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Linear operations in Saks spaces (I)
by
W. ORLICZ (Poznan).

This paper deals with meiric spaces composed of elements
of the unit sphere of a linear normed space, the metric of which
is defined (see 1.3) by means of another norm, not necessarily
homogeneous. The spaces of this kind may be considered as
pseudolinear in a certain sense, and some investigations of
Banach spaces can be adapted to the spaces of this kind ).

1.1. Let X be a linear space. A functional ||x]] defined in X
will be called a B-norm if it satisfies the following conditions:

(a) flxll=0 if and only if x=0,

b) ety iyl

(e) ldx||=|9l||x]|, 9 being any real number.

Each functional ||x| satisfying the above conditions (a), (b}
and the following one:

(¢) if the sequence {9.} of real numbers tends to ¢ and

Nlae — x| >0, then ||Gnxn—0x[—>0

will be said to be a F-norm.

Any functional |lx|| satisfying the conditions (b) and (c), or
(b) and (c¢’), will be termed a B- or F-pseudonorm respectively.

A Banach space or a Fréchet space is a linear space X pro-
vided with a B- or F-norm (i.e. Banach norm or Fréchet norm)
respectively and such that the distance

d(x,y)=llx—yl

makes X a complete metric space. ‘

1) The results of this paper were presented September 26th 1948 at the
VI Polish Mathematical Congress in Warsaw. The second part of the present

paper (to appear) will deal with investigation of sequences of operations and
with applications of the results of part I.
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1f this distance does not define a complete space, X will be
said to be an incomplete Banach space or incomplete Fréchet
space respectively 2).

1.11. We adopt the following symbols to denote some con-
crete Banach and Fréchet spaces (addition of elements, multi-
plication by real numbers, and definition of norm having in
each case the usually accepted meaning):

1= — the space of the sequences {a.} for which

élanlu<oo (a=>0),

m — the space of the bounded sequences,
m, — the space of the sequences converging to 0,
L¢ — the space of the functions x=ux(f) for which

1
[ Ix(@edt<co (@>0),
0
M — the space of the functions which are measurable and
equivalent to bounded functions in a closed interval {a,b,
§ — the space of the functions measurable in <a,b)> or,
more generally, in a n-dimensional interval,
C — the space of the functions continuous in <a, b,

C* — the space of the functions equivalent to continuous
functions in <a,b), -

V — the space of the functions of bounded variation in <a, b,

V* — the space of the functions equivalent to functions of
bounded variation in <a,b),

VC— the subspace of the space V, composed of the conti-
nuous functions.

The spaces I* and L* are for 0<<a<<1 Fréchet spaces, and

are not equivalent to any Banach space; the same property has
also the space S.

?) 8. Banach in his monography Théorie des opérations linéaires, Mono-
grafie Matematyczne, Warsaw 1932, calls these spaces spaces of fype B and
of type F respectively. Since in the recent literature the spaces of type B are
generally called Banach spaces, 1 adopt for the spaces of type F the term

Fréchet spaces, for M. Fréchet was the first to call attention to this class
of abstract spaces. .

icm
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We write x.(f) 3 x0(t) to denote that the sequence {xn (D)}
converges asymptotically to x,(f) in the interval considered.
We denote by s?pffsx(t) the least number k for which

the set of the elements ¢ satisfying the inequality x(f)>k is a
null-set.

1.2. Let || || be a B- or F-norm in a linear space X.

The sequence {x.} of elemenis of X will be called bounded
with respect to the norm | || if #,-+0 implies 9n,x, -0 for each
sequence {9} of real numbers ?).

If any sequence composed of elements of a set X,CX is
bounded with respect to the norm || ||, the set X, itself will be
said to be bounded mith respect to the norm || |i.

If there is mo risk of mistake, we shall omit the words
“with respect to the norm” in the above defined term.

A necessary and sufficient condition for a sequence {x,} of
elements of X (for a set X, X) to be bounded is, given any £>0,
the existence of a 9¥,>0 such that |9|<d, implies [[dxn|<<e
for n=1,2,... ([9xll<<e for every xeXy).

1.21. If a sequence {x,} of elements of X is bounded mwith
respect to the norm || ||, then S(I,Llljp [ 2]l << 0.

The boundedness of the sequence implies the existence of
a 6>0 such that [|9x.]|<1 for n=1,2,... and [9]<d; putting
k=E(1/6) and 9=1—ks we get [lxall <kl dxnll+l9xnll<k+1.
The condition supllx./|<<co is in the case of a general

F-norm only necessar'fy for the boundedness of the sequence. In
the case, however, of || || being a B-norm, it is also sufficient;
the set X, is bounded with respect to a B-norm | || if and only
if there exists a K=>0 such that x¢X, implies [lx[| <K.

1.22. The following property of F-norms seems to be useful

in the sequel:

Given ¢>0 and 9,>>0, there exists a o, such that 0<<o,<<o,
and that ||x|<co, and |99, imply |ldx]l<e-

%) This concept of boundedness is due to S. Banach; see S Mazur
and W. Orlicz, Uber Folgen linearer Operationen, StudiaMathematica 4 (1933),
p. 152-157,
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1.3. Let X be a Banach space or an incomplete Banach
space (fundamental space) with the norm | |/, and let | [* be an-
other norm defined in X. In the set R of elements xeX satis-
fying the inequality [lx||<1 we define the distance between
the elements x,yeR by the formula
{t) d(x,y)=lx—yl*

If this metric space is complete, it will be termed a Saks
space and denoted by X..

It should be pointed out that it is not supposed that the
space X with the distance defined as equal to [lx—y| or to
la—yll* is a complete space (this is really the case in the
example (VII) which will be considered in 1.4, p. 246).

The following notion of limit defined in the whole of the
space X is quite naturally associated with every Saks space:
a sequence {x,} of elements of X is said to be (I)-convergent
to x, if there exists a K such that [x,[|<K for n=1,2,... and
ll3en—2,l/* =0 (the space X, being complete, this implies ||,/ <K).

We shall write x, = x, to_ denote that the sequence {xy} is
(I)-convergent to xy; if x,eX,, xn~l~>x0 means that the sequence
{xa} tends to x, in the sense of the metric (1).

1.31. Denote by K (x,,0) the open sphere with the centre x,
and radius ¢ in the space X;.

We shall consider Saks spaces satisfying some of the follo-
wing three conditions:

() - Given any x,eX, and ¢=0, there exists a 6=>0 such
that every element xeX, for mhich d(x,0)<<8 can be rritten in
the form x=x;—x,, with x,,x,eK (x,., g).

() If xneXe, 2050, 620 and s, 0, then there exists
an increéasing sequence {k.} of indices and a sequence {&,}
such that

0 d@r,,x)<er, for n=1,2,...,

(i gilni'knﬁ'Xs if 2.=0 or 1,

(iii) for each sequence A={k} composed of 0’s and 1’s there
exists an element £,eX, such that

i
2 1 A N
Zﬂnxkn—>x;, as i—oo
=1 *
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(%) Let e(x) be a positive real-valued function such that
lim e (x) =0, and given any ilet {x,},_, , be a sequence (l)-con-
0
;zrgent to 0. Then there exists a sequence {k.) of indices and
a sequence (&1} of elements satisfying the conditions (ii), (iii) and

(i d(&x, Xnr,) <& (| ook, %) for n=1,2,...

