PAŃSTWOWY INSTYTUT MATEMATYCZNY (STATE INSTITUTE OF MATHEMATICS).

(Recu par la Rédaction le 22, 10, 1949).

On differentiation of vector-valued functions

by

A. ALEXIEWICZ (Poznań).

In recent years a series of papers appeared, dealing with the problem of differentiation of vector-valued functions. The most interesting problem was perhaps to inquire under what hypotheses the weak differentiability implies the strong one. The most complete results in this direction obtained Pettis [7].

In the present paper 1) further remarks on this subject will be added, generalizing 2) some results of my paper [1] and of the paper of Pettis.

In § 1 preliminary definitions are given, and the main result of this paper is formulated. In § 2 and § 3 the lemmas are grouped, upon which the principal theorems contained in § 4 are based. Finally, in § 5 some applications to Analysis are given.

§ 1. Preliminary considerations. X denotes a Banach space, $\|x\|$ — the norm of the element x of X, \mathcal{Z} — the space conjugate to X, and $\xi(x)$ — the elements of \mathcal{Z} .

By functions I mean in this paper the vector-valued functions, i. e. functions from an arbitrary fixed interval J or from a set E of reals to the space X; for these functions the symbols x(t), y(t) and z(t) are reserved. Real-valued functions will be denoted by f(t).

The limit of $\varphi(t)$ as t tends to t_0 by values of the set P will be denoted by $\lim_{t\to t_0} \varphi(t)$.

¹⁾ whose results were in part presented September 22th, 1948, to the VI Polish Mathematical Congress in Warsaw.

²⁾ The author is indebted to Professor W. Orlicz for having called his attention to the possibility of such a generalization.