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The number o is arbitrary, subject to the limitation indicated.

Theorem 10.1. Let B be a Banach space of type A, such
that T,f converges weakly to f as r— 1, for each feB. Then every
linear functional y e B* is representable in the form

Tr=l o

2T .
(102) y(f)=lim ;- [Hee®) F(y eyds, e,

where r<<p<<l and FeB', The element I of B® uniquely determi-
nes and is uniquely determined by y. Furthermore,

(10.3) Il <ZHEI <2 Ay (B) I}
Under the stronger hypothesis that Em{|T f—fll=0 for each
751

feB mwe have the same representation (10.2). In this case, horvever,
F may be any element of B, and Hyll=]F||".

The theorem is merely a restatement of Theorems 8.4 and 9.3,

There will be circumstances under which it is legitimate to
make ¢->1 under the integral sign in (10.2). Sometimes we may
even take the limit with respect to r under the integral sign. The
possibility of carrying out these processes depends upon the cha-
racter of the functions f and F at the boundary of the unit circle.
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a finite sequence,

Independent fields and cartesian products
by
R. SIKORSKI (Warszawa).

For every reT(f}Q) let X. be a o-field') of subsets f’f a
fixed set & We shall say that the fields X: (xeT) are o-inde-
pendent ?) if
(*) [TXn0

n
for every o-sequence?) of non-empty sets XneX:,, where 7,57,
for ’;fpl}.)osc i is a g-measure’) on X;. We shall say that the
o-fields X, (reT) are stochastically c-independent (with respect t.o
the o-measures us), if there is a oc-measure u (called the stochastic
o-extension of all w) on the least o-field X containing all the
o-fields X, such that x is a common extension of all & (veT) and

* #(gxn)zljﬂ(xn)

for every sequence ) of sets XneX.,, where 7,71, for k=1

1) Ar non-void class P of subsets of a set 2 is c.alled. a field, if l;,QeP
implies @ —PeP and P+QeP. A field P is called a o-field, if P eP(n=1,2,53....)
implies P,+P,+Py+...eP. ) )

' ?) Tlllj cgcmceﬂpt of the independence of fields has been introduced by

rczewski in paper [7]. ) . )

e c“)Z In this pnI:)el; we shall write, for convenience, a sequence instead of
and a o-sequence instead of a finite or enumerable sequence.
1) A g-measure u on a o-field P of subsets of a set 2 is a non-negative

D)= =2 v - f dis-

function such that u(®)=1 and y(-{n‘:Pn)——%y(Pn) for every o-sequence o' i

joint sets P eP. By omitting the letter o in the above definition we obtain the
n

analogous definition of a measure on a field.
5) Consequently for every o-sequence also.
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By omitting the letter ¢ in the above definitions we obtain
the analogous definitions of independent fields and of stochastic-
ally independent fields (with respect to measures )

In this paper I shall prove several theorems which explain
the structure of families of s-independent o-fields and of stocha-
stically o-independent o-fields. Known examples of s-independent
o-fields and of stochastically ¢-independent o-fields are some
o-fields defined in cartesian products (see lemmas 3 (i), 3 (ii), 6(i),
and 6(iii)). [ shall show that, roughly speaking, every family of
o-independent o-fields or of stochastically s-independent o-fields
is of this product type ) (Theorems III-1V and VI-VIIL). There-
fore the study of families of o-independent o-fields and of sto-
chastically c-independent o-fields can be reduced to the study
of some o-fields in cartesian products. For instance, Banace’s
theorem 7) on the extension of s-measures defined on o-indepen-
dent o-fields can be deduced from an analogous theorem on
o-measures in cartesian products (see 6 (i)).

The same results hold for independent fields and stochastic-
ally independent fields. Since all theorems (and their proofs 8))
on the finite independence are completely analogous to those on
the o-independence, I shall formulate only the theorems on
o-independence. In order to obtain analogous theorems (and
their proofs) on the finite independence it is sufficient to omit
everywhere the letter o. '

I Independent fields.

§ 1. Definitions. A mapping h of a o-field P (of subsets of
a set 97) in another o-field 9) Q (of subsets of a set @) is called
a a-homomorphism, if P® denoting the complement of P, i. e. the
set —P, we have

h(PY)=h(P)® for each PeP
h([]P,L)-——-Hh(Pn} for each o-sequence of PeP.

