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On differentiation of vector-valued functions
by
A. ALEXIEWICZ (Poznaf).

In recent years a series of papers appeared, dealing with the
problem of differentiation of vector-valued functions. The most
interesting problem was perhaps to inquire under what hypo-
theses the weak differentiability implies the strong one. The
most complete results in this direction obtained Perus [7].

In the present paper?®) further remarks on this subject will be
added, generalizing %) some results of my paper [i] and of the
paper of PErTIs.

In §1 preliminary definitions are given, and the main result
of this paper is formulated. In §2 and §3 the lemmas are
grouped, upon which the principal theorems contained in § 4 are
based. Finally, in §5 some applications to Analysis are given.

§ 1. Preliminary considerations. X denotes a Banach space,
x| — the norm of the element x of X, & — the space conju-
gate to X, and &(x) — the elements of 5.

By functions 1 mean in this paper the vector-valued func-
tions, i. e. functions from an arbitrary fixed interval J or from
a set E of reals to the space X; for these functions the symbols
x(f), y(#) and z(f) are reserved. Real-valued functions will be
denoted by f(f).

The limit of p(f) as ¢ tends to f, by values of the set P
will be denoted by tlintlprp(t).

2

1) whose results were in part presented September 22th, 1948, to the
VI Polish Mathematical Congress in Warsaw.

% The author is indebted to Professor W. Orlicz for having called his
attention to the possibility of such a generalization.
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The symbol |E| will denote, as usually, the Lebesgue mea-
sure of the set E, and |E|. will denote the outer measure of the
same set.

A subset 5, of the set & will be called fundamental for X
if, given any £>0 and xeX, there exist elements §1,80, ., 6ne
and real numbers «,,a,,...,a, such that

Hf”:l, and [f(x)f>”x”_€ for 5201§1+0252+.-~+an§n-

In §1, §2, §3 and §4 &, will stand for an arbitrary but
fixed set fundamental for X;in § 5 this set will be specialized to
concrete cases.

We will deal with the following mnotions of differentiability
of vector-valued functions:

A function x(f) will be said to be strongly differentiable at
ty to x,, if the expression

(1) x(ty+h)—x (1)

tends to 0 when h—0; the element x, will be called the strong
derivative of x(t) at t,, and denoted by x’(t,).

A function x(f) will be said to be &, -meakly differentiable
at f, to x,, if for every {e5, the expression

@ £ (x (tH—h})l_x (t,)

tends to &(x;) when h—0; the element x, will be termed the
Ey-meak derivative of x(#) at t,, and denoted by « (t,).

The function x(f) will be said to be approximately " strongly
differentiable at 1, to x,, if the expression (1) tends approxima-
tely to 0 when h—0; in this case the element x, will be termed
the strong approximate derivative of x(f) at t,, and written
x, (fo)-

It is obvious that the elements x'(f,), x,(t) and x (t,) are
uniquely determined, if existing. If the function x(f) is Ic’lifferen—
tiable at any point of a set E to the element y(t) according to any
one of the above definitions, I shall say that x(f) is differen-
tiable in the respective sense in E to y(t).

The definition of the differentiability a.e. (almost everywhere)
in E is obvious.

icm

On differentiation of vector-valued functions. 187

1 shall also consider another notion of differentiability, which
is not so closely related to the behaviour of the comsidered
functions at particular points.

The function x(f) will be said to be Z,-pseudodifferentiable
to y(t) in the set E, if for every ée, there exists a set Hi, de-
pending on &, such that

@ |E—H=0,
(i1) %§(x(t))=§(y(t)) at any point of Hg.

In this case the function y(f) will be termed the Zymeak
pseudoderivative of x(t) in E, and denoted by x/(f).

If, given any £68,, there exists for the functio.n x(f) a_set
H: satisfying (i) and such that &(y(f)) is the approxmlfite derlvz.a:
tive of £(x(#) at any point of H, the function x(f) w11} be said
to be &,approximately pseudodifferentiable to y(f) in E; t.he
function y(£) will be termed the E,-approximate pseudoderivative
of x(f) in E, and written x;ap(t).

The above definitions are due essentially to Perms [7).

A function x(f) will be said to be essentially separably palued,
or briefly e.s.v., in E, if there exists a set H such that |H[=0,
the set [ {y=x(1), teE—H) %) being separable.

