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On sequences of operations (I)
by
A. ALEXIEWICZ (Pozrah).

In the theory of linear operations a group of theorems cau
be distinguished which are particularly often applied in various
branches of Analysis.

To this class belong of course the theorems referring to the
sequences of linear operations, the most important of which may
be put inlo one of the three following forms. K denotes there
generally a class of continuous operations defined in a properly
chosen space, salisfying there certain conditions adapted to the
‘following cases: '

L. If {U.(x)} denotes an everywhere convergent sequence of
wperations belonging to K, then their limit is an operation be-
longing to K.

II. If a sequence {U.(x)} of operations belonging to K is
bounded everywhere and converges in a dense set of x, then it
is convergent everywhere.

T01 (1L1*). Let {Upg(x)}g=1,2.... be a sequence of operations be-
longing to K for p=1,2,... If for each p there is a point x,
such that the sequence {Upq (¥p)}g=t.2... is divergent (unbounded).
then there is a point x, at which these sequences diverge (are
unbounded) simultaneously for p=1,2,...

The theorems of ihe forms I and 1I formulated for a special
class K may be found in the well-known paper of Lesescur [10].
The study of operations of this class has been continued by
Hosson [9], Haar [6], Haux [7], and many other geometers. The
more gencral class K for which the theorems of the forms I, 10,
T still hold is that of linear operations defined in a Banach
Studia Mathematica. T. XI. 1
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space. Their applications to the study of the convergence of
Fourier developments and orthogonal developments, to the linear
interpolation, to so called singular integrals and so on, are well
known.

The theorem I for the considered class K was proved for
the first time by Bavacu in his thesis [2], the theorem II ,,of re-
sonance” and III ,,about condensation of singularitaties® by him
and Stemuavs [4]. Afterwards Banacu [t, 3] proved I and I for
a class K of linear operations defined in the spaces of type I
and G1). Mazur and Oruez [11] proved the theorems II and II*
for the same class in a space of type F. To the same authors [12]
we owe the theorems of the forms I, II, IIL and III* for the class
K of polynomials of degree at most m in the spaces of type F.

All the preceding theorems may be demonstrated by the so
called method of category which is based on the theorem of
Baire and has been iniroduced into this domain of research by
Saxs (see Bavacu-Stemnavs [4]). Hanx [8] and Saks [18] have demon-
strated theorems 1 and IIT by the same method for a class K of
non-linear operations defined in a non-linear metric space.

Now arises the problem of developing a general theory in-
volving as particular cases the preceding theorems of the forms
I, II, Il and II[*. This is precisely the conteni of the first
part of this paper 2).

1 study here certain classes K of continuous functions. the
argument and the values of which are varying in very general
metric spaces which will be specialized later on. I introduce some
intrinsic properties of those classes. These properties form as weak
as possible sufficient conditions for the validity of the theorems I
and TIL

1) I use the standard terminology introduced by Banach in his treatise [1].
%) Presented with some insignificant alterations as Doctor Thesis, on the
March 10, 1944, to the secret University in Lwéw, during the terror of the German
occupation.

1 wish to express my deepest gratitude and my esteem to Professors
A. Zierhoffer (Dean), W. Orliez, W. Nikliborc and W. Rubinowicz
(Members of the Commission of the Department), who worked in that tragical
time, regardless of their personal danger. I owe my greatest thanks especially
to my Professor, Mr W. Orlicz, for having suggested me the theme of thiy
paper, ‘and for his help; his encouragement and his:stimulations.
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In the three further parts of this paper I shall deal with the
classes of linear and polynomial operations defined in linear spa-
ces with the notion of limit. I consider the axioms concerning
the convergence of sequences of elements in these spaces and I
establish a set of axioms sufficient for the validity of theorems

[, II, I and TIT*.

Terminology and nofations.

- Any subset R of a metric space whose complement is of
Baire’s first category will be called residual. The elemenis of
a metric space will be called points.

Following the usage of Basacn the functions from an absiract
set to an arbitrary set will be called operations, except those
whose domain is any family of sets and which will be termed
set functions. The operations from an arbitrary set to the reals
will be called functionals. The term function is reserved for the
operations from the reals to the reals. .

U(x) being any operation defined in X, and X, being any
subset of X, U(x|X,) will denote the same .operation with the
domain restricted to the set X,.

