On sequences of operations (II)
by

A. ALEXIEWICZ (Poznai).

In this part!) we deal with the sequences of linear opera-
tions in spaces which are more general than the Banach spaces.

Terminology and notation.

X.Y,... will denote linear spaces.

If a space X is a limit space of Fréchet, i. e. a notion a of
limit (called also notion of convergence) is defined in it, satis-
fying the usual postulates of Fricuer, we shall denote the conver-
gence of a sequence {x.} to x,, according to the notion of limit «,
by writing 2.5 %o or (¢)limx.=x,; then the sequence {x.) will
be called a-convergent to ,;co. :

The linear space X provided with the notion a of limit will
be denoted by X..

It may happen that in the same space X several notions of
limit a,B,... will be distinguished.

The convergences ¢ and g are called equivalent (in symbols:
a=f) if x.%x, implies x5 x, and conversely. The conver-
gence a will be called non-mider than the convergence § if
Xa > x, implies PR xq; if the convergence a is non-wider than

the convergence g, and if a8, then a will be called narrorer
than g

We say that the space X, has the property P (e. g. satisfies

a postulate) instead of saying that the convergence a in X has-this -

property.

*) For the first part see this volume, p. 1-30.
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The sequence {x.} will be termed a-bounded if, given any se-
quence {9} of real numbers, 9,0 implies Gxn-> 0.

A sequence which is not a-convergent or not a-bounded will
be said to be a-divergent or a-unbounded respectively.

A set D will be called dense in X, if for every element xeX
there exists a sequence {x.} of elements of D which is a-con-
vergent to x.

In the sequel we suppose that all the notions of limit have
the property that both the addition and the multiplication by
real numbers are continuous in both variables. All the spaces
with such a notion of limit will be called A-spaces.

An operation U(x) from a A-space X, to a A-space Y
will be called (X.,Ys)-contfinuous? at x, if x.3 x, implies
U BUxy). If this continuity holds at any point x of the
space, U(x) will be simply said to be (X.,Y3)-continuous.

Any operation U(x) satisfying the equation

Uax—+by) = al (x) + bU(y)
for real a and b will be called additive.

An additive and (X.,Ys)-continuous operation will be called
(Xa, Yp)-linear. If ¥ is the space of real numbers with the usual
notion of limit, any (X.,Ys)-linear operation will be termed
a (Xa)-linear functional.

In the case when the a-convergence is strong (i. e. equiva-
lent with the convergence according to the norm) in a F*-space
X, we denote the space X, by X, and omit the symbol « (ex-
cept in section 2.2).

Contents.

This part is concerned with the problem under what condi-
tions the following statements hold:

IL. Let U(x) be the limit of a sequence {Us(x)} of (Xa,Yp)-linear
operations p-convergent everymhere. Then Ul(x) is (X, Yg)-linear.

1. Let {U.(x)} be a sequence of (Xa.,Yp)-linear operations
g-bounded for any x, and p-convergent in a sef D densein X..
Then this sequence is f-conpergent everymhere.

ML Let {Upg(x)}g=12.... be a sequence of (X.,Yp)-linear opera-
tions, and suppose that, given any p, there exists an element x,

2) This notation has been introduced by Orlicz ([14}, p. 61).
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such that the sequence {Up(xp)le=1,2,... is p-divergent. Then there
exists an element x, such that the sequences {Up(xy))e=t,0.... are
p-divergent for p=1,2,... i

L. Let {Ug(x)}e=t.2.... be a sequence of (X.,¥p)-linear opera-
tions, and suppose that, given any p, there exists an element x,
such that the sequence {Up(¥p)e=12... is p-unbounded for
p=1,2,... Then there exists an element x, such that the sequences
{Upg(x)}g=t,2... are f-unbounded for p=1,2,...

In order to point out what spaces are referred to in I?, II
HIf and III} we shall sometimes denote these statements also by
MX o Yp), ITH(Xe, Yg), II(Xe, Y), and IIIL(X,,Ys) respectively.

This problem was investigated in 1933 by Mazur and
Orucz {12] in conmection with the spaces conjugate to
By-spaces. Kantorovirce [9] has proved the truth of I (Xe,Yp)
and of II'(X.,Yy) in the case of X, and ¥, being Kantorovitch
spaces. Finally, Frcarensorz [7] has shown that T holds in a con-
crete A-space which is not a Banach space.

In this paper first two groups of postulates concerning the
notion of limit will be analysed, and several examples of spaces
satisfying some of them will be given. Then it will be shown
that, contrarily to the spaces considered by Banach, in general
A-spaces theorems I', II! and III! are independent of one another,

Finally, it will be shown what sets of previously considered
postulates are sufficient for [, IT}, I, or III} to be true. The
theorems contain the results of the authors mentioned above.

1. Postulates. Let X. be a A-space. We will need the fol-
lowing two groups of postulates (x, and x, denoting the ele-
ments of X, 4. and #. — real numbers, and {ni}, {q.}, {pa}s {gn}
and {r,} — sequences of indices, i. e. increasing sequences of po-
sitive integers):

() If x50, then there exist sequences J,—oco and {n}
such that lkxnk-“>03).

(@) If xx30 and 40, then there exists a subsequence

{%n;} such that the series DA Xn IS a-convergent,
K=t

3) This postulate constitutes a slight modification of a postulate of Fich-
tenholz {[6], p. 196).
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(a)) If x50, then there exists a subsequence {x,} such

that the series 3'xu, is a-conpergent?).
=1

(ag) {xx} being an arbitrary sequence there exists a se-
quence {#.} of numbers, all different from 0, such that ¥'{i.!<<co
oo n=1
implies the a-convergence of the series ' At xn.
n={
(by) If the sequence {x.} is not a-convergent to 0, then there
exists a subsequence {x..} such that every subsequence of {xu.}

is not a-convergent to 0°).
(by) If (@)limacpy=x, for p=1,2,... and, given any sequence

{gp} of indices “the sequence (xp,} is a-bounded, then the se-
quence {xp} is a-bounded.

by If () lign xp==xp for p=1,2,... and, given any sequence
{gp} of indices, qupio, then x,50.

(by) If (@) limoxp=0 for p=1,2,... and, given any sequence -
{gp} of indices, tghe sequence {3} is a-bounded, then there exists
a sequence {rp} of indices such that xprp—aiO.

(b)) If (0)limxp=0 for p=1,2,... and %40, then there

q
exists a sequence of indices {q,} such that

“p
(o) lim }e: g, 205, = 0,
P izp
mwhere {&} is an arbitrary sequence of zeros and ones, and wp>Pp.
(b)) If, given any pair {p,} and {q,} of sequences of indices,
(%p,—x,,) =0, then the sequence {xu} is a-convergent.

It is obvious that (aj) implies (a;), and (b;) implies (by). The
pair of postulates (a,) and (a,) implies (ay). )

4) Introduced by Mazur and Orlicz [12].
5) Introduced by Fichtenholz ([6], p. 195).
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Given a convergence a, it is customary to introduce a
new convergence of, called the sfar-convergence, as follows:
(a*)limx»=x, means that any subsequence {x.,} contains a sub-
sequgnce which is a-convergent to x,.

The star-convergence satisfies the postulate (b,); moreover,
if the convergence a does not satisfy (b,), and if the conver-
gence a; satisfies (b;) and is wider than «, then o* is non-
wider than a,, i. e. ¢* is the most narrow convergence satisfying
(b,) and wider than a.

2. Examples. In this section several examples of 4-spaces satis-
fying some of the postulates considered in section 1 will be given;
the proof that these spaces are .-spaces is omitted, and some
obvious properties of these spaces will be also left without proof.

If the space X is composed of real-valued functions defined
in a set E, the addition and the multiplication by real numbers
may be understood in the usual manner.

2.1. Normed spaces. Suppose that in the linear space X
a functional |jx| is defined satisfying the following postulates:
1% Jlxfi>0,
20 |lxl|=0, if and only if x=0,
30 fla+yll <llxll4-1lyll,
4 2,—>0 implies ||A.x|—0,
5% |lxall >0 implies ||Axa||—~ 0.

The space X will be called F*-space, and the functional
llxll — F*-norm. .
If the postulates 4° and 5° are replaced by the stronger one
6% fidxl|=|a]llxl,
the space X will be called B*-space, and the norm ||| — B*-norm.

In any F*- and B*-space the strong convergence (called later
on simply convergence or convergence generated by the norm) is
defined in the usual way: {x.} converges to x, if [lan— ]| = 0.
If this convergence satisfies the postulate (bs), the space X is
said to be a F- or B-space (called also Banach space) respectively.