) A similar theorem on independent functions has been proved by
van Kampen [11], p. 434.

‘) Banach [2], Theorem 1.
%) The only exception is Theorem V, the proof of which is simpler in the
case of the independence than in the case of the o-independence.

‘) More generally: of a o-complete Boolean algebra P in another ¢-com-
plete Boolean algebra Q.

and
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A one-one mapping h of P on Q') is said to be an iso-
morphism ') provided that R(P)Ch(P,) if and only if P,CP,
for arbitrary sets P,,P,eP. 1f it exists, P and Q are said to be
isomorphic. o

Every isomorphism is a onc-one o¢-homomorphism ') and
conversely. . By

An isomorphism h of P on Q is called an equivalence ) if
there exists a one-one mapping ¢ of &7 on @ such that h(P)=g(P)
for every PeP. .

A o-field P (of subsets of 7) is said to be reduced provided
that for cvery pair p,,p,e there is a set PeP such that p,eP
and p, noneP. .

P is said to be o-perfect provided that every two_-valued )
o-measure z on P is trivial, i. e. there is a point p,e<” such that

(P)=1 if and only if poeP. . '
! If SC &, the symbol SP will denote the class of all sets SP,
where PeP. SPis a o-field of subsets of S. ‘

A subset § of & is called dense in P if SP#0 for every
non-void set PeP.

Obviously .

(i) S is dense in P if and only if the o-homomorphism

g(P)=SP for PeP

is an isomorphism of P on SP. ‘ o
In this paper {X:}..r will denote a given tia_mlly of o-fields
X, (distinct or mot) of subsets of a fixed sed =2 "Ijhe symbol X
will always denote the least o-field containing all fields X:(z el).
The following lemmas are obvious:

i i -independent and if h is an
(i) If the o-fields X;(zeT) are o-in pe
isomorphism of X on a o-field Z, the o-fields') h(X:) (reT) are
also c-independent. . ' A
(iii) If the o-fields X. are o-independent and if S is dense in
X, then the o-fields SX:(zeT’) are also o-independent.
N “;) MO_I—C generally: of a Boolean algebra P in another Boolean algebra Q.

11) See Marczewski [0], p. 136. ) ) ) B
‘2; A g-homomorphism h is one-one it and only if h{P)=0 implies P=0.
1) A measure is two-valued if it assumes only the numbers 0 and 1.

H) h(X,) is the class of all sets h(X) where XeX,.
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§ 2. The extension of homomorphisms and isomorphisms.
Let P, and @, be two classes of subsets of sets & and @ ve-
spectively, and let P and @ be the least o-fields (of subsets of
the same sets containing P, and @, respectively. Suppose f is a
mapping of P, on Q,.

I have proved in my paper [10] (Theorems V and II) that

(i) The mapping f can be extended to a o-homomorphism h
of P on Q, if and only if

[IPr=0  implies  []f(P)»=0
for every a-sequence of P,eP, and for every o-sequence li,) of
numbers 0 and 1%).

This theorem implies the following:

(i) **) In order that the mapping f can be extended to an iso-
morphism h of P on Q it is necessary and sufficient that for
every o-sequence of PnePy and for every o-sequence {i,} of num-
bers 0 and 1

n

(a) HP,:"‘:—O if and only if Hf(Pn)f"zo,

The necessity is obvious.

In order to prove the sufficiency suppose the condition (a)
is satisfied. If f(P,) =f(P,), then f(P,)-f(Py°==0 and F(P)°-f (Py)=0.
Consequently, by (a), P,-P,’=0 and P,’-P,=0, that is, P =p,.
This proves that the mapping f is one-one. By (i) and (a) the
mappings f and f~ can be extended to o-homomorphisms h (of
P in Q) and g (of Q in P) respectively. By definition,

(b) . gh(P)=P and hg(Q)=Q

for every PeP, and for every QeQ,. Hence we infer that the
formulae (b) hold for every PeP and QeQ. This proves that
h=g~, i. e. that the oc-homomorphism h is a one-one mapping
of P on Q. Thus h is an isomorphism of P on Q, q.e. d.

%) For convenience we assume that Pi=P, and P9 is the complement of
P, as in § 1; analogously for Q.