If in a Banach space (with the norm | I} we put |[x[*=||x],
the corresponding space X, obviously satisfies all the conditions
(&), (&) and (¥). The point of the matter is that in the most
important applications we choose in X as || |* another norm,
which permits us to get a pseudo-banachian space X; having such
properties as separability and compactness — contrarily to the
unit sphere of the Banach space X *).

1.32. We shall say that the condition (%)) is satisfied at the
point x,eX, if there exists a >0 such that

d(x,0)=llx|* <8 implies x,4-xeX, for every xeX,

Let the condition (%) be satisfied at any point of a set X
dense in X,. Then the space X, satisfies the conditions (&), (&,)
and ().

We first prove that the condition (%) is satisfied. Given
a sphere K(x,,0), there exists a x,eK(x,,¢/2)X,; then there exists,
by hypothesis, a >0 such that |yl*<<é implies x,=x,+yeX.,
and we may suppose that §<C¢/2. Since

Yy=x;— X, d{xg,2x5)<8[25
and d(xy,x,) < |2y —xs*yl* <o, we see that the space X,
satisfies the condition ().

4) The idea of such class of spaces and of using the condition (%) has b.een
suggested to me by the paper of S. Saks, On some functionals, Transactu.)ns
of the American Mathematical Society 35 (1932}, p. 549-556, and was apphe_d
first by A. Alexiewicz in his paper On sequences of opEration.s (I)., th}s
volume, p. 1-30. The notion of (I)-convergence appears in full gtfnerahty first in
the paper of A. Alexiewicz, On sequences of operations (II), ibidem, p. 200—23.6,
and in his paper A generalized convergence in linear spaces, to appear in
Comptes Rendus de la Société des Sciences et des Lettres de Wrocla}v. Some
examples of linear spaces with (I)-convergence had been noted by G. Fi c}lte- n-
holz in his paper Sur les fonctionnelles linéaires continues au sens généralisé,
Recueil Mathématique de Moscou 4 (1938), p. 199-214.

16
Studia Mathematica. T. XI.
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We now prove that the condition (¥,) is satisfied. Let the
sequence {x,} be ())-convergent to 0, and let & >0 tend to 0.
We can easily construct a sequence {ki},_,, . of indices, a se-
quence {d;},_,, of positive numbers and a sequence {yi} of
points of X, such that for i=1,2,...

Al <02,

20 §;<T8i1/2,

30 Ny — o l* <<ex,,

4 yeX, and ||yl* <& imply yityeX..

We shall prove that for arbitrary indices i and I, and for
every sequence {4} composed of 0’s and 1’s

@ Y+ A Yir oo Anyie X,
Since 1° and 3° imply lyir1l* << 6i/2, by 4° we get (2) for =1

and for i=1,2,... Suppose (2) holds for I=1I,—1 and i=1,2,...
Then :

—_

vt YivrF Ao Yire .o A Yirg, e X,
and by 1° 2° and 3°

Iy Ip—1
A1 yirr—+-.. +Zi+lnyi+ln [* <]£” y,-+,~l|* << él;:) O << O13

together with 4° this implies (2) for I=1, and i=1,2,... Putting
#x;=1: we obviously get the condition 1.3 (ii); 3° implies immedi-
ately the condition 1.31(i), and, the space X, being complete,
the inequality

Syl <t s <,
=1 20

implies the condition 1.31(ii).
Finally, we prove the condition (Z3). Let e(x) be a positive
real-valued function such that lim e(x)=0; {%in},y o . being a se-
x-30 =
quence (I)-convergent to 0, it is easy to see that there exist

sequences {ki}, {8} and {y;) satisfying the conditions 2° and 49,
and such that for i=1,2,.., .

Linear operations in Saks spaces (I). 2473
17° & (Lo, 1% - Ml ey )1* << 80y/2,
37 lys— e, I* << e (2, [1¥) and yieX,.

Arguing quite similarly as above we prove that (2) is satis-
fied for every i and I and putting #,=y; we get a sequence
satisfying the conditions of (X)),

1.4. We now give some examples of Saks spaces. In each
case we indicate the fundamental Banach space X, the corres-
ponding norm || || and the second norm | [*. In all these ex-
amples, except (IV’) and (VII), the defined Saks spaces are se-
parable; in these.cases we indicate a subset X, enumerable and
dense in X,. '

We omit the proofs of completeness and separability which
are easy. The proofs of the conditions (£,) and (%, are given
in 1.52.

Examples of Saks spaces satisfying the conditions (%), (%) and (E;).

(D) X is the space m of bounded sequences x=={a,} of real
numbers, and

oo

Isl=suplaud,  lxl*=3 Ll
X, is the set of sequences of rationals absolutely less than 1, and
almost all of which are equal to 0.

(I) X is the space m, of the sequences x=={a,} satisfying
the inequality |a,|<<kg,, the sequence gp=={g,} being a fixed
sequence of positive numbers, and

lxt=2 a,;

| =sup |a, /@, N
X, is the set of sequences of rationals with the nth term absolutely
less than ¢, and almost all terms equal to 0.

(I) X is the space m; of bounded sequences x={a,} of real

numbers, summable to 0 by a linear sequence-iransformation T

corresponding to the matrix (a,,) satisfying the Toeplitz conditions:

16*
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) 2 e, <K for i=1,2,...
n=1

(3) lim a;,=0 for n=1,2,..;
i—yoo

sl =splal, 1] =supl Tl 3, gl anl. where Tis) =3, anas

X, is the same set as in (D).

(IT) X is the space M of measurable functions equivalent to
bounded functions in <a,b), and

xl*=J =) dt;

| =sup ess +(0), :

X, is the set of all polynomials with rational coefficients ab-
solutely less than 1.

(IIT’) X is the space M, of measurable functions x=ux(f) de-
fined in <a,b> and satisfying the inequality |x(f)|<ke(t), where
p()=¢ is a fixed measurable positive function, and

b
el =spgss <Ot el =J 175 ae

X, is the set of functions of the form m(f)¢(f), where m(f) is any
polynomial with rational coefficients and absolutely less than 1.

(IV) X is the space Mr of measurable functions x=x(f) equi-
valent to functions bounded in <0,c0) and such that

(4) lim T'(x,7) =0,
z—roo
where
) T(x,7)= [ Kz, H)x(t) dt (a<<r<00),
M 0
‘the kernel K(z,?) satisfying the conditions:
(6) !iK('f’t)ldf<K for 7> a,
b
(©) lim JKGr,5)] dt=0 for 530,

icm
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®") 111_1}3 f|K(r—|—h,t)—-—K(r,t)|dt=0 for t>a;
>0 ¢

l«lj=supess =@, [ =<H;g§>lT(x,r)i+n§1—2-1;,n_fllx(t)l dt;

X, is the set of functions x(f) for which there exists a rational
t, such that

1° |x(H)]| <1 for all ¢,

20 x(t) coincides with a polynomial with rational coefficients
for 0.t <ty

30 x(t)=0 for t=t,.

(V) [(IV")] X is the space Mj [M7] of measurable functions
x=ux(f) equivalent to bounded measurable functions [to conti-
nuous functions] in <0,c0) and such that there exists the limit (4)
with K(z,t) satisfying the conditions (6)-(6");

[l ¢l = sup ess [x ()], Hxll*=<1§1x>[T(x,r)l+§—i~ [l )ln,

n=12n
where Hx||n=s%) cgs[x(t)]; X, is in the case of the space My
W

the same set as in the space (IV), but with the restriction .
that the functions x(f) are continuous.