It is obvious that the F*-spaces satisfy the postulates (a,),

(by), (by), (by), (by), (b)), and that the F-spaces satisfy all the postu-
lates (a,)-(by).
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2.2, The two-norms convergence®). Let in a linear space X
two F*-norms |lx|| and [Jx]|* be defined, satisfying the following
condition:
;) llxall >0 implies |jaal/* - 0.

Denote by » and »* respectively the convergences generated
by the norms ||lx|| and [lx|*. A sequence {x.} is said to be
y-convergent if it is v-bounded and ||xn—xo/|* - 0.

The convergence y will be termed the tmo-norms convergence.

2.2.1. The y-convergence safisfies the postulates (as), (as), (by),
(by) and (b,).

Proof. We only prove that the condition (by) is satisfied.
Suppose () lim xp,=0 for p=1,2,... and 4,—0; hence

q

lim [|2265,)| =0 for p=1,2,...
g-roe

We easily construct by the diagonal method a sequence {gn}
of indices such that

1A Xpg,l|<<1/2  for p=1,2,... and n=p,p+1,...;
& being zeros or ones, it follows

tﬂP ﬁ)p
“26"1%9‘?’%” \<Z ”Zqiqui
i=p i=p

and by (n,)

1

1 o1
<§;+§,ﬁ+---+

9%

. mp
(y)Hm Ylei Ay, 2p5, =0.
i=p
The y-convergence does mot in general satisfy the postu-
late (a,). A more precise result is the following:
2.2.2. If the y-convergence satisfies the postulate (a,), then it
is equivalent to the v-convergence”).

Proof. It is sufficient to prove that x5 xp implies
lln — x0|| > 0. Suppose it is not the case; then there exists an
¢>0 and a sequence of indices {k,} such that lloe, — x5l > &3

°) This convergence is a generalization of the notion of limit considered
by Fichtenholz [6] in some concrete spaces.

") This theorem has been formulated in a slightly different form by
Fichtenholz ([6], p. 203).


GUEST


206 A. Alexiewicz.

by (a) there exists a sequence {l.} exiracted from {kn} and
a sequence of numbers 1,—co such that ln(x,n—xO)LO; hence

43, (5, — =l =I5, — 2,1 >0,

which is impossible.

It is obvious that y-boundedness is equivalent to »-boundedness.

223. If ||x|| is & F-norm, the y-convergence satisfies the
postulates (a,) and (as).

Proof. We prove only that (a,) is satisfied. Let x.50
and 1, —0; it follows ||Z=xa||—> 0. It is sufficient to choose nx so
that [|An, xm, || << 1/2%, :

If the norms ||x|| and [|x||* are both of F-type, the condi-
tion (n,) implies by a theorem of Bawnacu ([3], p. 41) that the con-
vergences » and +* (and hence y also) are equivalent.

The following particular case of two-norms convergence is
important. Let |x|| be a F-norm. Consider the space X with
the norm ||x||*; it can be completed (by addition of new ele-
ments}) to a F-space X* without altering the norm; let |lx||*
denote this norm in X*. Let us formulate the following conditions:

(o) If x,€X, xeX*, |lx,—x,||*—>0, and the sequence {x,}
is y-bounded, then x,eX.

(g If xyeX, x,eX, and ||x,—xy||¥*—0, then lim||x,||>||x,]|.
n—yoo

The conditions (n,), (n,) and (n,) being satisfied the two-norms
convergence will be termed strong and will be denoted by »".

We need the following lemma

224, Let X be a F*-space. A necessary and sufficient con-
dition for the sequence {x.} to be bounded is the boundedness of
the sequence {xp,—x,), where {p.} and {q.) are any sequences
of indices.

Proof. The necessity is obvious. Suppose now the condition
satisfied. It follows that, given any £>>0, there exists a 60 and
a M>0 such that |2|<<4, and that p, g> M implies || (3, — x5){| < e.

Suppose the sequence {x,} unbounded; then there exists
a sequence A -»0 such that ||4s,xn.||>> 5, where ng->co. Choose
6>0 and M such that |1|<4 and p,q>M imply |2 (xp—xp) || << /3.
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There exists a P such that ||2, x,]|<<&/5 for n>P. Hence k being
sufficiently large we have

“Z”kxnk” < “}“"k (x"k_xM)“—}_”Z"kxM“ <2/3 e,
which is impossible.

2.2.5. The y'-convergence satisfies the postulates (by), (b;) and (b,).
Proof. We first prove that (by) is satisfied. Let (y')lim Xpg==2p

for p=1,2,... Suppose that g,—co implies (y')limxmjzo, and

let 2,—0. It follows that, given any ¢>0, we have N2l <&
for p,q sufficiently large. Since

Lim [|Ap pg — Ap 2y || ¥ =0 for p=1,2,...,
g0
we get by (n,)
1Apxpll<<e for p>P(e);

bhence [|A,xp[|—>0. It is obvious that [lap*>0; it follows
xpz>0-

We prove (b;) only. Suppose that p.—>co,g.—>co imply
(y’)li:n(xpn—xq,,)=0. By 2.2.4, the sequence {x.) is y-bounded.

Since lim [Ja, — x,]|* =0, there exists an element x,e X* such that
P,q—¥roo
llxp—2,[|*—> 0. By (my) x,eX.

2.3. Kantorovitch spaces. We recall here the definition of
an important class of spaces.

Let X be a linear semi-ordered space, i. e. one in which an
asymmetric and transitive relation x,<{x, is defined for certain
pairs of elements. Suppose that for these inequalities the usual
arithmetical laws hold. Suppose further that X is a conditional
o-lattice, i. e. given any sequence (x.} such that x.<xo (or
xo< a4 respectively), there exists an element x, demoted by
SUp Xn (orn _11112[x,. respectively), such that

n=1,2,,

1° xCx (or x<x respectively) for n=1,2,...

20 xaLx* for n=1,2,... implies x<Cx* (or x*<x. for
n=1,2,... implies x* < x).

Adding the ideal elements —co and --co as usual we can
define the lower and the upper limit by the formulae:

limxn=5up inf xw, limaxa=inf sup Xm.

n n=1,2,... m=n,n+1,.. n n=1,2,.. m=n,n+1,..
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The sequence {x.} is called x-convergent if
[im e = lim a0 7 &= 003
the common value of these elements will be denoted by (x)limx..

A linear space with a x-convergence is called a Kantoro-
pitch space.

Kanrorovircu has shown ([8], p. 134) that

9.3.1. The x-convergence satisfies the postulate (by).

Write |x|=sup (x, -—x,—;x,...) 8); then (x)liman=2x, implies
() lim | 2, — 23| =0, and conversely. We have also [T a0 | << i | .

Adding three supplementary postulates ([8], p. 138)°) we get
special Kantorovitch spaces called regular in the sense of Kan-
torovitch. It follows easily from Kanrorovirce’s results that

9.3.2. The x-convergence in regular Kantorovitch spaces sa-
tisfies the postulates (a,). (a,), (ay), (a5}, (by), (by), (by), (b)) and (by).

The regular Kantorovitch spaces have also the following pro-
perties : !

(I) A sequence {x.} is x-convergent to x,if and only if there
exists an element x4 co such that, given any >0, the in-
equality |xa—x|<<ex holds for n sufficiently large;

(I) A necessary and sufficient condition for the sequence {ax»}
to be x%-bounded is the existence of an element x such that
|x,| <x for n=1,2,...

8 This absolute value has similar properties to those of the reals:
(%1% | <[x: 14 [x), and |ax|=|a||x]| for real a. '

% The set E is said to be bounded from above (from belor) if there -

exists an element x; such that x <{x, (x<Cx) for each x¢E; if the set E is not
bounded from above (below), we write sup E=--co (inf E= —o0)., The supple-
mentary postulates are:

(a) Every set bounded from above (below) has a supremum (infimum), i. e.
X is a complete lattice.