%) For the case of finite additivity this theorem has been proved by
Kuratowski and Posament [4], p. 282-283.
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Theorem 1. For every veT let h, be a g-homomorphism
of X. in a o-field Q. If the o-fields X, are c-independent, then
the o-homomorphisms h. can be extended ta a o-homomorphism
h of X in Q.

This follows immediately from (i) and (*).

Theorem II. Suppose the fields X, (reT) are o-independent,
and, for every vel, let h, be an isomorphism of X, on a o-field
Z. of subsets of a set Z. If the o-fields Z. (ve¢T) are also o-in-
dependent, then the isomorphisms h. can be extended to an iso-
morphism h of X on the least o-field Z containing all the fields Z,.

If Z is o-perfect and X is reduced, there exists a set SCZ
dense in Z such that the mapping ‘

g(X)=S-h(X) for XeX

is an equivalence of X on SZ.

If both X and Z are o-perfect and reduced, then S=%, and
h=g is an equivalence of X on SZ.

The first part follows immediately from (i) and (*).

Suppose Z is o-perfect and X is reduced. Then the converse
isomorphism h~*is induced'®) by a point mapping ¢ of 2" in & i.e.

h—1(Z)=¢1(Z) for every ZeZ.
Let S=gp(2). Since X is reduced, ¢ is one-one. We have
X=h—‘h(X)=qn—1(h(X))=<p“’(g(X)) for every XeX;

hence g(X)=¢(X) for every XeX, that is, g is an equivalence of
X on SZ. Since the mapping gh—(Z)=SZ is an isomorphism of
Z on SZ, the set S is dense in Z on account of § 1(i).

Now suppose X and Z are o-perfect and reduced. Then, by
symmetry, there is also another mapping v of & in 2 such that

h(X)=yp~1(X) for every XeX.

Consequently ¢—'p~t(X)=X and e~ly—Y(Z)=7 for every
XeX and for every ZeZ. Since X and Z are reduced, we infer
that g=y—. Thus S=¢(2)=ypH(X)=Z, q. e d.

) See Sikorski [10], Theorems VII and IIL
18) See Sikorski [9], p. 7, p. 12 {theorem 2.1), and p. 10 (theorem 1.2).
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§ 3. Independent fields in cartesian products. Besides the
family {X.}..r we shall also consider another family {¥.}:er of
o-ficlds. Every Y, is a o-field of subsets of a set 9% (the sets
94 may be distinct or not).

9/ will always denote the cartesian product of all sets 2%
(zeT).

If YC4, the symbol ¢(Y) will denote the set of all
points of &/ whose 7-th co-ordinate belongs to Y.

The symbol ¥* will denote always the class of all sets ¢ (¥),
where Ye¥,. Y* is a o-field of subsets of &/, and the mapping ¢,

7
is an isomorphism of ¥; on Y%

The least o-field (of subsets of &) containing all the fields
Y* (veT) will be denoted by ¥*.
() The o-fields ¥* (z¢T) are o-independent.

More generally:

(i) If a set SC 2/ is dense in Y*, then the o-fields SY* are
a-independent.

(i) is obvious. (ii) follows from § 1 (iii).

Theorem IIl. Suppose the o-fields X, are o-independent and,
for every weT, X:is isomorphic to ¥, thus to Y7 also. Let h, be an
isomorphism of X, on Y*. Then the isomorphisms h, can be ex-
tended fo an isomorphism h of X on Y*.

If X is reduced and Y* is o-perfect'?), then there is a set
SC &/ dense in Y* such that the mapping

g(X)=S-h(X) for XeX

is an equivalence of X on SY ).

'If both X and Y* are reduced and o-perfect, then $ =3/, and
h=g is an equivalence of X on Y*.

Theorem Iil follows directly from (i) and Theorem II. [t
shows that every family of s-independent o-fields may be con-
sidered as such a family of the type mentioned in (i) or (ii).

) These conditions are little restrictive (see Lemmas (iii)-(v)}.
*) If X, (xeT) are not g-independent, then there is also an equivalence of
X on a g-fields SY*, but the set S is not dense in ¥*,
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We note that :

(iii) Y* is reduced if and only if every o-field Y. is reduced.

(iv) ¥* is o-perfect if and only if every o-field ¥: is o-perfect.

(v) Every o-field is isomorphic to a o-perfect reduced o-field.

The easy proofs are omitted.