The space M7 is non-separable.

(V) X is the space D of functions x(f) vanishing for t=a
and satisfying in {a,b) the Lipschitz condition;

— |2 () — =)
Hx“;fl"i‘?’:,b} T —1

b
o == 1x ] dt;

X, is the set of polynomials with rational coefficients, vanishing
for t=a, the derivatives of which are absolutely less than 1.

(V1) X is the space C° of functions x==x(f) bounded in <a,b),
continuous except at one fixed point z, and vanishing at t=r1;

vy 1
1= Il

To define [lxll, we choose two sequences {t,} and {£;} such that

[l ]l =<sl}'1p>lx(t)!,

a<<t, <y, ,<..<7, f,-7
vl <Ll < <b, it o
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if v is an end-point of {a,b), we pick out only one of these se-
quences. We denote by 4, the union of the intervals <a, >
and <¢],b>, or one of these intervals in the case when 7 is an
end-point of <a, b}, and define the pseudonorm ||x||, by the formula

ol = max ()

X, is the set of polynomials of the form m(f)—m(z), where
mw(t) is any polynomial with rational coefficients, such that
[ —m ()< 1.
Remark. In (VI) we can allow the interval <a,b> to be in-
finite, and 7= 0o; in this case we omit the condition x(z)=0.
(VI) Xis the space V° of bounded functions vanishing at =7

and being of bounded variation in all the intervals <a,z—&> and

{r-t&,b), where the point 7 is fixed between a and b, and & runs
down the set of positive numbers;

w31l
bl =2, 3 T

The pseudonorms ||x|j, are defined as follows: we choose the
sequences {/} and {t7} as in (VI), and put

loelln=|%(@)|+[x(®)] -+ varx(t) + varx().
a<t<t, t’rigtgb

The space (VII) is non-separable.

1.51. We now prove two lemmas, which we need in 1.52.
(A) Suppose that

x==sup |x(t)|,
{a,b>

(@) lim 0 =0 for i=1,2,...,
(ii) [t <K for i,n=1,2,...,
(i) limt0=t  for n=1,2,...,
i=>oa
(iv) lim ¢, =0,
n—yoo

Ther%, e being any positive number and s being any infeger,
there exist as, Gs41s ..., aser such that

$+r

@) >0, _Zai=1,
841 . a
®) sup 2 ath —ta|<e.
7, =g
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To prove this lemma note first that the hypotheses mean
that the sequences tO={t},_ .. - converge weakly to 7,={t,}
in the space m;, and then apply a general theorem of Mazu 5).

(B) Let the functions fi(f) be continuous in {a,co), and suppose
that

(i) lim fi(£) =0
e for i=1,2,... and tela,o0),
(i) If:)| <K

(iii) the sequence {fi(f)} converges to f(t) uniformly in every
finite interval, )
(iv) lim f() =0.
{—yoo
Then, given any e>>0 and an integer s, there exist reals
gy Ust1s..50sr fOT 1ohich the condition (7) and the condition
84r

Ea:f:(f)—'f(t)t<6

i==3

8’ max
( ) (a,o0a)

are satisfied.
To prove this lemma put tﬁ{’-(——-*ma)l: |Ii(>t)—f(t)[ for i,n=1,2,...,
atn—1,a-+n
and t,=0. We easily observe that the hypotheses of lemma (A)

are satisfied; hence there exist s, dsi1,...,as4r satisfying the con-
ditions (7) and (8), i. e. such that

81 s+r
ul
i) —f() | < su ¢ max i) —fO)|<e,
S&?<a-|—ﬂ%,)§+n> i%sa filt)—Ftt)|< (n)pizaa {atn—1a+n)

and this gives (8").

1.52. We now shall prove that the spaces (1)-(VII) satisfy the
conditions (%), (I, and (¥). In the sequel x; and ¢ den(?te res-
pectively the centre and the radius of a sphere K(xy,¢) given in

advance.

In the cases of the spaces (1)-(II) and (VD-(VII) we construct
a point meK(x,),0) at which the condition (21) is satisf.ied; the
conclusion results then by 1.32. The spaces (III)<(Y) require a se-
parate proof.

%) S. Mazur, Uber konvexe Mengen in linearen normierlen Réumen,
Studia Mathematica 4 (1933), p. 70-80.
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The space (D). Choose N and § so that

1_¢
©) n=N+1 2"<8’
. -
(10) 6=—§ﬁ-z,

write x;={a}, and put
2}
bn={ (1 4),3"
0

If y={an}eX; and d(y,0)=|/y|* <4, then writing
={an+bs} and m={by}
we get ||| <1 and |a.|<<?/4 for n=1{, é,,...,N; hence || z|| <1 too.

for n=1,2,.... N,

elsewhere.

The space (I'). The proof is analogous as for the space (I).
The space (II). Let x,={al®}; write

(a9 forn=1,2,...,1,
gl =
0 elsewhere,

x,={all}, t,=T,(x) and =T (x).

The formulae (3) and (3') imply that the sequences {t}
satisfy the hypotheses of Lemma 1.51(A); hence for each inte-
ger s there exist a; satisfying (he condition (7) and such that

s+r

2 aiT (x (xo)

==y

<2

sup i

(n)

Pick out a s such that N=s implies (9), choose N so that
i 1 1 .
W <GgE B define 6 by formula (10), put

tr
bn=(1—-4—%)£aia@

o ={b,},

for n=1,2,...,

icm
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and let the sequences z={a, b} and y={a,} have the same
meaning as in the proof rel&tlve to the space (I) Supposing that
K>1 we get [mll<<1. Since b=0 Ior i>s-+r, and since
& s-+r implies

bl<i—F and  lal<gp

we get llzll<1 and

d(r, x,) »—Ilm——xoll*msupiT xO)H—Z =b,—al| <
shr

r+s
< s(up |2 o T(e) =T |+ 3 sup | To X aum)|+

e
+ 2% 3 hapl + P zn\b —al|< 2+ %t ti<e

The space (III). We first prove the condltlon (Z). We can
suppose that p<<4(b—a). Let

2

jmel,  yeX

6(b—a)’ and  d(y,0)=lyl*<s.

89

There‘cxists a set 4C<a,b)y such that \A|>(b——a)—i3 and

ted implies [y(f)|<4(b__a)'
Put
' e for ted,
w(t) = [t forte
0 for teda,by—A4,

ze=z(f)=m )4y {) . for tela,b).

Obviously [|rll <21, and since | yhl < m;v——) for ted, we
get |z(t) <1 for ted; similarly te<a,b>—4 implies |z(f)l <13

hence ||z] < 1. Finally, writing y==2z—m, wWe get
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ro,2) =0l = grp s fla (0 4 (01t < £ £ 8,

d(z, %0) =llz— ol <o —axo [*+ly[* < £4-8 < .