(b) If given a sequence of sets {E,} we have x,= (x) lim sup E,, there exist
finite sets H, CE, such that aq=={x)lim sup H,,. " :

fe) If supE,=oo for n=1,2,..., then there exist finite sets H, CE, such
that sup sup H,=oco. ‘

n=1,2,...
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From the results of Kantorovitch it follows that the star-
convergence corresponding to the »-convergence has the following
property:

2.3.3. The x*-convergence in regular Kantorovitch spaces sa-
tisfies the postulates (a,), (ay), (ay), (ay), (b,), (b)), (b}, (b;) and (b,

2.4. Weak convergences. Let X be a Banach space. A set Q
of linear functionals over X is said to be fundamental (Oruicz,
[14], p. 66), if there exist positive numbers C and = such that

sup [§<C,  sup|é(x)] > &]|x]|.
6 @ £eQ

A sequence {xa} will be termed w-convergent if &(xn) - & (a,)
for each £eQ. The w-convergence will be called also the Q-meak-
convergence. If Q is identical with the set of all linear functio-
nals over X, the w-convergence will be denoted by ¢ and termed
the meak-convergence.

24.1. The w-convergence satisfies the postulates (b,), (b,) and (b3).
Proof. We only prove that (b, is satisfied. Suppose that

(o) lim xpy = for p=1,2,...,
q

and that ¢, co implies qupio. Suppose that the sequence {x;,)

does mot converge to 0. Then there exists a functional £ eQ

such that lim|&;(x;)| =&>0. Given any p, choose g, so that
proo

@p=>p and  [€(xp) — o (xpg,)| <23
we get )
1§ (xpap) [ €0 () | — 1€, (qup) — & ()],
hence Iim|é, (%¢p4,)| > ¢/2. This is, however, impossible since qup—”} 0.
preo
2.4.2. If the o-convergence satisfies the postulate (a;), it is equi-
valent to the convergence generated by the norm.

Proof. It suffices to prove that x,-30 implies |lxa]—O.
The ¢-convergence implies the boundedness of the sequence of
norms (Banack [3], p. 80). Let {x*} be any subsequence of the
sequence {x"}. By (a,) there exist A*—>co and a sequence
{m} of indices such that A% 50; hence @lllkx:kl|<m
and fok [|=+0. From this we easily infer that |x.|— 0.

Studia Mathematica. T. XI. 14
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It is obvious that

2.4.3. The a-convergence satisfies the postulates (ay), (a;) and (b,),
(ba), (b'sY, (by).

2.5. Bo-spaces and their conjugate spaces. Let X be a By-space
(Mazor and Oguicz [11], p. 183), and let {|xl.} be the sequence
of pseudonorms determining the metrics in this space. The space
X may be considered as a F-space with the norm

=1 x|

II=2 v THT

Hence

2.5.1. The space X satisfies all of the postulates (a,)-(a;).

The space conjugate to X is the set & of all linear func-
tionals &(x) defined on X (the addition of elements and their
multiplication being defined in the usual manner). Mazur and
Orucz [12] have introduced in £ the »-convergence, called the
strong conpergence, as follows: (»)lim&.=§, means that there
exists a r>>0 such that & (x) tends to &(x) uniformly in the
sphere [Jx[j<r.

Mazor and Osuicz [12] bave shown that either the space X is
isomorphic with a Banach space, or &, is not (topologically)
isomorphic - with any complete metric space.

It is easy to show that

2.5.2. The space B, satisfies the postulates (a), (a,), (aj), (b)),
(bg), and (by).

2.6, Convergence almost everywhere. Let X be a linear
space of real measurable functions x==x(f) defined on an inter-
val I=<a,b). Let two functions equal almost everywhere be con-
sidered as one element of the space. Call z-convergence the
convergence almost everywhere,

26.1. The sequence {x.} is m-bounded if and only if
lim |xn (t)|<<cq almost everyrohere 1°).
n—yoo

Proof. The necessity only requires proof. Writing
%, () = max (|x, (E)],oe, (B)], ..., =, (©)]),

it is sufficient to prove thai fmx*(f)<<oo. Suppose it is not
n—roo

1) This too follows from a theorem of Kantoroviteh ([8], p. 140).
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true. Since xf(f) <3 (t)<..., we have limx*(f)=co in a set of

n-yoo
positive measure, and by the theorem of Ecororr, there exists a
set H of positive measure such that infx?()=a, —oco. Puiting
teH

#,=a7® we have 9,>#9,>>... and 8,>0. The =-boundedness
of the sequence {x»} implies the existence of a set RCH such
that |H—R|=0 and 9,x,(()—>0 in R. Let t,¢R; choose N to
have |[fnxn(ty)|<<1 for n>N, and put

K=max(|x, (SIRENHIN ---;!xw(tu)l)-

There exists a k,<n such that x}(f)=ux; (f); hence

(t)I<K if k,<N: otherwise [8,x2(t,)| =19, x, (t)|<|9, x, (to] <1.

In both cases [x¥(t)| <max(K,9 !)=max(K,a). This leads to
contradiction: 1<Ca, <al* for n sufficiently large.

It is easy to prove that

2.6.2. The m-convergence satisfies the postulates (a,), (b,), (b)),
(bg) and (by).

If the space X is composed of all measurable functions, then
(ay), (ay), (a) and (by) are also safisfied.

Denote by ¢, (f) the characteristic function of the set E, and
consider the following condition:

(p) 4 being any interval in I, and x==x(f) being any element
of X, the function x(#)c,(f) belongs to X.

2.6.3. The condition (p) being satisfied, every (X )-linear func-
tional is identically equal to 0.

Proof. Let £(x) be a (X )-linear functional, and &(x;)5=0.
We can suppose &(x)==«>>0. Dividing I into two iniervals
4,4, we have either E(xocA1)>/°‘/2 or E(xocAz),>/“/2; hence
there exists an element x,=ux(f) such that &(x,) >%/2 and
%,(£)=0 in a set of measure greater than |I|(1—1/2). Continuing
this process we obtain a sequence {x,} such that &{(x)>%/2"
and x,(t) =0 in a set of measure greater than {I|(1—1/2"). Setting
x¥=2"x we have x *%0 and £(x*)>¢, in contradiction to
the (X,)- lmeanty of E(x)

Tt is well known that a*-convergence is identical with asympto-
tic convergence.

14*
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2.7. The space M. This space is composed of the measurable
and essentially bounded functions x =x(f) defined on an interval
{a,b). Two equivalent functions are considered as one element
of the space. This space with the norm l|xH=eas<s tsgll,a[x(tﬂ 1) g
a Banach space. N

Consider the following definitions of limit:

(i) ()limx,=ax, means that [|x.||<K for n=1,2,... and
lim as xn (£) = x, (t) 13),
n—yea

(i) (%)limx,=x, means that [|x.||<K for n=1,2,... and
X (t) > 2, () almost everywhere,

(iii) (w)limxn=2x, means that x.(f)—>x,(f) almost every-
where. )

Denoting by X* the space of Lebesgue integrable functions
b

in <a,b) and putting ||x|*= f |x(#)|dt, we can easily prove that

y’-convergence is a strong two-norms convergence. Hence

2.7.1. The space My satisfies the postulates (a,), (a;), (b,), (by),
(b;), (by), (b, and (b,).

As may be easily proved, the space M, does not satisfy the
postulates (a;) and (a,).

The space M, is a Kantorovitch space ([8], p. 156) corres-
ponding to the following partial ordering: x,<Cx, means that
x,(t) <x,(f) almost everywhere. The space M, is regular in the
sense of Kantorovitch. It is easy to prove that

2.7.2. The space M, satisfies the postulates (ay), (agh (by), (by),
(by). (b) and (b)), but does not satisfy the postulates (ay), (ag)
and (b,);

2.7.3. The space M, satisfies the postulates (a), (a5, (by), (by)
and (b)), but does not satisfy the postulates (ay), (ay), (b)) and (by).

Y) esssup {x(t)| denotes the greatest lower bound of the numbers k for

which the set F{|x(f)|>k} is of measure 0.
1

1) hg f-"n(f’ denotes the asymptotic limit of the sequence {x, (£)}.
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2.8. The space M* This space is composed of the real func-
tions x==wx(f) defined in an interval {a,b>, two mnon-identical
functions being considered as different elements of the space.
This space with the norm ]|x]|=s<1}ng(t)] is a Banach space.

Consider instead of the x-convergence the same modified by
omission of the word ,almost* in its definition (ii)

The space M} with so modified »-convergence is a Kantoro-
vitch space corresponding to an analogous definition of partial
ordering as in the case of the space M,.

2.8.1. The space M satisfies the postulates (a,), (as), (by), (by),
(by)., (b)) and (b)), but does not satisfy the postulates (a), (ap)
and (b,).