In the first part of Theorem Il we may assume e. g. &=
and ¥Y,=2X.. In this casé Theorem lII can be expressed more
precisely as follows:

Theorem 1V. Suppose Q=S and ¥,=2X. for every veT,
and let S be the diagonal of &/~ Then there is an equivalence g

“of X on SY*. The o-fields X, (zeT) are o-independent if and only

if S is dense in Y™

The required equivalence is induced by the mapping ¢ mwhich
transforms a point xeZ in the point of &, all co-ordinates of
mwhich are equal to x.

If S is dense in Y*, then the o-fields SY¥* (reT) are o-inde-
pendent on account of (ii). The o-fields X, (zeT) are also inde-
pendent on account of § 1 (ii).

Conversely, if the o-fields X, are o-independent, then, on
account of Theorem IiI, there is an isomorphism h of Y* on X
such that X=h(c(X)) for every XeX:. Hence

gh (e (X)) =g (X) =S5 c(X) for every XeX,
and consequently
gh(Y)=S8Y for every YeY*.
The mapping gh being an isomorphism we infer from 1() that
S is dense in ¥*.

II. Stochastic independence.

§ 4. Definitions. If » is a c-measure’) on a o—Afield P of
subsets of a set F the symbol I(x) will denote the 1d_eal of all
sets P such that u(P)=0. For PeP the symbol [P], will denote
the element 4 of the Boolean algebra P/I(,q) such that Ped.
Analogously, if KCP, the symbol |Kl will t{enotve the class of
all elements [P], where PeK. The symbol »° will denote the
o-measure on P/I(y) defined by the formula

w(Ply=w(P).

12
Studia Mathematica. T. XL
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For any set QC F pe(Q) will denote the lower bound of
pumbers u(P), where QC PeP. Let SC % and p(S)=1. The
function x.(Q) restricted to QeSP will be denoted by uS. It is a
o-measure on SP.

Let » be another o-measure defined on a o-field Q. The mea-
sures px and » arve said to be isomorphic (equivalent) provided
there is an isomorphism (equivalence) h of P on @ such that
w(P)=v(h(P)) for every PeP. ¢

The measures z and » are said to be almost isomorphic pro-
vided there is an isomorphism h of P/I{(x) on Q/I(3) such that
po(d)=2»"(h(4) for every AeP/I(u).

The symbols & X,, X, @,, &, ¥,, Y}, ¥* will bave the
same meaning as before. i, and » will always denote o-measures
on X, or ¥, respectively. The symbol »7 will denote the s-mea-
sure

w¥(c (V)=»(Y) for Ye¥,
induced on Y7 by »,.

u and » will denote the stochastic o-extensions of all 4 and
»¥ respectively whenever they exist.

We suppose always T3>2.

The following lemma is obvious:

G) If the o-fields X. are stochastically o-independent ith
respect to the o-measures i, and if w.(S)=1, then the o-fields
SX. (zeT) are stochastically o-independent roith respect to ps.

§ 5. The extension of isomorphisms. We shall now prove
the following

Theorem V. For every t¢T let A be a o-measure on a
o-field Z, of subsets of a set &. Suppose the o-fields X, and Z,
(zeT) are stochastically o-independent roith respect to the o-mea-
sures u, and A, respectively. If u. is almost isomorphic to 2. for
every €T, then the stochastic o-extensions u and 2 (of all w, and
X respectively) are also almost isomorphic.

The Boolean algebras X;/T(u) and Z;/I(A;) being isomorphic
to the Boolean algebras [X;], and [Z], respectively, there is an
isomorphism h, of [X;], on [Z], such that

W (A)=1°(h(4) for Ae[X],
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if 0+ 4ue[Xz,], and 0% BnelZ,,], (0<<n<m<<co), and 777,

for k=1, then .
(4 =[Iw ()0 and  2°([B)=]T1(B)<0;
hence m m
[Tdn£0 and T1B.=o0.
n=1 n=i

Consequently the isomorphisms h. can be extended ') to an
isomorphism h, of [X,], on [Z,],, where X, and Z, denote the
least fields containing all o-fields X, and Z, (zeT) respectively.
Obviously

(e) B (A)=2"(ho(4)) for Ae[X]e.

Consider the Boolean algebras A=X/I(x) and B=Z/I(}) *)
as metric spaces with Nixopya’s metrics *)

6(_41,A2)=u°(A1—A2)+y°(A2—A1)
’9(31 sBz) =1’ (B1 “Bz) ‘l‘ 2 (Bz - B1)

respectively. .