We now prove the condition (3;). Let a=ux;(f)-50, & 0,

and &>>0. Since
b
Jx@)]dt—o0,

ko, being chosen freely so that e,<<2(b—a), we can easily con-
struct an increasing sequence of indices {k;} such that

1° ey << BRi—1/2
b 2 for i=1,2,...
20 J (8] dt < —F=t - "
Fl 16(b—a)’

Denote by 4, the set of points te{a,b) satisfying the in-

equality [xz, (t)l} ) , and write

BizAiﬂ”"AiH‘{‘---a

.. . . 1
bmcg 2° implies [Ai[<zski—1’ we get by 1°

C,=<a,b>—A,.

i i 1
[Bil <E Gki"{—zskiﬂ + . <§5k1 .
The function

it for teC,—B,,

. Bk;

E ()= [1~2(T_a)]xki(t) for ted,—B,,
0 for teB,

satisfies the inequality

A &
d(xk,-sxki)=ﬂ{lxki(i)ldt—i—g' k_ f kai(t)|dt<1£kv+1€ki=6‘kr

Suppose ted —
teC,, - Cor henee

ig[fk (ﬂ|\<_[1—

n+(+-A"+2+ J); then teB -B,-...-B,_, and

i Ekny g

ek, . :
M}+m+m+<i

a
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If tnoned, A4, ..., then teC,-Cy-...; hence

v . &Ko Eky )
t%mki(t)l §.m+m+-~-<1- ‘

If t belongs to an infinity of sets 4, i.e. if telim 4;, we
i>oo

have [lim4,/=0, and we see that 4 being 0 or 1 the element
i~voa

n
- ‘ .
> A, %k, =%, belongs to X, moreover, ,Z; A&, x,, for
i=1 =

I E Zw“u,[l

PECR

1 T
B—a 2%

The space (III'). The proofs are similar to those concerning
the space (III).

The space (IV). In order to prove the condition (%), we
first prove the following lemma:

(*) Given any b>>0 and £>0, there exists an n=n(b,8>0
such that

fix Vdt<n and sup lx() <1
imply

b
max 0fK(r,t)x(t)dt‘<e

By (6") there exists a @ such that

b
7> @ implies Of]K(r,t)[dt<%-

b
By (6”) the functions Of K{w,t)x{f)dt are equicontinuous in

the interval a <1 <0 as x(f) varies over the sphere |x(f) <1;

hence

fK(T Haa(t) di=>0 in <a,0)

as flxn |dt -0, and el <1 in 0,5

Thus the lemma (*) is proved.
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Now, let x,=x,(f), and
= {xo(t for 0K,
for t>i.
The conditions (6)-(6”) imply that the functions T'(x"”, %) satis-

fy the hypotheses of Lemma 1.51(B); hence for every positive in-
teger s there exist o; satisfying the condition (7) and the condition

o 4
< 8 with 8K<1

Fix s>3 so that s=N 1mp11es the inequality (9); then choose

1) max Za, T, %) — T(x,,7)

o) |i=s

n<<min (n(s+r, 16)’ 1% ,8K),

and put
1 n

N

It d(y,0)=llyl*<s, then 221 [ 1yl dt<3; hence
n= n—i

str

(12) fly(tldt<8K

The set B of those ¢ for which #¢<0,s--r> and [y(t)|>
satisfies by (12) the inequality |B|< 5. Let

(13) mo(t)=<1—§>i§x ax(t) for t6<0,00),

” (t)={y(t) for teB
0 for te<0,00)—B,
_fm (&) for teB
DO(t)_{ 0 for te<0,c0)—B.
By (6) v co implies
T(ro,,7) >0, T (2y,7) >0 and T (,7) =0

s+r
It is clear that Oflzo(t)fdt< 75 hence by lemma (*)

(max IT ZQ’I)I<EO
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and since

>L 5] flzo ldt<n<196

n=1

we get || zl[*<<2/s. Similarly Ilog|I* <<9/s.
Put 10 = (10, — Do) — 2, and z= (10, — D)+ (y —2,). The formula

=0 for teB,
<lmo(t)l+Iy(t)l<(1~§%)+§ek—=1 for te¢0,00)— B

implies zeX,. Similarly meX,. Obviously y=z—mw. Now

z(t)

Aoy, o) =0y — %, [* =

—max Ty — 0+ 3 37 im0 —silde<

< max]| Za,T(x" 1) —T (%0, 7) |+ =% g max]T(Z i, 7)] -

(a oo i=8§

e wi f St _
+& 3L fle@atS £ Fing—sola<

<ttt <
A0, 5) < dlrops 29 H oI+ 1 2l1F < 22 22 <

Az, ) < Ao, )+ oyl Iz Iyl < 22+ 28 n <e.

We now prove the condition (Z).

Let xi=x:(f) A 0, &—0, and &>0. By lemma 151(B) there
85 +T
exist functions xj(f)= E akx](k) (t), where
=1
xl(t for 0tk
(k} )=
for t=>k,

with s;, rj, ar satisfying the conchtlons of this lemma and such
that d(x*,x)<<&/2 for i=1,2,. . Put 7;=s5+1, and let n; denote
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the number #(b,e) from lemma (*) corresponding to b=17; and
e=2i/4; moreover, let ;<C&/4 and g;="i/27:. Choose an increasing
sequence of indices {k:} so as to have

" 1
17 Qk‘i<§9ki_1s

2o [Tk olt<= for g
J |, @) <-4 for z=1,'2,...,

5 Sl <oo.

Denoting by '4; the set of these £e<0,7,_,) for which
jxk’fi(t)]>9k,-_1/2, put B;=A4, +4,.4... We have [4,|<<O%_y2
and ]’Bi[<9ki. Write
(l—g)xt(®) for tec0,7,5—B,

0 for teBi{0,7,> and for te(w,,o0).

The following inequality holds:

a‘c,;,. )= {

7k,
[ 1#,O—xk @l dt= (|} @) di-+g, [lx}®)dt <y, .
J ; ,Gi i i
where Fi=<0,1:ki>-B,. and G',.=<(),-zki>-—Bi. Hence
S1 (. 1
éé-nu_fiixki(t)—xzi(t)ldt< ST
and by definition of Ng,»
N 1
max| T8, ) — T(xt,7)| <o,
ie. d(a?ki,x‘,’;i)<eki/2; hence d(’%k,5xki)<5k~-
Given any tf, choose m so as to get te<Tr, _,,Tr,; arguing

similarly as in the proof of the condition (&) for the space (III),
we can prove that

é‘fkf(ﬂlﬁimki(tn <t,

except a set of t of measure 0. Since we have also

1fi§lifki]l* <,§nd(£ki’ *x;) -|-i=2': e 1% g._faki—i—;f”xki“* 50
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n oo
A l A
as m,n—> oo, hence D Mk > xy= 1%, where 4 are 0’s or 1’s
=1 =

arbitrarily choosen. -
The proof of the condition () is similar.

The space (IV) [(IV”)]. Let # denote the same functions as
in the case of the space (IV). Fix s so that s=N implies the
inequality (9). There exist a; satisfying (7) and (11). Arguing simil-
arly as above (p. 252-253) we can easily prove that the function
0 =r0,(t) defined by formula (13) satisfies the inequality

dlm, %) <o
Choose 6=>0 such that
4

ik s i1 e
d0,y)=Ilyll*<<é implies s<%gff>sly(t)l<8K

and put z=z(#)=m(t)+y(@). It follows that zeX;, since

ey e
KZ(t)l<{lm(t)l+]y(t”<(1_ﬁ)+§g for 0.t <5,
ly®l <1 for t=>s4r.

In the case of the space (IV”) note that if x(f) is continuous
in a finite interval and vanishes elsewhere, we have by (6)
T(x,7)>0 as t—>co. Thus we can determine s and a; satisfying
the inequality (11). Put

4 {x('“’(S‘H)[t—(s+i)]+x<-=+ﬂ(s+i) for s-i<t<m,
2+ (f) =

3+i—‘[1
0 for ted0,00)—{s+1,7,
where i==0,1,...,r, and z; is choosen so that

s+ __‘__Q -
Bl T <5 )

This is possible by lemma (x). Put

34T
0 (t) =, (t)+(1— —8—%) 2 @iz +0(h).