We shall use the following notations:

1° E{m(x)}, the set of elements x satisfying the condition w(x).

2% g(x,y), the distance between the points x and y of any
metric space.

3% E, the closure of the set E.

4° K(x,, 1), the open sphere wiith centre i, and radius r, i.e.
the set E{g(x,x0)<r}.

5¢ Xk, the Cartesian product Xx...xX (k times) of the space X.

6° llx|l, the norm of the elemené x in Banach space.
® & and 7, the spaces conjugate respectively to the Banach
spaces X and Y.

8° £(x) and #(y), the elements of Z and ¥ respectively.

9° |E|, the Lebesgue measure of the set E.

1. Unless the contrary is explicitly stated all the operations
considered in this paper are supposed to be continuous and de-
fined from a complete metric spacer X to a metrie space Y
without other restrictions depending nupon the spaces considered.

*

o
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4 A, Alexiewicz.

The operations of a given class will be termed equiconti-
nuous at the point x, if, given any £>>0, there exists a 6>0
such that o (x,x,) << 6 implies ¢ (U(x), U(xy))<<e for every operation
U(x) belonging to this class; such operations will be said to be
equicontinuous in the set RCX, if they are equicontinuous al
any point of the set R; finally, if R=X, they will be termed
simply equicontinuous.

Moreover, if the operations of a family are equicontinuous in
a set R, and the number § in the above definition can be chosen
independently of x,, the equicontinuity will be said to be uniform
in R. - The equicontinuity of a sequence of operations may be
understood as that of the class composed of the terms of this
sequence.

The following properties of sequences of operations will play
a fundamental role throughout this paper:

(r,) Convergence in a residual set implies equicontinuity,

(r,) Convergence in a set of the second category implies
equicontinuity,

(ry) Convergence in a set of the second category implies uni-
form equicontinuity,

() Convergence in a sphere implies convergence every-
where. ]

(a) and (b) being any of the above properties, (ab) will denote
their logical product.

Let (x) be any one of the above properties or the logical
product of some of them, and let K be any class of operations
from X to Y. The class K will be said to be a (x)-class if every
sequence of operations of the class K has the property (x). E. g.
a class K is a (cry)-class, if each sequence of operations of this
class has the properties (c) and (ry).

In the sequel we will need the following theorems which may
be considered as a generalization of a classical theorem of Arzera:

(1.1) Suppose the operations U(x) to be equicontinuous at the
point x,. and convergent to Ulx) in a sphere about x,: then U(x)
is confinuous at x.

(1.2) Suppose the operations Un(x) to be uniformly equi-
‘continuous and convergent to U(x) in X; then U(x) is uniformly
continuous (in X).

icm
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(1.3) The space Y being complete, suppose the sequence of
operations {U.(x)} to be equicontinuous and convergent in a set D
dense in the space X; then the sequence |{U,(x)} conperges in the
mhole of X. .

The converse to (1.1) is not true in general: the equicontinuity
of a convergent sequence at x, is not a necessary condition for
the continuity of its limit at x,. However, if we neglect the sets
of the first category, the convergence of a sequence of operations
implies its equicontinuity. This fact is established in the following

Theorem 1. Let |[U.(x'} be a sequence of operations con-
vergent in a residual set A; then the sequence {U.(x}} is equicon-
tinuous in a residual set B.

Proof?. Consider the space Z of convergent sequences
z=={yn} of elements of the space Y, the distance between the
elements z,={y, } and z,={y,,} being defined by the formula

ulZy, Z,) =sup f‘;_(y‘"’ y"—’"'d, :
n=12,... | T (yms ygn)

we can easily see that the space Z is metric. The sequence
{U.(x)} may be considered as an operation W(x) from X to Z.
The continuity at x, of the operation W(x) is obviously equi-
valent to the equicontinuity of the sequence {U.(x)} at x, Put

0 _(x)_{Un(x) for n<1,
T\ Uitx) for n> i,

Wilx)= {Uni(x)} ey o ..

Since the operations Wi(x) are continuous in X, and the
sequence {W;(x)} converges to Wi(x) in 4, we get by the well-
known argument of Bame that W(x) is continuous in a residual
set BCX.