Proof We prove only that (by) is not satisfied. Represent
the interval Iy=<a,b> as the sum I, =2:1L, of open on the right

and disjoint intervals, such that I..; adheres to I, at the right.
Continue the same process with every one of the intervals I,,
and so on. Given any finite sequence a,...,a, of positive integers,
we obtain thus an interval I....«,, open on the right and such
that

©@p

(Il) if (a1—ﬁ1)2+...+(a},——ﬂp)z>0 then L"i’“"“p'lﬂl _____ ﬂp#o,
(if)) lay....a,,, adheres to I, .., at the right.
Put k

»&p

1 fOI‘ tGZ Twl,...,ap.q
. =1

qu(t)—lo elsewhere.

Obviously |xp ()| <1, and limxp, (=0 for each ¢; hence
() lim 2xcpg=0. Let now gp—»co; t}Png;equence {xP,P} is x-bounded,
howqever, it is not »-convergent to 0, since the sequence {xp, (1)}

does not converge to 0 everywhere. In fact, xg, (=1 for tel, ... q;

=E. It is obvious

hence lim xp, (f)=1 for any tellL,,.... %
pyoo =t

that E+0.
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29. The space V*1%), This space is composed of all the
functions x=x(f) which are equivalent to functions of bounded
variation in <a,b); two equivalent functions of V* are considered
as one element of the space. Denote by essvarx(f) the greatest
lower bound of total variation varx®(f) of the functions x*(f)
equivalent to x(f). A function x(f) belongs to V* if and only
if essvarx(f)<<oo. .

29.1. If essvarx, (t) <K for n=1,2,..., and lim as x, () = x, (f),
then essvar x(t) <K. noree

Proof. Choose a function x¥(f) of bounded variation equi-
valent to x,(f) and such that varx¥(f) <essvarx,(f)+1/,. There
exists a subsequence {xn,,(t)} convergent to x,(f) almost eve-
rywhere. By the theorem of Hrrry **) the sequence {x ()} con-
tains a uniformly convergent subsequence {x:k(t)}. The function
x5 (f) =klhi+n°1qx,,’f;c () is equivalent to x,(f); moreover

var xjy (t) < lim var % () <K;

n—oo

hence ess varx, (f) <K.
If we introduce in V* the norm by the formula
[lx]| =esssuplx ()|} essvar x (),
V* becomes a Banach space.
Now we introduce the following convergence:
()limx,=x, means that essvarx, () <<K for n=1,2,..

and lim“as x, (t)=x,(t).
n-yoa

L]

The 9’-convergence is equivalent to a strong two-norms
convergence. To see this it suffices to denote by X* the space
b

of the integrable functions and to put ||x|*= f |x(f)|dt; the con-
ditions (n,) and (n,) follow from 2.9.1. Hence :

2.9.2. The y'-convergence satisfies the postulates (a,), (ay), (b,),
{by), (by), (by), (b) and (b)), but does not satisfy (a,), (a}), as easily

can be seen.

) considered first by Orlicz [13].
') see, for instance, [16], p. 80.
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2.10. The space L. In the well-known space L of Lebesgue
integrable functions in {a,b)> consider following notions of con-
vergence:

i) (=) lrilmxn=x0 means that x, (f) - x,(f) almost everywhere,
and that there exists an integrable function x,(f) such that
Jae, ()} < 2, () for n=1,2,...

5

(i) (n)limx,=x, means that fxn(t)dt—> fxo(t)dt uniformly
in the interval <a,b),

(i) (9 limx, = x, means that lfxn(t)th<K for n=1,2,...
b b ' s

and 0<s<1, that [x,(f)dt > [x,() df, and that limas[x,(f)dt
a a nyoo g

=fsxo (t)dt.

Kantorovitc has shown ([8], p. 156) that the space L, is
a regular Kantorovitch space corresponding to the same partial
ordering as the space M,. Hence

2.10.1. The »-convergence satisfies the postulates (a)), (a,), (a,),
(a5), (by), (b)), (by), (b,) and (b,), but does not satisfy (b,), as easily
can be seen.

n~convergence is the convergence generated by the norm

Hx[[*:maxmb(t) dtl; this space, however, is a B*-space and
als<h

not a Banach space. This follows from the proposition:
2.10.2. The space L, satisfies the postulates (a)), (a5), (b)), (by),
(by), (by) and (b)), but does not satisfy the postulates (a,), (a), (by).

b
Proof. (a,) follows by formula Hxl]*<}|x||=f|x(t)ldt. We
prove now that (a,) is not satisfied. Denote by u(#) the function

equal to the distance between the number ¢ and the set of all
integers. It is well-known (Vanper Waepen [15]) that the

function fﬂ_(__{lﬁ is continuous and nowhere differentiable. It
n=1

is easy to prove also that, given any sequence of indices {n},
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4 t)

the series 2’ represents a function with the same pro-

perties. Put

£ 1 for n<t<n+1/2,
olf)= —1 for nd1/2<t<n-1,
ay=2E8.
2 .
In order to establish the proposition suppose for instance
that a=0, b=1; then [,(1dt="%; hence |lx,][* 0.
0 2

Put 2,=2-*, and let {n,} be any sequence of indices. We
prove that the series flnkxnk is not n-convergent. In fact, in the
k=1

contrary case there would exist a function x,(f)eL such that

f Zm:'lnkx"k () dt - f x,(t)dt uniformly in s as m—>oco. On the other

hand fZ'ZnL x, (f)dt —>Z )s and this would imply the diffe-

0 k=1

k
rentiability almost everywhere of the function Z t)

,  which

is impossible.

To see that (bs) is not fulfilled, note that the sequence con-
structed above fulfils the condition of Cauchy and is not con-
vergent.

The following theorems can be proved:

2.10.3. The space L, satisfies the postulates (a,), (b)), (b (b'
(b)) and (b,), but does not satisfy the postulates (a,), (a,), (a2 b,).

2.10.4. %y The general form of the (L,)-linear functwnals is
b
) §@)=[ x(®h (b dt,
mhere hit) is an arbitrary function of bounded variation.
The general form of the (Ly)-linear functionals is (1) roith h(t)

absolutely continuous.

%) This theorem is proved in [2] in a slightly more general form.
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2.11. The space L {X}. This space is composed of the func-
tions x=x(f) from a real interval <a,b> to a Banach space X,
integrable in the sense of Bocmner ([3], p.265); two equivalent
functions are considered as one element of the space.

Introducing in L{X} the norm by the formula ]]xﬂ—fllx t){ldt
we get a Banach space.

Consider the following notion of convergence:

(#)lim x, = x, means that x,(f) > x,(t) almost everywhere, and

" there exists a real integrable function y(f) such that lloe, OV <y ()

for n=1,2,...

It is easy to see that x,->x, if and only if the sequence
llx, ()—x, )] as elements of the space L is »-convergent to O,
i. e. if there exists an integrable real function w(t) such that,
given any ¢>0, the inequality [« (f)—x,(f)ll<ew(f) holds for
any n sufficiently large. It follows:

2.11.1. The space L{X},. satisfies the postulates (a,), (a,), (aj),
(ag), (by), (by)., (by), (b, and (by), but does not satisfy the pos-
tulate (b)), as easily may be seen. ’

2.12, The spaces I’ and I”{X}. In the well-known space L’
of functions integrable with the p-th power (p>1) denote by ¢
the weak convergence, by = the convergence almost everywhere,
and by » the convergence defined as follows:

(%) lim x, = x, means that x,(£) = x,(f) almost everywhere, and
that there exists a function y(f)eI’ such that lx, (Hl<<y ()
for n=1,2,...

The space LI is a regular Kantorovitch space ([8], p.156)
corresponding to the same partial ordering as the space M,. Hence

2.12.1. The w-convergence satisfies the postulates (a,), (a,). (a3),
(ag) (by), (by), (by), (b) and (by), but does not satisfy the postu-
late (b)), as easily may be seen.

It is easy to prove that

9.12.2. The m-convergence satisfies the postulates (a,), (ag), (by),
(b, (b)) and (b,), but does not satisfy the postulates (ay), (ay),
(b]_):' (bs)-
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The o-convergence may be characterized as follows (see
Banacu [3], p. 135):
(0)limx,=2x, if and only if l[x,|<K for n=1,2,..., and

f x, () dt —~ f x,(t)dt for every s.

- 212.3, The o-conpergence satisfies the postulates (a,), (a,), (b,),
(by), (b3), (by), (by) and (b)), but does not satisfy the postulates
(a,)) and (a}).