It is easy to see that m(f)e(TV”) and d(m,x)<<g. Write
p=E(@)+1, and choose ¢>0 such that d(y,O)zILyH*<6
implies sup |y ()| <<¢/8K. Then lo+yl<i, i.e m+yelV”).

<0.p>
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The space (V). The formula

t
x(t)=[y () dr

establishes a one-one mapping between the space D and the
space M of measurable functions equivalent to bounded functions.
Since

for teda,b)

u
#,i1¢ (1:,17 >

this mz;pping is isometrical. The space M satlsfles the conditions
(), (£) and (¥); hence the space D satisfies these conditions
too, for they are invariant under isometrical mappings.

The space (VI). Let eg. a<<z<<b. Let N be a positive
integer satisfying the inequality (9), hence such that 1/28—1<2¢/2.
Define ¢ by formula (10) and write

(1—0/4)x(f) for a<t<ty , and & _ <t<b,

()= L(t) for o <ty and g <E<H,,
0 for t, <ty
where
t’,:_(fi—tt);v (t—ty Jtrolt, ) for £_ <t<t,
(149 1= ()
l =t (t—ty_ )ity ) for fy <E<Hy .
N tN

If dO,y)=lyl*<<6, then |yll.<<go/4 for n=1,2,...,N. The
function mw(f) belongs to € and z(t)=m(t

)y (t)eC?, because
[<Im(t)I+Iy(t)[<(1-—i)_}_£_ for a<t

l—|y(t) <1 for f <t
Finally

2@ <ty and ty<t<b,

d(m, x)=llm —x,* <

1 e
<23 L gl gl 3 il gl <
4 e
<Z+"§+2%=
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The space (VII. Choose p<<i and N satisfying the
inequality (9) and such that 1/2¥<<9/4, hence such that 9/4K<<1
and 6>0, and that d(y,0)=|yl*<s 1mphes max .yHn<9/4K
where K=llx,/lv—1-1; we can also suppose 6<9/4 Defme w (t)
by the formula differing from that used for the space (VI) by

putting ¢/4K instead of €/4, the function I(f) being defined as
above by formula (14).

The function m(f) is of bounded variation m <a b>, and
lmll<1; hence meV?. Let ||y|]*<6 and z=z({t)=mw )4y ()
Considering that sup [x( )]—I— sup x ()| <llx|l, and argumg snmlarly

as for the space (VI’)l we pmve that llzll <1; hence ze V2. Finally

d(w,x)=lm— x0l* <<

0
g gglol S 1 o—xl
Y 1 Xolin 25; X0

<2 3 T [0 — mln TFlo—wxlln =

=t 1 2wl

n=N+1

<fifie_3,

1.6. We deal in 1.6-1.71 w1th a class of metric spaces which
can be considered as a kind of generalization of Saks spaces.
The elements of these spaces are y-measurable sets or character-
istic functions of these sets.

We first define the p-measurability. Let T be any abstract
set. A class € of subsets of T is called.a field, if the union
and the difference of two sets of € belong to € This condition
implies that the common part of two sets of & belongs to G.

Now let € be a field and suppose a set-function u(E), called
p-measure, to be defined for every set E¢€, assuming as values
elements of a Banach or Fréchet space. Suppose further the
following conditions satisfied:

(a) E;-E,=0 implies p(E;~+ Ep)=u(E;)+u(Es),
(b) E,CE, implies [luE)<IpEM,

(c) if E [[#(Es)l<<oo and if the sets E, are mutnally disjoint,
n=1
then the set ;:E,. belongs to €, and ||u(E,E,+..)ll <£J[M(En) II.

Studia Mathematica. T. XI. . 17
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Under these conditions the sets of the field € will be called
u-measurable. If p(E)=0, the set E will be said to be a null set.

Two sets E, and E, of € which differ by null ‘sets will be
said to be p-equivalent. Two sets E, and E, of G, the comumon
part of which is a null set, will be said to be u-disjoint; in this
case we shall write E,-Ey=0. .

Consider the set X(G) the elements of which are the classes
of p-equivalent sets of €.

We shall prove that X(€) is a complete metric space ®) if the
distance of elements 4 and B of X(€) is defined by the formula

(15) d(4,B)=Nu(4—B)+uB—AI.
1.61. For the proof, we need the following lemma:
Suppose that Ane€ for n=1,2,..., and

(16) gjtd (-An H An+1)< oo,

Then the sets im 4, and li_r_nAn are p-measurable.

n—yoco n-yoo

Suppose first the sequence {4} to be monotone. Then

i An=lim 4, =lim 4,,

n-yoo n—yoo n-yoo
and

h_{nAn: A1‘“[(A1 —Az)"}—(Az‘Aa) "I_]
or

lijﬂAn=A1+ (As_ A1)+(A3 —A2)+...

The sets on the right-hand side of the above formulae being
disjoint, the set lim 4, is p-measurable by (15), (16) and 1.6(c).
n->

In the general case we have

(A1+A2+...+An+1)—(A1+Ag+...—'[—An)C.An.g-i—r—An;
thus, by what has been just proved, the set A,+A4,+..., and
hence the sets An+Anyi--..., are p-measurable. Since

(An +An+1+ .. -) "'(An-H +An+2+.. ) C An ‘—An+1 s
% For Borel fields, in the particular case, where the set-function w(E) is real-

_valued, this was proved by O. Nikodym in his paper Sur une généralisation
des intégrales de M. J. Radon, Fundamenta Mathematicae 15 1930), p. 131-179.
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we see that the set EA,,=(A1+AE+...)(A2+A3+...)... is

p-measurable. We prove similarly that lim A,
n—yoe

. 1.62: To prove that the function (15) satisfies the iriangle-
-inequality, note that 1.6(a) and 1.6(b) imply the inequality
(B +E) I <N p(E I+l ()
for any E,,E,e¢®. It is sufficient to make use of the inclusion
(4—C)4-(C—4) (4 —B)+(B—A4)+ (B~ C)4-(C—B).

To prove now that the space X(E) is complete, it will be
convenient to apply the characteristic functions of sets belonging
to € If h(f) and g(f) are the characteristic functions of the sets
A and B respectively, then |h(f)—g(#)] is the characteristic fune-
tion of their symmetric difference, i.e. of the set (4 —B)-}-(B—A4).

Suppose that E,eX(€) and d(En,En) >0 as m,n—>oco. Let {kn}
be an increasing sequence of indices such that

(17) d(Ey, Ep<<1/2  for p,q>kn;

put Sp==FEx,, An=(Sz—Sn+1)+(Sn+1—S), and denote by ha(t)
the -characteristic function of the set Sn. By lemma 1.61 the sets

§=Ilim§, and §=IimS, are u-measurable, Denote by h(f) the

n—roc n—yoo
characteristic function of the set §; then lim k. (f)=h(f). Since

n—yoo

m>n implies ha()—ha(81 <3 hitt) — e (0.
we get - -
o) — RO <Z (O —hess ()
hence
E—8)+(—8) CdntAnssit....
and since the sets on the right-hand side of the formula
Antdugi b= Aut(Ansi— A ...

are u-disjoint, the set An—+4ns1--... is measurable by (17) and
1.6(c), and we get

st Anei o < D (A5 A — )<

17*
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Hence 1
d(Sn.8) < g

Let now £>0 be arbitrary, and choose m so that 1]2m2<Ce;
then d(Sm,S)<<C#/2,and by (17) we have d(Sm,En)<<&/2 for n>>kn;
it follows d(E, S)<<e.