(1.4). Corollary. Let {U,(x)} be a sequence of operations
convergent in a set 4 of the second category; then this sequence
is equicontinuous in a set B of the second category.

3) This prcof replaces a direct one given originally by the author, and has
been suggested by S. Mazur.
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Proof. As the set R of the points of convergence of the
sequence {U,(x)} satislies the condition of Bame, there exists
a sphere K such that the set K—R is of the first category. It
is sufficient now to apply Theorem 1 replacing the space X by
the set K.

2. Unless the conirary is explicitly stated, from this section
on the space } is supposed to be complete.

Theorem 2. Suppose {Un(x)] to be a sequence of operations
belonging to a (r.)-class ((ry)-class), convergent in a set R of the
second category. Then the sequence {U,(x))

(2.1) is equicontinuous (uniformly equicontinuous),

(2.2) converges in R,

(2.3) the limit-operation is continuous (uniformly continuous)in K.

Proof. The set R being closed in X, it may be considered
as a complete metric space; thus (2.1) vesults from the definition
of a (ry)-class ({ry)-class) and from Theorem (: (2.2) and (2.3)
result from (1.3) and (1.2).

Under the hypotheses of Theorem 2, if we suppose, moreover,
that the set R is dense in X, the sequence {U,(x)} converges in X
to a continuous {(uniformly continuous) limit.

Theorem 3. Let {U,(x)} be a sequence of operations belon-
ging to a (cry)-class ((cr))-class), convergent in a set R of the
second category: then the sequence {U,(x)} is convergent eve-
rymwhere and its limit is continuous (uniformly continuous).

Proof. This results from (2.2). since R contains a sphere.

Theorems 2 and 5 imply

(2.4) Given any sequence {U,(x)] of operations belonging to

a (ry)-class ((cry)-class), the set of the points of convergence of this -

sequence is either of the first category, or it contains a sphere (is
identical rwith the space X).

It is easily seen that the set of the points of convergence
of a sequence of operations belonging to a (r)-class need not be
identical with the space X. As a trivial example consider the se-
quence of functions Un(x) =max[t,(— 1)*#] of the real variable
convergent for £>>0. The following proposition is obvious:

(2.5) Given a (ry)-class K of operations, every sequence of
those operations converges either in a set of the first category
or in the whole of X, if and only if K has the property (c).

?

icm
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In Theorems 2 and 3 we can omit the hypothesis that the,
space Y is complete, assuming that the sequence in question is,
convergent everywhere. We can easily prove the following pro-,
position :

(2.6) The space Y being arbitrary (nat necessarily complete),
the limit of any convergeni sequence of operations belonging to
a (ry)-class ((ry)-class) is continuous (uniformly continuous).

3. In this section we give an application of Theorem I.

Let X be a complete metric space, ¥ a Banach space. I the
space conjugate to Y, and let %, be the unit sphere in 7.

An operation U(x) from X to ¥ is called meakly continuous, 1f
given any element n=1(y)¢?, the functional #( U(x)) is continuous.

Let X,CX. and let us denote by K(X;) the family of the
functionals of the form #{U(x|Xy) where ne?,. and consider the
following conditions:

ii) the range of Ulx) is separable, and K(X) is a {(ry)-class,

(ii) given any sequence {x,} of elements of X, there exists
4 separable closed set X,(ZX such that x,eX, for n=1.2,...
and K(X,) is a (r))-class.

Theorem 4. Suppose the operation Ulx) to be mweakly con-.
tinuous and one of the conditions (i).(il) satisfied; then the ope-
ration U(x) is continuous.

Proof Suppose first the condition (i) satisfied; the linear.
closed span of the range of U(x) being separable we can suppose
without loss of generality that the space Y is so. Suppose now,
the operation U(x) is discontinuous at x4; then there is an ¢=>0
and a sequence {x,} such that xn— x, and

(3.1 U (xn) —Ulxg)l| = &

By a theorem of Banacu ([1], p. 55) there are elements n,.efoi
such that
(3.2) (U (en) — U (x)) = 11U () — U ()l

Let {yp} be a ~.equu\ce of elements dense in Y. Since

{7n(yp) << llypll for n=1.2,..., we can select a subsequence
{ﬂn;. (y)} such that khm 1;nk(yp) exists for p=1,2,... Since ||7.[| <1,

by the Baxacu-Stmmmavs theorem ([4] p. 53) the sequence {un (1)}
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converges everywhere. The condition (i) being satisfied the se-
quence {#n, (U@EN} is equicontinuous at x, contrarily to (3.1)
and (3.2).