Proof. We prove only (b). Suppose that (a)limquz()
for p=1,2,... and that g, co implies the a-boundednesqs of the
sequence {qup}. It follows from a theorem of Baxack ([3], p. 80)
that IIxMH< M with M independent of p and g. Denote by & the
conjugate space to L”: Z being separable, let {£,} be a sequence
of elements of Z dense everywhere. Choose ¢, to have
!fj(qup)i<1/p for j=1,2,...,p and denote by ¢, (& the (5)-linear
functional of the form {,(¢)=¢(x,, ). The inequality

1§(x,, ) <€l |

implies the boundedness of the sequence {(,(£)} for every &;
moreover, Iim ¢, (6)=0 for i=1,2,... Hence by the theorem of

BanACH-STENHAUS 31, p. 79)

{.(£)—>0 for any £e5, i e. x, 0.

Let X denote a Banach space. By L?{X} will be denoted the
space of ’.the functions x=ux(t) from a real interval <a,b> to the
space X, integrable in Bochner sense with the p-th power. Intro-

b 1p
ducing in L* {X} the norm by the formula Hx“=(f|lx ® l[Pdt)

we get a Banach space.
Let x-convergence be defined as follows:

(©)limx,=x, means that x,(8) = x,(f) almost everywhere,

efl:;ln i“if; “e'xists a function y(#)eL® such that e, <y (@)
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As in 2.11 we can prove that

2.12.4. The space L*{X},. satisfies the postulates (a,), (a,), (a3),
(ay), (by) (by), (by), (b)) and (b)), but does not satisfy the postu-
late (b,).

2.13. The space H”. This space consists of the functions
x==x(t) satisfying in <{a,b)> the Hoélder condition

[ () —x (£ <Mt —1,F,

where 0<<p<1. Two functions are considered as one element
of the space if and only if they are identical. If we introduce
the norm

x (tl) —X (tz)

lel=lx@14+ _swp_ | =—
1 2

a<t, <1, <b

[}

H? becomes a Banach space.

Consider the following convergence:

(y)limx,=x, means that [lx <K for n=1,2,..., and
x,(t) - x,(t) uniformly in [a, b].

Putting X*=C*) and [lx|[*=max|x(t)| we easily see that 3’
is a strong two-norms convergence. This follows from the lemma:

2.15.1. Let x,(t)eH" and |x,|<K for n=1,2,..., and
suppose that the sequence {x,(t)} converges in a set dense in {a,b).
Then there exists an element x, (f)eH® such that x, ()~ x,(t) uni-
formly in <a,bd, and that | x| <K.

Proof. The hypothesis implies the uniform equicontinuity
of the sequence {x,(#)} in <a,b). By the theorem of ArzeLa {x. (O}
converges uniformly to a continuous function x,(f). The remaining
part of the lemma follows by passing to the limit in the formula

x,(t) — x,(t)
tl - tz

<K,

[x, O)+

valid for a <t,<<t,<b.

1) ¢ denotes, as usual, the space of functions continuous in the interval <a, b).
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Hence

2.13.2. The y’-convergence satisfies the postulates (a,), (ay), (b)),
(by), (b3}, (by), (b,) and (by), but does not satisfy the postulates (a)
and (a;), as easily may be seen.

We can easily prove that if ||x,[<{K for n=1,2,..., and
lim as x, () =x,(t), then x,(f)>x,(f) uniformly in <a,b>. Hence
n—>oa

we can replace in the definition of 9’-convergence the condition
x,(t) = x,(f)

uniformly in <a,b> by lim as x () = x,(#).

x=={x2} of real numbers. Introducing the n-th pseudonorm by

formula |x],=|x%|, we easily see that s is a Bj-space. It is known
that the general form of the (s)-linear functionals is

n*"n?

&(x)= Zf*x*
where é*==0 for n>N. Given any &(x), we demote by b(&) the

greatest n for which %20,

Let & be the space conjugate to s; & consists of the se-
quences §={£7} such that é*=0 for almost every n. Mazur and
Ogruicz [12] have shown that the (strong) »-convergence in & may be
characierized as follows: if §={f%};_y,.. and & =1{65}i1,.., then
(v lim §, =£, means that b(£,)<K for n=1,2,..., and that

lim &% =g%
n—oca
for i=1,2,...

2.14.1. The v-convergence satisfies the postulates (a)), (a,), (a}),
(b)), (b, (b3, (by) and (b)), but does not satisfy the postulates (a,)

(b,).

and

2.14.2. The general form of the (S,)-linear functionals is

t=Serer,

mith arbitrary (¥,

2.14. The space €. Let s denote the space of the sequences
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2.15. The space L In the space I of sequences x={x*} such

that || xl|=2|x* < -co consider the following notions of con-
n==1

vergence: if xnz{xfi}ixl,&... and xo:{xﬁi}izm,...: then

(%) lim x,=x, means that }H&x;:x; for i=1,2,..., and
there exists an element z={z}el such that |x*|<z* for
n=1,2,... and i=1,2,... ; i

(n) lim x, == x, means thatnli_gz ,Elx:* =l__21x3‘; uniformly with res-
pect to m.

Kanroroviren ([8], p. 165) has shown that the space I, is a
regular Kantorovitch space corresponding to the following
partial ordering: x,={x¥} <{x,={x}} means that x¥<«% for
i=1,2,... Hence

2.15.1. The x-convergence satisfies the postulates (a,), (a,), (a3),
(ag), (by), (by), (by), (b, and (by), but — as ecasily seen — does not
satisfy the postulate (by).

The n-convergence is generated by the norm

lloel*=sup | > x;
n=12,... i=1
this norm is, however, a B*-norm. It is easy to show that

2.15.2. The n-convergence satisfies the postulates (a,), (a,), (b}),
(by), (by), (by) and (b,), but does not satisfy the postulates (a,), (ay),
and (by).

2.16. The independence of postulates. The examples of the
spaces M, M, and &, show that the postulates' (ay), ,(az) and (a,)
are independent of one another. By the properties of the spaces
M, M}, &, and L, it follows that the postulates (b,), (b,), (b, and
(by) do not follow from the remaining of the Postulates (b)-(by). The
problem of the independence of (b,) remains open.

3. Independence of statements I', II' and III’.. Let ¢ and 8
denote the convergence generated by the norm in the Fl-spaces
X and Y respectively. Then I'(X,.Y,), nx,.Y) and nx,.Y,)
are true for i=1 and 2. Ii is not the case in general A-spaces.

3.1. Theorem. In general A-spaces the statements I, I and
Il are independent of one another.


GUEST


A Alexiewiecz

[N}
()
(653

Proof. I! does not folloro from II' and III} ). Put X=L and
¥=4,9). By a theorem of Banacam([4], p.32) it follows that
IF(L,S,) is true. We prove later on (see Part IV of this paper,
Theorem 3.2) that the statement IIIf (L,Sy) is true.

The statement I'(L,S,) is however false. In fact, denote by
s.(x) the n-th-partial sum of the Fourier development of the
function x=x(t), and by U.(x) the n-th polynomial of Fejér cor-
responding to this function. It is obvious that s.(x), and hence
U.(x), are (L,S,)-linear operations. By the classical Fejér-Lebes-
gue theorem lim Uy(x)==x for each xeL. The limit operation
U(x)=2x is hov;)ever not (L, Sy)-linear since the convergence in
mean does not imply the convergence almost everywhere.

1! does not follomw from I' and 1. Put Xo=M,y, and let ¥,
be the space R of the reals. The truthfulness of I'(M,, R) has
been proved by Onucz'?), and the truthfulness of IIL (M, R)
follows from the results of section 8. The statement II'(M,,R)
however is not true. Ficatenmorz ([6], p. 199) has shown that the
general form of the (M )-linear functionals is

=[xt h@dt
0

where h(t) belongs to L. Denote by D the class of the step-
functions; this set is dense in M. Define the function h,(t) as
follows:

hO=h(H)=n{E)=nw=0 h(L)=n n[Z)=—n

and h, (t) is linear in the intervals <0, 1/4n>, {1/4n, 2/4n>, {2/4n,3/4n>
and (3/4n,1)>. Put

& ()=[x®)h, (B dt

it is a (M,/,R) -linear operation. Since

ﬁh ®ldt=1/2 and hmfh )dt=0

n-—yoeg

for 081,

17) stated without proof by Kantorovitch ([9], p. 258).

®) In this case L and S denote respectively the space of the functions
integrable and measurable in the interval <0,2z).

19) See [19]; in section 7.1 another proof of this theorem is given.
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it follows that

\<ﬁx Bk, (¢ ldt< Hxﬂ for every xeM,.
Moreover,

lim f x(t)h, (£ dt=0

o for each xeD.