1.63. Denote by X(T) the space of the real-valued functions
x=x(t) defined in 7 and bounded outside null sets; with the
addition of elements and the multiplication by real numbers de-
fined as usual, and with the norm | x|l of the element x=x(f)
as the largest lower bound of the numbers k for which |x(f)| <k
holds outside a null set, X(T) is a Banach space.

Denote by x,=x,(f) the characteristic function of the set
Ae€, and by X, (€) the class of the functions x, as A4 runs

over G If the distance of two elements x, x5eX, (€) is defined .

by the formula
d(x,,x)=d{4,B),

we easily see by 1.62 that X, (€) is a complete metric space.
Obviously X,,(€) is the subset of the space X(T).

If d(x, ,x,)—>0, we shall write xAn—l> x,, analogously as in
Saks spaces.

In the space X,,(€) we introduce the conditions (29), (22) and
(39) by rewriting the conditions (Z,), (2,) and (%) with X, (€) in-
stead of X,.

We shall prove that the space X, (€) satisfies the conditions
(29), (%) and (X). Hence the space X, (€) may be considered
as a generalized Saks space. The difference between the Saks
spaces and the space X, (€) lies in the reach of the distance
definition: in the former space the formula (1) defining the
distance has a meaning in the whole of the fundamental Banach
space X, and in the latter space the distance is defined in
X,.(€) only.

To prove that the space X, (§) satisfies the condition (%),
let 0 denote the characteristic function of the null set, and
let x,=x, be the centre of the sphere K (x;,0). If d(x,,0)<<é=0,
B=A,+(4—A4), and C=4,—A4, then we have x;—x,=ux,,

d(egex,)=lu(A—A)| <o=¢ and d(xe,x,)=lu(4,A)] <s=¢.

iocm
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To prove that the space X,,(®) satisfies the condition (),
let d(xEn,O)z——H/,z(En)ll—)O, and & —>-40. Pick out an increasing
sequence {k,} of indices such that

Ap= Ekn implies Hy (An+1) I + Il #(Anto) i + K Ekps
and put

Ay=A4;, Ap=A;—A4; 4:y4, Ap=An—Aidiss,

The sets AiA4irs and Aiw dire are disjoint for any s##s’, and

Slntdadei<co.

By 1.6(c) the sets Bi:Ai—sg Ay Asy, are p-measurable, and
since the sets B; are disjoint and i_g:lly(Bi)]l<00, we get
d(xEki,xBi)geki for i=1,2,...,
xg, =k xp A xp,+...e X (©),
and }.‘xBi—l—lszz—}—...-{—lann—l) X, » A being 0’s or 1’s.
The proof of (£Y) is analogous.

1.7. Now some examples of separable X, () spaces will be
given. Since the spaces X, (€) arise from the spaces X(@ by
passing to characteristic functions, we indicate in each case the
set T, the class € and the measure u(E). We give also examples
of denumerable and dense sets in X(€), and we discuss further
the separability of these spaces.

Examples of separable Xgs(€)-spaces.

(1% T is a finite interval Q in the space &™ (the n-dimensional
euclidean space). .

& is the class of Lebesgue-measurable sets in Q.

u(E)=|E| is the Lebesgue-measure of E.

&, is the class of sets which are sums of a finite number of
intervals with rational vertices.

(I1% T is the interval (—oo,=-00).

& is the class of Lebesgue-measurable sets E of relative
measure 0, i.e. such that lim [<—z,7)- E|/27 =0.

00


GUEST


262 W. Orlicz.

u(E) is the function [{—7,7>-El/27 in an interval 0<<a <7,
the values of u(E) being considered as elements of the Banach
space composed of the continuous functions x=x(f) in <{a,c0)
converging to 0 as t->co, with the norm 1l =<sau£)[x(t)l.

@, is the class of sets which are sums of a finite number of
intervals with rational end-points. ‘

(ITI% T is the interval (0,00).

& is the class of Lebesgue-measurable sets E in (0,00) such that
lim [K(z,t)dt=0,

E

z-yoa

where K(z,1) is a function satysfying the conditions (6)-(6”) and .

positive for a <z and 0<t<<oco.
,u(E)=fK (v,f)df; this function considered for a<(z is an
£
element of the Banach space defined in (II%).
€ is the same set as in (I1°).

(IV%) T is the set of pesitive integers.
€ is the class of all subsets of T.

F‘(E)=._21§1n‘i’ where E is the set (n,,n,,...); thus the values
of u(E) are real numbers.

©, is the class of finite sets composed of positive integers.

(V) T is the set of positive integers.

€ is the class of all sets E=(n,,n,,...) of positive integers
for which

(18) lim Zain}-n':()a
i>oo =i
where a;, are non-negative, satisfy the conditions (3) and (3’), and
P __{1 for n=n;, i=1,2,...
" 0 elsewhere.

1(E) is the sequence {t}, where ;= ain/n; the values of u(E)
belong to the space my, =t '
€, is the same set as in (IV9).

(VI% T is the set of positive integers.
€ is the class of all sets E=(n,,n,,...) of positive integers

for which

icm
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3]
(=N
]

lim > an(f) 2a=0,

t=>t n=1
where the a,(f) are continuous functions, non-negative for fé(to,fl}
with ¢, < oo, and satisfying the conditions: )
@) Eian <K  for telty,t,

@) liman()=0 for n=1,2,...,
tot

(i) the series 21 on(f) converges uniformly in every interval
e

<t0 H t) C<t0 ° t1>

/A(E)=§an(t)ln, this function (continuous in <{f,,%,>) being
considered as an element of the space C.

&, is the same set as in (IV9).

1.71. We presently prove that the sets €, defined above are
dense in X(E). The cases of the spaces (1%, (III°) and (VI%) re-
quire only some explanations. .

In the case of the space (III°) set for n=1,2,... and
E,=E{0,n)

¢(T)=EfK(T,t)dt, qa(r)=EfK(r,t)dt.

Since the functions ¢x(f) and ¢(f) are continuous and

@) <Pt (D<),  F(@) ),
the sequence {ga(z)} converges to p(f) uniformly in every finite
interval. Moreover, since

lon(@) —p @) Lp@E)<<e  for 12>1(e),

we get

max |ga(z)—p@)| >0 as n-—>co.
<a,0e) :

Choose m so that

d(En,E) =<11alai§>llpm (@) —ek)| <,

and let 4 be a subset of <0,m) composed of a finite number
of intervals with rational ends such that

d(Em, A)=max fK(r,t)dtl<B/z,
{a,e=) iy
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wheré M=(Em—A)-+(4d—En). This is possible by Lemma (x),
p. 251. Hence d(E,4)<d(E,En-+d(En,d)<s, and this shows
that the set &, is dense in the set €.

The space (II9 is a particular case of the space (111°).

We pass now to the space (VI?). Let the set E=(n;,n,,...)
belong to it, and let
1 __{1 for n=n;, where i=1,2,... (m)_._.{)m for n=1,2,...,m

7710 elsewhere, = 0 for n>m.

Given any &>0, there exists a t'e(fy, t;) such that

t>1 implies Y an () An<<s.
. ne==1

The series 21 an(f) converges uniformly in (f;,%); hence we

have ;:an(t)(ln—l(nm))<e for telty,#’> and m sufficiently large;
this implies that )

max Dan(®)(la—A™ >0 as m->oco.