The main result of this paper is included in the following.

Theorem 1. Let the function x(f) be Eimeakly differentia-
ble in a set E, and let x,(t) be es.v. in E. If

= x(t+72—x(t)l1'<oo

h->0
at any point of E, then x(t) is strongly differentiable a.. in E
to x (t). '

Corollary 1. Under the hypotheses of Theorem 1 there exists
a set HCE such that |E—H{=0 and

d .
“ =E(x (L
@ ¢ (e ()=, 0)
for every teH and every functional & (%), linear on X.

3 i. e, the set of the y’s satisfying the conditions in ( )
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The hypothesis of «x, (f) being e.s.v. cannot be removed in
Theorem 1. Gerrannp ({4], p. 265) has given an example of a function
sAC, (see § 2) everywhere 5y-weakly differentiable (2, being a fun-
damental set), and nowhere strongly differentiable, but the 5,-weak
derivative of this function is not e.s.v., as may be easily verified.

§ 2. Lemmas. A function x(f) will be said to be s4C (strongly
absolutely continuous) on E, if to every >0 there corresponds
a 6>0 such that, given any finite sequence {(a:,b)} of non-
overlapping intervals the endpoints of which belong to the set E,

;:la,-——bil < implies g,le(ai)—x(bi)H <e.

Lemma 1. If for a function x(t) the inequality

|| (- B)—x (£)
Th

lim ap
h> 40

<o

holds at any point of a set E, then E can be decomposed in
a sequence of sets on each of mwhich the function x(f) is sAC.

The well-known proof of this Lemma in case of X being the
set of real numbers ¢) can be easily applied to the case of X
being a Banach space.

Let E be a closed set with the bounds « and g, and let
{(arn,bs)} be the sequence of open intervals contiguous to E, con-
tained in the closed interval [a,f]. Then, x(f) being any fun-
ction defined in a set HDE, 1 shall denote by £(t) or, if neces-
sary, by #(t;E) the function coinciding with the function x(t)
on the set E and linear on the intervals (8n,by), 1. e. the fun-
ction defined by the formula

x({) for teE,
2= _
x(an)+f(—1’7;%:;f7(&i)(t—an) for fe(an,by).

Lemma 2. If the function x(t) is sAC on a closed set E, so
is the function %(t;E).

The easy proof is left to the reader.

%) See, for instance, Saks [g], p. 239,
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The function x(f) is said to fulfil the condition (I) at f,, if
there exists a constant M such that for any te]
3 le(t) — x (E) S M1t —1,].

Lemma 3. If the function x(f) fulfils at any point of the-
set E the condition (I) and is strongly approximately differentia-
ble in E, then x(t) is strongly differentiable a.e. in E.

Proof. Denote by T, the set of the elements f, at which (3)

holds with M<n. Each of these sets is closed, and EC D T,. De-
n=1

note by D, the set of the points of density of the set 7,. By
Density Theorem it is sufficient to prove that x'(f) exists at any
point of the set ED,. Let t,e ED,, and write xg== (). There
exists a set P for which ¢, is a point of outer density such that

Lo llx®—xty) |
lim, | == s 0.
Hence
. x(f)—ax( _
sy | S5, 10— =0,

and we easily see that £, is a point of outer density of the set
PD,. Let t;—~t,, and, to fix ideas, suppose that #;<Cf,. Then

[(t:i,t) PDule __
(4) T:t, =§ —>1.

In the interval (f;,f,) there must exist at least one point =
such that 7 PD, and
1

'L‘i—ti — ( __)
tu—__ti<a; 11—t i)

for in the contrary case the interval (f,t:~}&(fo—%:)) would be
contained in the set (4,f,)—PD,, and hence

[t 49 PDle < (ty—t) —eclly—t)
<ttt —a=lta—t)8(1—1),

contrarily to (4). Since

x(t) —ax (ty) x(t,»)—x(n)_l_x(ﬁ)—x(to), i‘x(ri)—x(to)__xo}|—>0,

= Ti"‘to

t—t, ti—t, t—1,
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x (k) —x (@) =T

_|xt)—= )],
““T;di';_ﬁ -AHA ti“"‘Ti t:‘—“ ) <7181,
we get
() —x(t) _ x@)—x(t) Zf_—_fg:( _hom\xm—x(ty)
_._.m_"_ = ‘n—"to ti—-to 1 ti"‘to) 'L'i"—to X,
as i->co. Hence
x(t)—x(t)
H t—1, x| 0.