The sequence {£,(x)} is however not convergent in the whole

of M, since the set-functions ¢, () f h, ()dt are not equi-abso-
lutely continuous.

I} does not folloro from I* and II. Put X,— =@, and Y,=R.
The truthfulness of the statements I'.(&,,R) and BiC (S, R) fol-
lows from a theorem of Mazur and Oruicz %), The general form

of (8,)-linear functionals being Z(f)“vé‘*f* with é={¢*} and

arblirary L%, write
L&) =qé.
Putting i ik
o or i=
E:’k'_{o for iztk and Ep={E;k}k=l.2....’
we see that the sequence {C,,( (&g=1s,.. of (S,.R)-linear opera-

tions is unbounded (hence dxvergent) for é=&. No element

é={&¥}, however, exists for which the sequences (3]

would be divergent simultaneously, since £,(§)=0 for p>b(#).

4. Some sufficient conditions for I' and II% In the following
lines X, and Y, are A-spaces, and U(x), U, (x) and U,,(x) opera-
tions from X, to ¥,. {U,(x)} being any sequence of (X, Y,)-linear
operations, following conditions will be useful:

(Qy) If the sequence {U,(x)} is f-convergent everywhere, then
x,—0 implies U, (x,) 5o,

(Qy) If the sequence {U,(»)} is f-bounded everywhere, then
a-boundedness of the sequence {x,} implies -boundedness of
the sequence {U, (x)}.

(Q,) If the sequence {U,(x)} is f-bounded everywhere, then
%, 0 implies {U] (x")}io.

n

2} See [14]; this follows also from the resulis of section 6 of the present
paper.
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It is obvious that (Q,) implies (Q,), and that (Q,) implies
(Qy). If the space X satisfies the postulate (a,), and Y, satisfies
the postulate (b,), then (Q,) implies (Q,).

We use in the following considerations the property of addi-
tive operations which are (X,.Y,)-continuous at one point of
being (X,,Y,)-linear. Hence, to prove that an- additive opera-
tion is (X, Y,)-linear it is sufficient to prove its (X,,¥, 5)-con-
tinuity at x=0.

4.1. If the space Yy satisfies the postulate (b}) and the condition
(Qy) is satisfied, then theorem I'(X,,Y, W) holds.

Proof. Let {U,(x)} be a sequence of (X, Y,)-linear opera-
tions, f-convergent to U(x) everywhere, and let xnﬁ>0. Since
(Hlim U, (x,)=U(x,) for p=1,2,..., and (Q,) is satisfied by hypo-

9
thesis, g, co implies (§)lim Uy, (x,) =0, and (b;) implies

P

(#)lim U(x,) =0.
P

Thus U(x) is (Xm,YF)-continuous at x=0.

4.2, If the space X, satisfies the postulate (a,), the space ¥,
satisfies the postulates (b)) and (b,), and the condition (Q,) is sa-
tisfied, then I’(Xa,YF) holds.

Proof. Suppose it is not the case. Then there exists a se-
quence {U, (x)} of (X,,Y,)-linear operations and a sequence {x,}
such that xnio, U,(x)=>U(x) everywhere, and U (x,) is not
a-convergent to 0. By (b) we may suppose that every subse-
quence of {U(x,)} is not f-convergent to 0; (a,) implies the exis-
tence of sequences {4} and {n,} such that A~ co and y,‘=zkxnk—'3 0.
By (Q,) g oo implies the g-boundedness of the sequence
{U,, (v} Since (ﬂ)ﬁgm U )=Uly, for k=1,2,..., the postulate
{b,) implies the f-boundedness of the sequence {U(y,)}, in parti-
cular 7-.;1U(y,,)=U(xnk)£>O, which is impossible.

4.5, If the space Yﬁ satisfies the postulates (b)), (by), (by), and
if the condition (Q,) is satisfied, then II’(Xu,Yﬂ) holds.
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Proof. Let D be a set dense in X,. and {U,(x)} a sequence

of (X“,Yﬁ)-linear operations f-bounded everywhere and g-con-
vergent in D.

Suppose there exists an element x, such that the sequence
{U,(x,)} is p-divergent.

By (b)) there exist two sequences p,~co and g,+co such
that the sequence {Upn(xo)—Ugn(xO)} does not f-converge to 0. By
(b)) we can suppose that every subsequence of it has the same

property. There exist elements x,¢D such that x,>x,. We then
have (ﬁ)lim[UPn(xm)—U (x,)]=0 for m=1,2,..., and, by (Qy),

In
n,—>co implies the p-boundedness of the sequence

{ Upnm(xm) — anm(xm)} .

By (b,) there exists a sequence n_,-»co such that

[U, (x)—U, ()50

By the additivity of U (x) we have
0, (0 =T, ()=, (=) HT, (e)—T, (4T, ().

By (Q,) the first and the last term of the right-hand side
p-converges to 0. The second term ﬁ-convergeﬁs also to 0, as we
have already seen. Hence [U, (x,)—U, (x,)] >0, which isimpos-
sible. 7

5. The condition (Q,). We now analyse more precisely the
condition (Q,). Note that the postulate (b,) implies the following

consequence:
50. If (p) limy,, =y, for p=1,2,..., and 2,0, then there
q

exist sequences {g;} and {t)} such that i >t implies
(@) Lim 7, Yo, =0.
P BT

5.2. Theorem. If the space X, satisfies the postulate (a,) and
the space Y, satisfies the postulates (b)), (b)) and (b, then the
condition (Q,) is satisfied.

Studia Mathematica. T. XI. ' 15
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Proof. Suppose the contrary. Then there exists an every-
where p-bounded sequence {U,(x)} of (X,. Y,)-linear operations,
and an a-bounded sequence {x,}, for which the sequence {U,(x,)}
is not p-bounded. Hence there exists a sequence ¢ ,—0 such
that #U,(x,) is not p-convergent to 0, and, by (b)), such that
every partial sequence of it has the same property. Thus we
can assume that 9,>0. Put

=1/t

Yu=Us ( ]/;xq) . .
Since 1/;;xqf>0, we have
(8)lim y,, = (@) lim Up(Vz,x) =0,

and by (b,) there exists a sequence of indices {s,} such that

“p o Yp
@ ® limZ:fnl/r._nUP(l/r,nx,")=(ﬁ) lgmzpenvp(r,nx,n)=o,
we h2

¢, being zeros or ones and w >p. Arrange the elements of the
form ’

£, Tay Ko 6, Ty X8, T, X

where ¢,=0 or 1 and n=1,2,..., in a sequence {z,}, and put
y:q——‘l/r_gU,q(zp). Since (f)limy:=0 for p=1,2,..., Theorem 5.1
q

implies the existence of two sequences of indices {r,} and {f;}
such that n,=s, and n,>£; implies
P

(3) (B)Yim s, U, (2, =0

(it is sufficient to put £y=s, ). We now construct a sequence {ve}

extracted from {n)} as follows: put »,==n, and Suppose vy,...,%_;
determined. Choose M so that all the elements of the form

8Tw, Xy + 8wy x”2+' . + Ep 1T 1%,

with =0 or i, and i=1,2,...,k—1, appear in the sequence
Zy,2Zy5...,Zy, and put

“) L>max (t} £y, ..., 15, B=1s
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¢; being zeros or ones, we have by (2)

(5) ® ]j}lcn Tog Uy (8, Ty 200, - . ey T X)) =0,
and formula (2) implies

o
©) (Bl 3 &, Uiyfrn, 50,)=0.

In (5) and (6) the sequence {e,} may be chosen arbitrarily;
hence they remain true if we replace the sequence {»,} by any sub-
sequence {»{}. From (a,) follows the existence of such a sequence

for which the series Lzlryixﬁ: is a-convergent; let x, be its limit.

The operation U,z(x) is (Xu,Yﬁ)-]inear; hence

Uz () =r§1 (Tt x)

the series being p-convergent. By (5) d an(b,) the sequence

{ > U.z (r,ﬁx,,;)}
r=k+1

is p-bounded. We have
TopUsg (o) =0 Ung (@) +1opUsp (Tt st 1+ - o %0 _y)

+1 2 U (xap6ay) -

r=k+1

In this formula the two last terms of the right-hand side are
p-convergent to 0. The first term however is not p-convergent
to 0. It follows that the sequence {U.z(x,)} is f-unbounded, con-
trarily to hypothesis.