The set [X;]. is dense in the space A. In fact, the construc-
tion of the common extension x is the following: first extend
the o-measures g, to a measure g, on X, on account of (3);
further apply CaraTHroDORY's exterior measure method. Therefore
for any XeX and ¢>0 there is a set X X, such that

8 ([ X ], [Xolu}<e.

for A,,A4,¢e4,
for B,,B,eB

By symmetry, the set [Z,], is dense in B. By (c), h, is an
isometric mapping of [X;], on 1Z,],. The spaces 4 and B being
complete #), the mapping h, can be extended to an isometric
mapping h of A on B. Since the addition and the complementa-
tion are continuous operations in 4 and B, the continuous ex-
tension h is also additive and complementative, i. e. h is an iso-
morphism of 4 on B. '

21) This follows from Theorem III in my paper [10]. The exact proof is
similar to that of the first part of § 2(ii).
22) Z denotes here the least o-field containing all the o-fields Z, {zeT).
#) Nikodym [8], p. 157-139. See also Hahn and Rosenthal (3], p. 31-32.
12%
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We have

* i (A)=68(4,0)=0(h(4),0)=2"(h(4)) for Aed.

This proves that 4 and 2 are almost isomorpbic.

§ 6. Stochastically independent fields in cartesian products.
It is well known ) that

() The o-fields Y* in the cartesian product &/ are stochastic-
ally o-independent with respect to arbitrary o-measures »;.

Theorems (i) and III imply the following theorem of Banacu *):

(ii) If the o-fields X, are o-independent, they are also sto-
chastically o-independent mwith respect to arbitrary oc-measures ..

Theorem (i) and lemma 4(i) imply that

(i) If SCS and +*(S)=I, then the o-fields SY* (zeT) are
stochastically o-independent mith respect to v*s.

The following two theorems show that, conversely, every
family of stochastically s-independent o-fields may be considered
as such a family of the type mentioned in (i) or (iii).

Theorem VI If the-o-fields X, are stochastically o-inde-
pendent mwith respect to . (veT), and if for every veT the o-mea-
sure u; is almost isomorphic to »., then the stochastic c-extensions
u and v* are also almost isomorphic.

This follows immediately from (i) and Theorem V.

Theorem VII. Suppose the o-fields X, are stochastically
o-independent mwith respect to . (veT), and for every rveT the
o-measure yu, is isomorphic to v. If X is reduced and Y* is o-per-
fect'), then there is a set SC G/ such that v}(S)=1 and u is
equivalent to v*5. )

Let h, be an isomorphism of ¥* on X, such that

T

@ w(¥) =2} (V) =pe(he(c:(Y)) for YeY:.

#) Fomnicki and Ulam [5], p. 245 and 252; Andersen and Jessen [1],
p. 22.
%) Banach [2], p. 160, Theorem 1. Analogously, (i) and Theorem I, for-
mulated for the finite independence, imply immediately Marczewski’s
Theorem II of his paper [7], p. 126.
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By Theorem I and 3(i) the isomorphisms h, can be exten-
ded to a o-homomorphism h of ¥* on X. The o-field ¥* being
o-perfect, there is a mapping ¢ which induces ) A, i. e.

h(Y)=¢ 1(Y) for every YeV.
Let S=¢(&). Since X is reduced, ¢ is one-one. By (d)
plpt(Y)=y*(¥) for Ye¥*
Consequently »*(S)=1 and the mapping

gX)=9¢(X) for XeX
is an equivalence between u and +»*S, q. e. d.

In Theorem VI we may assume e. g. =2, ¥.;=2X,, and
ye= ;. In this case Theorem VI can be formulated in the fol-
lowing more precise form:

Theorem VIIL Suppose & =%, ¥Y,=2X,, v,=pu,. and let
S be the diagonal of 9. The fields X, are stochastically c-inde-
pendent if and only if v*(S)=1. If this equality is true, then u is
equivalent to v5.

By Theorem I and 3(i) there is a s-homomorphism h of ¥* on
X such that

(e) h(X)=X for XeX:=Y,.

By Theorem IV there is an equivalence g of X on S¥* such
that
gX)=S8-¢,(X) for XeX,.

Consequently
6] gh(Y)=S8Y for every YeY™*

Suppose X, are stochastically o-independent. Then (e). implies
(g) y*(Y)=ph(Y)) for every YeY™*.