Lemma 4. Let x(#) be sAC on a closed interval ], let x(1)
be Eapproximately pseudodifferentiable in J, and let x.(0) be
esp. in J. Then x(f) is strongly differentiable to x,.(f) a.e. in J

Proof. It is obvious that x(f) being continuous on [ is es.v.
in J. Since y()=x,,(f) Is also es.v. in J, we may suppose
that the space X is separable. By a theorem of Bawacn ([3], p. 124)
there exists a sequence {£:} of elements of Z,, weakly dense in
Z,. Denoting by {£¥} the sequence of linear combinations with
rational coefficients of the &’s of norm less than 1, we have

sup |&4(x)|=llx]| for every xeX.

Thus the set 5, composed of the &’s is fundamental for X,
and x (f) is £,-approximately pseudodifferentiable to y@® in J. The
real-valued functions &%(x(f)) are absolutely continuous on J.
Hence x(£) is &,-pseudodifferentiable to y (f) in J. Thus Lemma 4
results from a theorem of Prrms ([7], theorem 2.6).

§ 3. Measurability. A function constant on each of a finite
number of measurable sets is termed simple.

Fach function which is the limit of an a.e. convergent se-
quence of simple functions is said to be measurable (Bocuner, [3]).

Any function coinciding in the set E with a measurable fun-
ction is said to be measurable in E.

The - function x(f) is said to be Zymeakly measurable, if for
each £e, the real-valued function &(x(#)) is measurable.

If, given any £¢Z,, the real-valued function £(x(#)) coincides
in the set E (measurable or not) with a measurable function g,(t),
the function x(f) is qualified Z,-roeakly measurable in E.
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Lemma 6. If the function x(t) is Z,-meakly measurable in
a set E and es.v. in E, then x(t) is measurable in E.

The proof runs quite similarly as in a paper by Perms ([6],
proof of theorem 1.1).

§ 4. Principal theorems. The following theorem is analogous
to Theorem 1:

Theorem 2. Let the function x(t) be measurable in E and
Ey-approximately pseudodifferentiable to y(t) in E. If the fun-
ction y(t) is e.s.o. in E, and
5) Timap ]i@#’i@ | <

I

h—0

at any point of E, then the function x(t) is approximately stron-
gly differentiable to y(t) a.e. in E.

Proof. We can suppose without loss of generality that the
space X is separable. By Lemma 6 there exists a sequence
{yn@®)} of simple functions converging to y(f) a.e. in E. The set
E, of the points at which y*()=1im y.(f) exists and (5) holds is,

as may be easily seen, measurablg:)and |E—E,|=0. By a theo-
rem of Bawacu ([2], p. 124) there exists a sequence {&} of ele-
ments of 5,, weakly dense in 5,. The set &, of the linear com-
binations with rational coefficients of the &.’s is fundamental for
X and we easily observe that x(f) is Z -approximately pseudo-
differentiable to y*(f) a.e. in E,.

Let E, be the set of the points at which

. t+h)—x(t
11151_)&0p £ (x—(—i_—T)l————w— y*(t)) =0 for any &e5;.

The set E, is measurable, and |E—E,|=0. We shall prove
that x/ (f)=y*(t) exisis a.e. in E;=E,F,.

ap oo

By Lemma 1 the set E, can be represented as a sum 2H,
n=1

of sets on each of which x(f) is sAC. Since the sets K, of all
points of outer density of the set H, are measurable, the sets

E,K, are measurable; moreover |H,—Kn{=0. Hence

|E, _n21E3 Ka|=0.
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The function x(f) being measurable, it can be proved similarly
as for real-valued functions that for almost every teFE, there
exists a set E; for which ¢ is a point of density, and

HH,]Ef x(t)=ux ().

Thus, any point of K, bemg a point of outer density for
H,, and x(t) being sAC on H,, we can easily prove that there
exists a set R, of measure 0 such that x(f) is sAC on L, =E,K,—R,.