In particular, the condition (Q,) is satisfied in all the cases,
if the a-convergence is strong two-norms convergence, or weak
convergence in a Banach space, or strong convergence in a space
conjugate to a Bj-space, or x-convergence in a Kantorovitch space,
and if the p-convergence is convergence generated by norm in
a F*-space, or strong two-norms convergence, oOr x-CONVErgence
in a Kantorovitch space.

15*
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Tt follows from 5.2 that

53. If the space X satisfies the postulates (a,) and (a,), and
the Space Yﬁ satisfies the postulates (b)), (b)) and (b,), then the
condition (Q,) is satisfied.

6. General sufficient conditions for I' and II' From sec-
tions 4 and 5 we get the following

6.1. Theorem. If the space X, satisfies the postulates (a,) and
(a,), and the space ¥, satisfies the postulates (b)), (b)) and (b,),
then I'(X,, Yﬁ) is true 21). .

In particular, I'X,,Y)) is true in all the cases of the a-con-
vergence being

(1) convergence generated by norm in a F-space,

(2) x-convergence in a Kantorovitch space,

(3) #-convergence in the space L{X} or L*{X},

(4) strong convergence in a space conjugate to a By-space,

and of the f-convergence being

(I) convergence generated by norm in a F*-space,
(II) weak convergence in a Banach space,
(IIT) strong two-norms convergence,

(IV) x*-convergence in a Kantorovitch space 2).

6.2. Theorem. If the space X satisfies the postulates (a,)
and (ay), and the space Y, satisfies the postulates (b,), (b,), (b), (b
and (by), then IF'X_,Y)) is true ®).

In particular, II'X,,Y,) holds in the case of a-convergence
being one of the convergences (1)-(4) and of p-convergence being
the convergence (III), or

(I*) the convergence generated by norm in a F-space,
or

(IV*) the x*-convergence in a Kantorovitch space, under the
supplementary hypothesis of (b,) being satisfied.

*) This has been proved by Mazur and Orlicz [12] for the case of
B-convergence being the convergence generated by norm.

#) The cases (2) and (IV) have been proved by Kantorovitch ([9], p. 257).

%) This has been proved by Mazur and Orlicz [12] for the case of
g-convergence being the convergence generated by norm.
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7. Special sufficient conditions for I and I In some more
specialized cases we can give other sufficient conditions for

I' and IT' to hold.

7.1. The case of f-convergence being two-norms convergence.
Suppose the space X, to satisfy the postulate (a,), and p-conver-
gence to be a strong two-norms convergence. Let {U.(x)} be a
sequence of (X , ¥ )-linear operations p-convergent to U(x) every-

where. By Theorem 5.2, xp—“>0 and g,~oo imply f-boundedness

of the sequence {Uy,(xs)}. Since Y, ; satisfies the postulate (b,), and

(Alm U, (x,)=U(x,) for p=1,2,..., the sequence U(x,) is g-boun-
q

ded. Hence:

7.1.1. Suppose the space X, to satisfy the postulate (a,), and
the B-convergence to be strong tmwo-norms convergence in Y. De-
note by B’ the convergence generated by the norm ||yl* in Y. If
IMX,.Yy) holds, then I'(X,,Y,) holds also.

Orucz ([14], p. 78) has shown the truthfulness of M, Yy,
the p-convergence being convergence generated by the norm
in a F*space. Hence:

7.1.2. ll(My,,Y ) holds in the case of the p-convergence being
strong troo-norms convergence *).

For the sake of completeness we give here the proof of this
theorem of Orricz.

We may suppose that the space Y is a F-space. It suffices
to prove that (Q,) is satisfied. Denote by X, the set of all the
elements of M, for which |lx]l<1. Introduce the distance in X,
by the formula g(x;,x,)=[x,—ux,/*. We easily verify that X;is a
complete metric space. We define the addition in X, in the usual
manner, but only for such elements x,, x, for which [lx,4-x,[<1;
it is easy to see that X, is a pseudogroup of Saks ([1], p.15).

Let {U,(x)} be a sequence of (M,.Y,)-linear operations con-
vergent cverywhere to U(x). The operations Va(x)=Ua(x|X,), are
additive and continuous in the pseudogroup of Saks X;; it fol-
lows easily from [1], p. 16, that the condition (Q,) is satisfied.

#) Fichtenholz ([7], p. 222) has shown that I'{My .My ) is true.
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It is easy to show that

7.1.3. If the space X, satisfies the postulates (a,) and (a,), and
p-convergence is the mweak convergence in a meakly complete %)
Banach space or in a By-space, then 11 (X,,Y,) holds.

7.2. The case of functionals. Let R be the space of the reals
with the usual definition of convergence.

7.2.1. If the space X, satisfies the postulate (a;), then I'(X,,R)
is frue ).

Proof. Let £(x) be the limit of a convergent sequence £, (x)
of (X )-linear functionals. Suppose £(x) is not (X )-linear. Then

there exists a sequence xn-5>0 and an >0 such that |&(x )| >e.
We can simply suppose that &(x)>e By (a;) there exists a se-

quence of indices {n,} such that the series > Xny, is a-convergent.
k=1
Put
k
L3
Xy= 2, xn

v=1 "

Since limé (xf)=¢(x}) for k=1,2,..., there exists for each
n—oco

k a m; such that [&m (x})—&(x¥)|<<1. Hence
g (e & (o) | —1éimy () — & ()| > & (0my) ... & (o0m) — 1> (K — 1),

This is however impossible, since the a-boundedness of the
sequence {xy} implies by 5.2 the boundedness of the sequence
{&mi (xD)}-

7.2.2. If the space X, satisfies the postulate (a), and Y, s 18 the
space of reals, then the condition (Q,) is satisfied.

Proof. Suppose the contrary; then there exists a sequence
{£.(x)} of (X )linear functionals, convergent to &(x), and a se-

quence {x,} such that xn£>0, and that & (x)>e for an e>0
and for a sequence {m.} of indices.
We now construct a subsequence {n,} extracted from {m,}

as follows: put n;=m, and suppose n,...,n, , defined; choose
then n, so that

®) The space Y is meakly complete if the weak convergence in it satisfies
the postulate (by).

*) proved by Orlicz (not yet published).
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|fp(x,.r)—E(x,.,)!<32"’“2 for »=1,2,....,k—1 and p>n,,
Ifnw(x"k>l<62—k l

for »=1,2,...,k—1.
e, )l < sz | T !

This is possible, since &,(x)>£&(x) everywhere, and since
¢ (x) and &(x) are (X )-linear. Thus the sequence {n,} is defined
by induction.

By (a;) we can suppose that the series ) x, is a-convergent.

=1 v

Hence, for k sufficiently large, .

o — £ = 3 g ) — £ )]

Rl - o
>| E"k(x"k)—f(x”k)l—jéll fnk(x"u)_-_f(x"v)[:-:%;llf"k(x"v)I_y=‘§+[1§(x"1’)|
&
z_ka
and on the other hand &, (x)) = &(x,), which is impossible.
7.3. The condition of Fichtenholz. We shall say the f-con-

vergence in Y satisfies the condition of Fichternholz?) if y"£> Yo
is equivalent to 7(y,)—>7(y, for every (¥,)-linear functional n(y).
7.3.1. If the f-convergence in Y satisfies the condition of Fich-

tenholz and 1(X_,R) holds, then I'(X,,Y,) holds also.

Proof. Let {U,(x)} be a sequence of (X,,Yp-linear opera-
tions p-convergent to U(x), and let 7(y) be any (¥,)-linear functional.
Put %, (x)=n(U,(x)). The functionals #,(x) are (X )-linear, and

>e—4

7,(x) > &(x)=n(U({x)). By hypothesis, x"f)xu implies
7 (Ufx,) (U x);

hence by the condition of Fichtenholz U(x")i U(x,).
We can prove similarly that ‘
7.3.2. If the condition (Q,) is satisfied for any sequence of
(X,)-linear functionals, and the p-convergence satisfies the condi-
tion of Fichtenholz, then the condition (Q,) is satisfied for any
sequence of (X,,Y,)-linear operations.

#) Fichtenholz ([6], p. 197) has called regular a convergence satisfying
this condition; we prefer to call it by the name of its author,
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7.3.3. If the B-convergence in Y satisfies (b;) and the con-
dition of Fichtenholz, and 11'(X,., R) holds, then IT'(X., ¥;) holds also.

Ficurennorz” has shown ([6], p. 198) that the x-convergence
in the space M* satisfies the condition of Fichtenholz. Hence, if
IX,,R) or IIX,,R) is true, then I'(X,,M;) or II'(X_ ,M?) is also
true respectively.