Let snow the condition (ii) be satisfied, and suppose there
exists a sequence x,—>x, for which the inequality (3.1) holds.
We will prove that the range of the operation U(x|X,) is se-
parable. Let {z.} be a sequence dense in X, and put yn= U(zs);
denoting by Y, the set of the linear combinations with rational
coefficients of the elements yu, we sec that the set ¥, is denu-
merable. If xeX,, there exists a sequence zn — x; since U(x)
is weakly continuous, we have 7 (U (zn) > n(U(x))  for each
n=n(y)e¥; hence by a theorem of Bawacu ([1], p. 134) there
exists a sequence of linear combinations with rational coefficients
of the elements yn,=U(zy,) convergent to U(x). Thus the set ¥,
is dense in the range of U(x|X). To prove the theorem it is
sufficient to apply the first part of this proof.

Remarks. Theorem 4 is true also if X is a’ B,-space’).

Suppose 7; is a subset of ¥ satisfying the following condi-
tions: (a) there is a constant M such that gll< M for each nef,,
(b) there is a constant m such that given any yeY, there exists
an element 7¢?, such that #(y)>mlyll. Then, we can replace
in Theorem 4 the condition (i) by the following weaker one:

(i) the range of U(x) is separable and the family of the
functionals of the form n(U(x)), mhere neli, is a (ry)-class.

4. The theorems of section 2 enable us to state some theorems
on condensation of singularities.

Theorem 5. Let (U, ()}, _yo.. be a sequence of operations
belonging for fixed p to a (ry)-class K,. If for each p there exists
an element x, at which the sequence {Up,(*)},,  1s not equi-
contfinuous, then there exists a residual set R such that the se-
quences {U, (x)},_, .. are divergent mhatever be p and xeR.

Proof. Let H, be the set of comvergence of the sequence

(U, (®)} 41,..- This set is of the first category, since, in the
contrary case, the sequence {U,, (*)},_, , . would be, by Theorem 2.

equicontinuous. It suffices to put
R=X—(H,~+H,~+...).

) Concerning the definition see, for instaace, Eidelheit [5], p. 140.

icm
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From (2.4) follows immediately

Theorem 6. Let {U, (*¥)},_,,. . be a sequence of operations
belonging for fixed p lo a (cr,)-class K,. If for each p there exists
an element x, such that the sequence U, (%)} es.s,... diverges,
then there exists a residual set R such that the sequences
{U,,(®)} =t.,,... are divergent mhatever be p and xeR.

Theorem 7. Let {U, (x)},_, .. be a sequence of operations
belonging for fixed p to a (ry)-class K,. If for each p there exists
an element x, and a set D, dense in X such that the sequence
{Upg ()} 4as,o,... diverges for x=x, and converges for xeDp, then
there exists a residual set R such that the sequences {U, (%)} ;. .
diverge mhatever be p and xeR.

Proof. By Theorem 2, the set H, of convergence of the se-
quence {U, (x)},_, . . is of the first category; it is sufficient to put

R=X'(H1+H2+~‘>-

5. In this section some theorems concerning the conden-
sation of the ,junboundedness* will be established. Hence we
inust restrict the space ¥ to be such that the notion of bounded
sequences may be introduced.

The space Y is supposed to be a F-space (Bavaca [i], p. 33).
The sequence {y,} of elements is called bounded’) if #,y,—0 for
any sequence {9,} of real numbers 9, 0.

We need the following properties of sequences of operations:

() Boundedness in a sphere implies boundedness in the
whole of X.

If any sequence of operations of a family K has the pro-
perty (b), K will be said to be a (b)-class.

. The family K of operations will be said to be an (h)-class if
it has the following property:

(h) If Ux)eK and Ais a real number, then 2U(x)e K.

Analogously as in section 2, we define the (br)- (hry)-.
(bhr,)-classes, etc.

5} In the sense of Banach; see Mazur and Orlicz [11].
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Theorem 8. The set S of the points of boundedness of
a sequence {U,(x)} of operations belonging to a (hbr,)-class K is
cither of the first category, or identical roith X.