It is sufficient to prove that x(f) is approximately strongly
differentiable to y*(f) at almost every point of L,. Let £>0
be arbitrary. F being any closed set such that FC L, and
|L,—F|<<e, put z()==x(t;F). The function z(f) is evidently
esv. in J and is sirongly differentiable to ¢;=rconst. in any
interval J; contiguous to F. Since for every &eZ, the real-valued

function &(z(t)) is sAC on J, the derivative ng(z(t)) exists a.e.
. d
in J; moreover, a—tf(z(t))=£(y*(t)) a.e. in F. Thus x(f) is & -ap-

proximately pseudodifferentiable to y*(f) in F. By Lemma 4 z(f)
is strongly differentiable a.e. in F} it follows that at almost any
point teF

2z, (t) =, () =y* )=y (f).
The number ¢>>0 being arbitrary, the above relation holds
a.e. in L.
Theorem 1 is an immediate consequence of the following
Theorem 3. Let the function x(t) be &,-approximately
pseudodifferentiable in E to a function y(t) es.no. in E, and let
h0 h

at any point t of E. Then x(f) is strongly differentiable to y(f)
a.e in E.

|<es

Proof. It is sufficient to prove that, given any point t,eE,
there exists an interval I=(a,f) including the point #,, in which
x’(t) exists a.e. in E. By (6) there exist for any t¢E two numbers
M(t) and 6(f) such that

lt—tl<é(t) implies |lx(@)—=x()l<< M@®)|x—t|.
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Write I=(t,— 8 (t,),t,--6(t,); the function x(t) is then bounded
on I, i. e lx@®<A4.
Let ¢ be any point of the set IE. We easily observe that

el implies Hx(r)—x(t’)!l<[M(t’)+§%]lw-—t’].

Thus the function x(f) fulfils the condition () on IE. Hence
%(t) is continuous in IE. We can suppose that x(f) is measurable
in IE. Applying Theorem 2, we see that x,(f) exists ae. in IE,
and by Lemma 3 also x'(f) exists a.e. in IE.

Any function Z-weakly differentiable will be now simply
said to be meakly differentiable.

Theorem 4. Let x(f) be meakly differentiable in a set E to
y(t). Then x(t) is strongly differentiable a.e. in E to y(t) 5.

Proof. Since, given any tekE,

HER =) ey 1),

£eE implies limf(
h—0
we see, applying a theorem of Banack ([2], p. 80), that the condi-
tion (6) is satisfied at any point of E. The function.y(f) being
es.v. by a theorem of Perms ([0], theorem 1.2), we can apply
Theorem 3 to get the conclusion.
A function x(t) is said to be Lipschitzian, if

lloe (£,) — x (Bl < My — 1]

with M non depending on f, and on t,.

A Banach space X will be said to have the property (D), if
every Lipschitzian function from J to X is strongly differentiable
ae. in J ).

Examples of spaces with the property (D) are furnished
by the uniformly convex, the reflexive, and the locally weakly
compact spaces (Perrs, [7], p. 262).

5) This theorem is a slight generalization of theorem 2.9 of Pettis ([7], p. 262).
§) This condition has been introduced by Pettis ([5], p. 427).

Sindia Mathemalica. T. XL 13
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Theorem 5. Let the space X have the property (D). If for
a function x(t) the inequality

— f —x(t
@) 1111.,3% x_(tj"i}z_x_()u<oo

is satisfied at any point of a set E, then the strong derivative
x'(t) exists a.e. in E 7).

Proof. It can be easily shown that the set of the points at
which (7) holds is measurable. Hence we can suppose that the
set E is so. By Lemma 1 there exists a sequence {E.} of sets on

each of which x(#) is sAC, and such that E= é‘tE"' Since x (f)

is continnous at any point of E, the function x(f) is sAC on
EE,. It follows that the sets E, may be supposed to be mea-
surable. )

Let n be fixed. Given an arbitrary ¢>0, denote by F a
closed set for which FCE, and |E,—F|<<e. Write z(f)=4%(t, F).
This function is sAC by Lemma 2. Hence 2'(t)=ux[,(f) exists
a.e. in F by a theorem of Perms ([5], theorem 7).