(g by > n=t

Thus, denoting by E, the set (ni,ne,...,nm,0,0,...), we get
d(E,E.)—0, ie. G, is dense in €.

2.1. An operation U(x) from a Saks space X, to a Banach
or Fréchet space Y will be said to be additive, if for arbitrary
x1,x2¢X; and arbitrary rational 1,4

AxyFAyx,eX; implies U a4 Ayoey) =4, Uloxe) + 2, Ulxy).
The operation U(x) will be termed (X, Y)-continuous, if
xn—l* x implies U(xn) > U(x)

according to the convergence defined in Y by the norm.
Any additive and (X,,Y)-continuous operation will be said
to be (X;,Y)-linear.

) If U(x) is a functional, and when no ambiguity arises, we shall
simply say continuous operation or linear operation instead of
(X, Y)-continuous operation or (X,,Y)-linear operation respectively.

If U(x) is an operation defined in a Banach or Fréchet
space, a corresponding terminology will be used.

Linear operations in Saks spaces (I). 265

2.41. A set-operation U(E) from a space X(€) to a Banach
or Fréchet space will be said to be continuous in X (@), if
u(E) =0 implies U(E.)— 0.
It will be called additive if
U(E+E)=U(E)+U(E,),
E, and E, being any p-disjoint sets; this condition implies that
U(E)=0 for any null set E.

If UE,+E,+..)=UE)+U(E)+... for every sequence
of mutually p-disjoint sets of X(®) the sum of which belongs to
X (@), the operation U(E) will be termed completely additive.

An analogous terminology will be used in the isomorphical
space X,(E) of the characteristic functions.

2.2, We now prove two lemmas:

(A) Let Un(x) be additive operations from X, to a Fréchet
space. Each of the following conditions is sufficient for the se-
quence Un(x) to be equicontinuous at any point xeX,:

(2') the space X, satisfies the condition 3,), and there exists
an element x, at mwhich the operations U.(x) are equicontinuous,

(a”) the space X, is arbitrary, and there exists a x, such that
llxoll<<1 and that the operations Uy(x) are equicontinuous at x,.

Suppose the condition (a’) is satisfied. Given any >0 there
exists a o(s)>0 such that

xeK(xy,0(s)) implies | Un(x) — Us(oeo)|<<&f2 for n=1,2,...

By (5, there exists a d(g>0 such that any element‘y,
for which d(y,0)<é(s), is of the form y=x,—x, with
xl,xzeK(xo,g(a)). The operation Us(x) being additive, we have

| Un (y)ll LU (x1)" Un (x2) I<s.

Let # be an arbitrary element of X.; by 1.22 there exists
a 8,(¢)=0 such that

lx— %% <8, (c) implies x;’?i]*a(e).
Since (x—#£)/2¢eX,, we get for n= 1,2,...
1 1 R x—% _ R
1L -t =[of5H<e  Ww—Tuei<
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Suppose now the condition (a”) to be satisfied. Let X, be
arbitrary, # any positive, and 1 a rational number satisfying the
inequality [lxoll<<A<<1. Then there exists an ¢>0 such that

lzl<e and ze¥ imply |25zl <n.

If yeX,, then x4 (1 —2)yeX, and d(y,0)<<d(e) imply

291~y eK(x,,0(e)).
Here we can take for K(x;,0(¢)) the same sphere as in the
proof of the first part of the lemma; then for n=1,2,...

1Un ey — D y) — Un (o)l = l(1—2) Un(y)ll <e, 1Tn @) <<7.

Hence the operations are equicontinuous at 0. We complete
the proof as above.

In conmection with lemma (A) note that the set X* of
those elements, for which [[x[<<1, is a F, in X, Remark that

%n>x, implies lim [lxall> [l xo.

n—yoo

In fact, suppose [lx,[| >0, and choose £=>0 so as 0<Ce<< |||l
and oy, [[<<llxoll —e=19; since lxnfnll<<i, we get xni/nsy and
yeX,; on the other hand we have obviously y=ux,/y, and this
leads to a contradiction : ||x;/|<n. The sets X, of the elements x
satisfying the inequality {lxl| <1—1/n being closed in X,, we see
that X* is a F,.

Applying this result it can be easily proved that in the
spaces (I)-(VII) defined in 1.4 the set X* is of the first category
of Baire. .

(B) Let (a) be a matrix of real numbers such that

Zila,-,.l<oc> for i=1,2,... and lim ap=a, for n=1,2,... |
n= A i-yos ’
If for any sequence {4} composed of 0’s and 1’s there exists
the limit lim Dlham, then lim sup |am|=0 7).
i—»so n=1 n—yoe (i)
_ It is sufficient to consider the case a,==0. Suppose that

,‘132 S(lil}p lam[>r>0; then we can define successively two in-

creasing sequences of indices, {ix} and {ny}, such that

) This lemma is known.
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oo 3 *x r
r
0 ; —s 0 i —T, 30 y ai. <5
1 nc:%:lflzknl< 5 2 lagml > Zlai, <3
Put

jn = {% [(_1)k+1] for n=mnx

0 for n=mny;

k being even, we have

oo el - - -
2 Andign== lnaikn_}— Ankaiknk—“ Z A Bipn
=1 n=nk+i

n==1 n==

<——£— if ayn,<<0,

and k being odd, we have

"é‘lznaikn <“;‘+%=”‘1—-

The sequence S inam="0; is divergent, and this is contra-
dictory. =t

2.3. Denote by ¥ the space conjugate to a Banach space Y.
The subset ¥, of ¥ is called fundamental, if there exist two
positive constants ¢ and C such that

(£ S‘lll? ln@) > cllyll for any yel,

nely

(£s) Igl<C

Theorem 1. If the space X, satisfies the confii.tion ) o.r.the
condition (I,), then the folloring condit?ons are jointly sufficient
for an additive operation to be (X;,Y)-linear:

(a,) the space Y is a separable Banach space,

(b,) there exists a fundamental s?t ¥, such that for any nel,
the functional (U (x)) is continuous un X.. o

Proof. Suppose first the space X, satisfies the-condxtlon‘(ﬁ).f
By (a,), (b)) and a general theorem '3) the OPeratlon U(x)‘ is Of.
Baire’s first class, hence continuous in a res1dugl set. It is su
ficient to apply the lemma 2.2(A). A »

iewl icz, Sur la continuité et la classification

de ;Llfe cllxelsefjr]:tx;: zabi];fai‘;g;, gxfxi:iamenta Mathematicae 35 (1948), p- 105-126,
théoréme 1.

for each nely.
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Suppose now the space X, satisfies the condition (3,).
By the condition (b;) the convergence xnvlnco implies that

(19) Bim |7 en) > G 1 U o) =K U ey .

noe

By lemma 2.2(A) it is sufficient to prove that the operation
U(x) is continuous at 0. Suppose it is not the case; then there
exists an >0 and a ¥, such that xn-l>0 and [[U(xa)l > s.
By (%,) and (19) there exists a sequence {kn} of indices and a

sequence {#r,} of elements such that the conditions (ii) and
(i) of (Z,) are satisfied, and -

U=k 2 for n=1,2,...

Let neY,; £ being the element the existence of which is
assured by the condition (i) of (%), we have by (b,)

(20) ngilnﬂ(U(ﬁkn))r—’?(U(a’é;,)).