If YeY* and S-Y=0, then, by (f), gh(¥)=0; hence h(Y)=0.
By (g), »*(Y)=0. This proves that +»¥(S)=1.

Now suppose »*(S)=1. By 6(iii) there is a stochastic o-ex-
tension »*S of all 75 (zeT) on S¥Y*
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We have
1, (X)= 0, (X)=% (¢, (X)) =* (e, () =v*5(S - () =" (g (X)) =75 (g (X))
for every XeX,. Thus the formula
p(X)=*5(g(X)) for XeX

defines a stochastic s-extension of all i (zeT) on X, that is, the
o-fields X, are stochastic o-independent with respect to 4.

Appendix.

Another proof of Theorem I

(A) For every zeT let h, be a oc-homomorphism of Y} in
a o-field Q of subsets of ©@. If the o-fields Y, are o-perfect, then

T

the o-homomorphisms h can be extended to a o-homomorphism h

' of Y*in Q.
) Every o-field ¥, being o-perfect, every o-homomorphism
&) =h () for Ye Y:
is induced ®) by a point mapping ¢, of @ in @, i.e.
& ¥)=g¢1(¥) for Ye ¥,

The mapping ¢(@)={p,(q)},,r of @ in & has the property
g H e, M= (¥)=g,(¥)=h,(c(Y)) for Ye¥,

Consequently, the o-homomorphism A of ¥* in @, defined
bgr tl];e equality h(Y)=¢~'(Y) for YeY*, is a common extension
of all h_.

(B) Suppose Y, is a o-perfect o-field isomorphic to X, (veT).
Let h, be an isomorphism of Y* on X_ If the o-fields X, are
o-independent, then the isomorphisms h, can be extended to an
isomorphism h of ¥* on X.

By (A) there is a o-homomorphism h of ¥* on X which is

a common extension of all h. It is sufficient to prove that
h(Y)5£0 for 0£YeY™.
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Let K denote the class of all cartesian products }0-——PYr,

where 05#Y;¢¥,, and the inequality Y. 3/ holds for an at most
enumerable set of elements t only.

We have
h(Y0)=llh,(Y,) #0

since 0#h:(Y,)e X, and the inequality h.(Y;)=2 bolds for an at
most enumerable set of elements 7.

Let ¥ be the class of all sets YeY¥* with the property:
if yeY, then there is a set YoeK such that ye¥oCY.

It is easy to see that:

(a) the least field coniaining all fields ¥* is contained in ¥y

(b) if Y, eY¥ (n=1,2,..), then ¥Y;+Y;4..e ¥y and ¥, -¥,-...c ¥

Consequently, Y¥=¥* Therefore every set 0#YeY* contains
a subset Y,eK and Oabh( Y,)Ch(Y), q.e.d.

Theorem I follows immediately from (A), (B) and from every
o-field being isomorphic to a o-perfect o-field ).
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On differentiation of vector-valued functions
by
A. ALEXIEWICZ (Poznaf).

In recent years a series of papers appeared, dealing with the
problem of differentiation of vector-valued functions. The most
interesting problem was perhaps to inquire under what hypo-
theses the weak differentiability implies the strong one. The
most complete results in this direction obtained Perus [7].

In the present paper?®) further remarks on this subject will be
added, generalizing %) some results of my paper [i] and of the
paper of PErTIs.

In §1 preliminary definitions are given, and the main result
of this paper is formulated. In §2 and §3 the lemmas are
grouped, upon which the principal theorems contained in § 4 are
based. Finally, in §5 some applications to Analysis are given.

§ 1. Preliminary considerations. X denotes a Banach space,
x| — the norm of the element x of X, & — the space conju-
gate to X, and &(x) — the elements of 5.

By functions 1 mean in this paper the vector-valued func-
tions, i. e. functions from an arbitrary fixed interval J or from
a set E of reals to the space X; for these functions the symbols
x(f), y(#) and z(f) are reserved. Real-valued functions will be
denoted by f(f).

The limit of p(f) as ¢ tends to f, by values of the set P
will be denoted by tlintlprp(t).

2

1) whose results were in part presented September 22th, 1948, to the
VI Polish Mathematical Congress in Warsaw.

% The author is indebted to Professor W. Orlicz for having called his
attention to the possibility of such a generalization.
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