§ 5. Applications. Consider first as the space X the space ¢
composed of the convergent sequences x = {a,} with the norm
|l == EF? |an|. This space is separable. Any convergent sequence
of real-valued functions {f,(®} defined in J may be considered
as a function x(f) from J to c.

The functions f,(f) are said to be equidifferentiable at t,, if
the derivatives f,(t,) exist, and if for every ¢>>0 there exists an
7>>0 such that

Ihl<<n implies |f,(t,+h)—F,(t)—hfiE)I<|hle for n=1,2,...

It is easy to see that the strong differentiability of x(f) at
t, is then equivalent to the convergence of the sequence {fi(£)
together with its equidifferentiability at #,.

Consider the set Z, composed of the functionals

(8) Lx)=a;,, &(x)=a,,

7) This result may be considered as a generalization of Den joy’s relations
to vector-valued functions,
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The set 5, is fundamental for the space ¢. The 5,- weak differ-
entiability at #, is equivalent to the convergence of the sequence
{f.(t)}. Since the functional £(x)=lima, is linear in ¢, we get,

n n—oo
applying Theorem 1 and Corollary 1, the following

Theorem 7. Let {f,(f)} be a convergent sequence of real-
valued functions, and let the derivatives f,(t) exist in a set E. If
the sequence {f.(t)} converges in E, and

lim sup |t’}_ﬁ'.h)_""ﬁ@ <oo 8
>0 n=142,...| h
at every point of E, then the functions fo () are equidifferentiable
a.e. in E; moreover,
4 (timf,(0) =limf; () ac. in E.
dt n—reo r n—yoa

In a similar mamner we can apply Theorem 1 and Corol-

lary 1 to the space I® of the sequences x={an} such that

lx|P=Y at< oo, considering as &, the set of the functionals (8).

n=1
We easily get
Theorem 8. If the real-valued functions 1.t are d?ffer-
entiable at every point of the set E, and satisfy the conditions

Spo<e, PG

and
Em L S[F. (B —f P <co at every t of E,
h=0 h n=1

then there exists a set H such that |E —H|=0, and

] hy—f,(t 12 .
tim 5 [EEHRZRE_p <0 in

h—0 n=1

- . dl 3 N g
moreover, né;ai < oo and teH imply i ( élanfn(t)) = 1.2= 2 fi.{).

8) This condition may be replaced by the following one:

fn(x+h}:)—fn(x) <oo.

n

h,—0 implies lim
n-yeo

13*
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Remarque au travail ,,Sur les bases statistiques®
par

S. HARTMAN (Wroctaw).

Les termes et les notations employés dans la suite sont les
mémes que dans mon travail précédent!). Parmi les résultats
de ce travail se trouve une estimation de la valeur de L(F,n)
pour un systéme F de deux fonctions continues périodiques
fi(x) et fy(x) & périodes incommensurables, ce symbole désignant
un nombre positif tel que tout intervalle de longueur L(F,x)
contient au moins une 7-presque-période commune de fi(x) et
fa(x). L’estimation en question fait I'objet du théoréme II.

Le but de cette remarque est d’en donner une démonstration
plus simple et qui permet méme d’en améliorer la thése 3. En
conséquence, la thése du théoréme III, qui donne une estimation
de L (F,n) pour un cas spécial et dont la démonstration est basée
sur le théoréme II, est susceptible d’une amélioraiion analogue.

Montrons d’abord un lemme concernant la répartition mod 1
de la suite {nd}, ot ¥ est un nombre irrationnel fixé.

Lemme. Soit I un sous-intervalle de longueur g de Pinter-
valle demi-ouvert {0,1). Soient q un nombre naturel et p un entier,
tels que |q9—pl<<p. Soit enfin {Qi} la suite croissante de tous
les entiers non-négatifs tels que R(¥Qy)el. Alors

o) |Qui— Qi <E (5= +1)q

Démonstration. La distance entre les points R(kg®) et
R{(k-+1)g9) (k=0,1,2,...), prise le long du plus petit arc de la
circonférence C' de périmétre 1, est égale a min [R (g9, 1— R (gd)];

(i=1,2,...).

1) Voir Studia Mathematica 10 (1948), p. 120-139,
?) L'idée de cette simplification m’a été suggérée par K. Florek.
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