The set ¥, being fundamental, there exists a sequence {n;} of
elements of 7, such that

) [4

m(UE)[>FITUEI>*EE  for i=1,2,...,
and by .the separability of the space Y we can suppose that
there exists a subsequence {I} such that lim n,(y) exists for

. i-yea F
every yeY. Write am:nli(U(aE'kl ); the matrix (a,) satisfies
by (20) the hypotheses of lemma 2.2(B); hence [m, (U (&, )] =0,

which is impossible, since [nl_(U(,ekl )|> k%?oﬂ_

T]'leorem 1". If the space X, is separable and satisfies the
c"opdltwn (}?1) or the condition (%,), the following conditions are
Jointly sufficient for an additive operation U(x) to be (X,,Y)-linear:

(a) Y is a Banach space, ’

(b)) for any linear functional 7(y) the functional n(U(x)) is
linear in X,.
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F4

Proof. Let the sequence {x.} be dense in X,; x being any
element of X;, choose xni—l* x. Since by (b)) n{(U(xa) = n(Utx)) for
every linear functional 7, there exists by a well-known theo-
rem a sequence of linear combinations of the elements Ulxn,)
converging to U(x) in Y. This implies that the range of operation
U(x) belongs to a separable subspace Y,(CY, and it suffices to
apply Theorem 1.

Theorem 2. If the space X, satisfies the condition (%,) or the
condition (%), and U(x) is an additive operation in X, then the
following conditions are jointly sufficient for U(x) to transform any
set X, bounded mith respect to the norm || |I* into a bounded set:

(ap) Y is a Fréchet space,

1
(by) xn—x, implies

1) Tim | Uea) | > 1 Uzl

n—>oe
Proof. Suppose first the space X, satisfies the condition &)
¢ being any positive number, denote by X, the set of the elements
of X, such that

|9l <1/n implies [8U(x) <E/2.
From the additiveness of U(x) and from (b, it follows that
for every rational &

o x and J91<1 imply lim [|9U (xa) | > 19U ()1

n—oyoco
Thus the sets X, are closed; since X,= ‘gan, one of the

sets, say X,, contains the sphere K(x,.0). By cogditigm (=)

there exists a 6>0 such that [lyll*<<4, and yeX, implies the
existence of x,,x,eK(x,,0) for which y=2x;—%,. Hence

18U < 18U HI9UGel<e  for [91<1/p.

There exists a rational number &, such that 0<t90<.1 a.nd

|9,xll*<< 6 for every xeX,. The inequality [9]<#/p implies

for every xeX, s
18U =l X U,x)l <.

Thus the operation U(x) maps the set X, into a bounded §et.
Suppose now the space X, satisfies the condition (Z,). We first

prove that x,,—'>o implies the boundedness of the sequence {U(xn)}.


GUEST


270 W. Orlicz.

Suppose it is mot the case for a sequence {x.} I-con-
verging to 0; then there exists an g,>0 and rational numbers
9.0 such that |8.]<<1 and lim [[@.U(xa)ll= &,.

. n-yco

By (%), (by) and 1.22 there exists a sequence {kn} of indices
and a sequence {%,} of elements such that the conditions (i)-(iii)
of (%,) are satisfied, and that

10 10, U@l >60/2 for n=1,2,...,

20 the series gllrna‘cknﬂ* converges uniformly in the set of
sequences {r,} with |7.|<1.
The condition (i) of (¥,) implies that, given any functional
&(x) of norm 1 linear in X,
=0 or 1 implies élim}&(ﬁkn)l<1;
hence for any sequence a={an} of numbers absolutely less than 1
we have

i
I gl anf, | < 1.

Thus, by the completeness of X, and by 2° there exists
a x,¢X, such that ‘

21 anfr, 5 Xa.
We now define in the spac«-‘; (I) an operation V(&) writing
Via)="U(x,) for a={a.}.
It is an additive operation, and by 2° and (b,) we easily infer
that, if an—> & in the space (I), then Lim || V(a,)l| > [V (a)l|. This space
satisfying the condition (¥,) and l’;g;g bounded with respect to

the norm || [[*, the range of the operation ¥(a)= U(x,) is bounded.
Hence the sequence {Ul#,)} is bounded. But this contradicts 1°.

L([Et now x.eX;. 8,0, and let & be rational numbers such
that & —~ 0 and 1>]4, /9| >0. Since ¥ x, 0, we get

9
. 8. Ux,)= 5,5 U@, x,) -0,
which completes the proof.
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In connection with Theorem 2 we prove the following one:
If the operation U(x) is additive, and maps any bounded set
into a bounded set, then
xeX, and d9xeX, imply U@x)=1»5U(x).
Tt is sufficient to prove that #,—0 implies U(#nx)— 0.
Let @, be rational numbers such that {6,/9,|-0 and #,-0.

n

|9
The sequence &

3
x} being bounded, we get U(ﬁnx)=ﬂ;U(7?x)90.

Simple examples show that there exist operations additive
in Saks spaces X, satisfying the conditions (;) and (%), mapping
the space X; into a bounded set, but discontinuous in X.

9.4.1. We will say that a Fréchet space Y satisfies the condi-
tion (Z) if boundedness of all the sums gi)lnyn with 4,=0 or 1

implies the convergence in Y of the series 2,1 Yn o).
n==

Theorem 3. If the space X, satisfies the condition 3,), then
the conditions (as),(bs) of Theorem 2 and the following condition:

(cs) the space Y satisfies the condition (Z)
are jointly sufficient for an operation U(x) additive in X, to be
(X, Y)-linear. .

Proof. By Lemma 2.2(A) it is sufficient to prove that x,—>0
implies U(xa)—> 0.

Suppose it is not the case; then there exists an &,>>0 and
a sequence xn—l>0 for which || U(xn)l>&. The conditions ()
and (by) imply the existence of a sequence {ks} of indices and
of a sequence {%x,} of elements satisfying the conditions (i) and
(iii) of (%), the condition 2° p. 270, and the following one:

U@ > 02 for n=1.2....
From these conditions it follows that the partial sums of the

series S’ AnZry» where 1,=0 or 1, are bounded with respect to the
n=1

9) This condition was introduced in my paper Sur les opérations linéaires
dans U'espace des fonctions borndes, Studia Mathematica 10 (1948), p. 60-89.
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norm | II*; hence by Theorem 2 the sequence of values
U (g,‘iz,,sckn) = Z‘i}.nu(ﬁ'k")s

where 4.=0 or 1, is bounded. It follows by (Z) that U(,) — 0,
which is contradictory. '

Theorem 3. If the space Y is a Banach space, and the
space X, satisfies the condition (Z,), then the conditions (b)) and (c,)
suffice jointly for an additive operation U(x) to be (X.,Y)-linear.

Proof. Write

sup [9() | =lyll.
LLEYY

The norms || || and || |, are equivalent by virtue of condi-
tions (f,) and (f,), p. 267. We prove that

xn—x implies [|U)llo<lim | Ulxn) .

n-—yoo
In the contrary case we must have for a sequence {x,}
U@ <N T )]l —e.

But (b,) implies n(U(xy)) > n(U(x)) for every nely; hence
choosing ne?, so that :

(U > 1T, —f2
we get ' .

1T @) ly— & > 1 Uxnd lo =11 (Uleend) | = [9{U ()15

which is impossible. We complete the proof by applying Theo-
rem 3.

(Regu par la Rédaction le 20. 3. 1950).
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