It follows e. g. that I’(]lly,,M:') holds.

?.4. Theorem II' in Kantorovitch spaces. Kanrtorovitcn has
shown ([9], p. 539) that II'(X,,Y,) is true if both X, and Y, are
regular Kantorovitch spaces. We give a slight generalization of
this result.

Suppose the space X, satisfies the postulates (a) and (a,),
and Y, is a regular Kantorovitch space. The x»*-convergence sa-
tisfies then the postulates (a)), (ay), (by), (by), (by) and (by).

An operation U(x) from X, to ¥, will be said to be
(X, ¥, )-quasilinear ) if it is (X,,Y .)-continuous and satisfies the
conditions

UEyI<IU@IHUE),  1U@x)=11U)!.
It is easy to prove that U(x) being any (X,,Y,,)-quasilinear

operation, and the series X x, being a-convergent with the sum
p=1
x,, we have

@ U=y U@ -G D)< S|

74.1. If the sequence {U,(x)} of (X,,Y,)-quasilinear operations
is x*-bounded everymhere, and the sequence {x,} is an a-bounded,
then the sequence {U, (x,)} is x*-bounded.

Proof. This theorem may be proved very much like the
theorem 5.2. We must first only extract from the sequence {x,}
a sequence {x.] such that the series Z{Up(xnk)[ be convergent

=1

for p=1,2,... This can be dome by the diagonal method. Then
the proof goes on like that of the theorem 5.2. In the final eva-
luations inequalities (7) will be used.

*) This definition resembles a notion introduced ; i
P i introduced by Mazur and Orlicz
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Since the space X, satisfies the postulate (a), we deduce
from 7.4.1 as in section 5 that

7.4.2. If the sequence {U,(x)} of (X,,Y,.)-quasilinear operations
is x*-convergent to U(x) everymwhere, then the operation |U(x)|
is (X,,Y,.)-continuous.

74.3. Theorem. Suppose the space X, satisfies the postulates
(a)) and (a,), and the space Y, is a regular Kantorovitch space.
Let {U,(x)} be a sequence of (X,,Y ,)-linear operations, x-bounded
everyrohere and x-convergent in a set D, dense in X,. Then this
sequence is everymwhere x-convergent.

Proof. Write

i

V@=_sup 1T, W(=Tm U, ) —lim U, ().

The operations ¥, (x) are obviously (X, .)-quasilinear, and
V_ (x)=IV_(x)]. The sequence {V,(x)} is =-bounded everywhere
and non-decreasing. Hence ([8], p. 132) it is =-convergent eve-
rywhere. Let V(x) be the limit of this sequence. By 7.42 V(x)
is (X,,Y,)-continuous. The inequalities

IWx)|<2Vix),  [[WE—IWYI<IWE—y)

imply further the (X_,Y,)-continuity of W(x). By hypothesis
W(x)==0 in D; hence W(x)=0 everywhere.

Theorem 7.4.3 remains true if we replace the space Y, by
L{X}, or I*{X},.

8. Theorems I and II. We now give conditions for X,
and Y, which are sufficient for the truthfulness of I (X,, Y,
and II;(X,.Y,). We restrict our considerations to the case of
the pB-convergence being convergence generated by the norm
in a F-space or strong two-norms convergence.

8.1. Theorem. If the space X, satisfies the postulate (ay),
and if B is the convergence generated by norm in the space Y,
then 111} (Xu,Yp) and 1L (X, Y,) are true.

Proof. Let {U,(x)},_.,,.. be a sequence of (X,.Y,) linear
operations. Suppose that, given any p, there exists an element x,
such that the sequence {U, (x)}_1.,..- 18 p-divergent. By (a,) then
there exists a sequence {8} of numbers different from 0, such
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that Elln|<oo implies the a-convergence of the series Zlnﬁ x
—1 n n*

is obviously ﬂ-dive; ent for
p=1,2,... Write, z=={1} being any element of the space I,

ne=]

1
The sequence (U, (9,x,)}

g=L2,...

pPan

(8) U (z)= Um(glyﬁ”xv), U* (z)= Upa (,}Tiz”ﬁ” xv) .

The last operations are (l,Yﬁ)—linear, and (Hlim U* (z)= U;'q(z)

pan

everywhere. Hence U (z) also are (I, Y )-linear. Put z,=1{8,}) _, ,

8,, denoting the delta of Kronecker. The sequence {Un (@M.

K K Py

is ﬂ—dlver'gent for p=1,2,... Since III{(Z,¥,) holds ([10], p. 156),
there exists an element z,=={1’}el such that the sequences
(Vg @)}y s,... are f-divergent for p=1,2,... It follows that the

sequences {U, (x,)},_; , . are f-divergent for p=1,2,..., x, being
the element 3 209, x,.
p=1 ks

The proof of Il (X,,7, o) to hold is similar.

8..2. Theorem. If the space X, satisfies the postulate (a,),
and if the B-convergence is strong troo-norms convergence, then

II(X,.Y,) and NL(X,,Y,) are true.

Proof. We first prove NEX,. Y. Let {U, (%),1,... be a se-
quence of (X ,Y)-linear operations. Suppose, given any p, there

exist i
xists an element x, such that the sequence {U, (% )}y, ... 18

f-unbounded. Choosing the sequence {8} like in the proof of
Theorem 8.1, define the operations Us(2) and Ur.(z) by (8).

q

These operations are (I, Yﬂ)-linear. This is obvious for U* (z)
pgn 2

.and for U}, (2) it follows from U, (z)i]) Uy (z) and from Theorem
6.1. Now, we can finish the proof as that of Theorem 8.1.
To prove II(X,,Y, let {U,,(*)),r.... be a sequence of

(X,. Y linear operations. Suppose, given any p, there exists an

ele i i
ment x, such that the sequence {U, %)}y, s p-divergent.

Thus the sequence of sequences {U,, ()}, can be decom-

?os;id in two,. {qu*(x)}qzl,z!___ and {W, (x)},_, , .. the first of which
xfs vergeznt in Y* for x=x,, and the other is unbounded in ¥
or x=uxZ. Putting, as in the proof of Theorem 8.1,
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Vi(@)=V, (glﬂ ﬁvxﬂ) , W (2) =qu(§Zvﬁvx”),

we easily see ([10], p. 156) that there are in the space I two re-
sidual sets, B, and R,, such that the sequences {V},(2)},_.,,...
are divergent in Y* for every xeR, and p=1,2,..., and that
the sequences (W) (2)},_,,. . are unbounded in Y for every
xeR, and p=1,2,... We finish the proof choosing an ele-
ment z,={4}eR R, and putting x,=2 129 x,; the sequence
v=1

{Upy (%)}, s,... is obviously f-divergent for p=1,2,...

From the above theorems it follows in particular that
1 (X,. Y, and 15 (X,.Y,) are true in the case of f-convergence
being convergence generated by norm in a F-space, or sirong
two-norms convergence, and of X, being any one of the spaces
considered in sections 2.1-2.3, 2.7-2.13 and 2.15.
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Linear operations in Saks spaces (I)
by
W. ORLICZ (Poznan).

This paper deals with meiric spaces composed of elements
of the unit sphere of a linear normed space, the metric of which
is defined (see 1.3) by means of another norm, not necessarily
homogeneous. The spaces of this kind may be considered as
pseudolinear in a certain sense, and some investigations of
Banach spaces can be adapted to the spaces of this kind ).

1.1. Let X be a linear space. A functional ||x]] defined in X
will be called a B-norm if it satisfies the following conditions:

(a) flxll=0 if and only if x=0,

b) ety iyl

(e) ldx||=|9l||x]|, 9 being any real number.

Each functional ||x| satisfying the above conditions (a), (b}
and the following one:

(¢) if the sequence {9.} of real numbers tends to ¢ and

Nlae — x| >0, then ||Gnxn—0x[—>0

will be said to be a F-norm.

Any functional |lx|| satisfying the conditions (b) and (c), or
(b) and (c¢’), will be termed a B- or F-pseudonorm respectively.

A Banach space or a Fréchet space is a linear space X pro-
vided with a B- or F-norm (i.e. Banach norm or Fréchet norm)
respectively and such that the distance

d(x,y)=llx—yl

makes X a complete metric space. ‘

1) The results of this paper were presented September 26th 1948 at the
VI Polish Mathematical Congress in Warsaw. The second part of the present

paper (to appear) will deal with investigation of sequences of operations and
with applications of the results of part I.
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