Proof. Suppose the set § to be of the second category; then
there is a sphere KC 8. We will prove that KC 8. In the contrary
case, there would exist an element x,¢ K—S. Thus we may find
real numbers & 2, and indices k, such that >0, 2,0 and

A5.1) ”211 Uk" (ap)|| >+ e.

Since the operations Vy(x)==2, Uy, (x) belong to K and since
Vr(x)~ 0 in the set § of the second category, the operations ¥V, (x)
are, by the (r,)-property, equicontinuous. Hence there is a number
6>>0 such that pg(x,x)<<d implies ||[Vn(x)—Valx)l|<<?/, for
n=1,2,... Obviously x68—S. [t follows that there exists
an element x;eS for which o(x,x,)<<d. Choose M so that
I Pulx)|<<?, for n>M. Hence, for almost all n we have

”I/n(xo)u ~<: ”Vn(xj) - r"n (’('o)”_i"” Vn (‘X‘])”<2/’3 g~ €&,

contrarily to (5.1). Thus KC S and by the (b)-property X S.

From the above proof we infer easily

(5.2) The set of the points at mhich a sequence of operations
of a (hry)-class is bounded is either of the first category, or con-
tains a sphere.

Theorem 8 implies the

Theorem 9. Let {U,(x)} be a sequence of operations be-
longing for fixed p to a (hbry)-class K,. If for each p there exists

an element x, such that the sequence {U,,(x))},_, , is unbounded,

then there exists a residual set R(CX such that the sequences
{U,q®)} ;=0 ... are unbounded rhatever be p and xeR.

The theorem (5.2) implies the following one:
(5.3) Let {U, ()}, , . be a sequence of operations belonging

for fixed p to ap(;w2 -class K. If for each p there exists en element
x, and a set D, dense in X such that the sequence W, &N o,
is bounded for xeD, and unbounded for x==ux,, then there exists
a residual set RCX such that the sequences {U 2

unbounded mwhatever be p and x¢R.

a=1,2,... are

icm
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6. The theorems of the foregoing section can be proved
under changed hypotheses. We can namely weaken in Theorem 8
the hypothesis of K, being a (hbry)-class strengthening at the
same time the hypotheses about X and Y.

Theorem 10. Let X be connected®), ¥ a Banach space, and
let {Un(x)} be a sequence of operations belonging to a (hr.)-class K.
The set of the points at mhich hm Up(x)l|<<cc is either of the

first category, or identical mith X
Proof. Write

S= E{hml;b,.l.x Jj<ocl, R=X—24.

X neses

It is to be proved that, if § is of the second category, then
R=(. Suppose the contrary. The space X being connected,
we have RS'--R'S==0. Hence. we have to consider two cases:

1" Suppose RS"==0. Let xyeRS’: thus

lim [T, (a,) =00,
n-yoa
and there are points x,eS such that x> x, A sequence of
indices {ny} may be chosen so that lim |{Uy,(x,)]|= cc. There are
k—yoa
real nombers 4, — 0 for which lim [{ A Uy (a} == ==, The opera-
fe-yoa
tions Frlx) =AUy (x) belong to K and
(6.1) lfﬁ;ll Fie(acg)l== oo
if xed, then lun HT/L(.x)H =0; by the (r,)-property the sequence

Fn(x)} is equlcontmuous, thus there exists a >0 such that
o{x, x,)<< 6 implies [[Fr(x)— Fi(x,)]| <t for each k.
Choose m to have p(xm,x,)<<d. Since xneS we have
lim || Vi (xm)||==0, and the inequality
k>en )
I (el ST loee)— Vi oem) [ -4+ Vi ()
gives contrarily to (6.1)

i | Pt | < 1T | Vi el | = 1.
k> > o

%) A space is said to be connected if it is not the sum of two closed, non
vacuous and disjoint subsets.
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2" Suppose R'S=0, and let  xqeR’S; thus lilh[lU"(xu)|1<oo
n—oa

and there exist elements x,—>x, such that lim|[[U.(xp)l|=00 for

n-yeo

p=1,2,...

Given any p, there exists a sequence {np}r=1,2.. such that
lim J!Unpk(xp)§|= o0, and we may find veal numbers f (p,k=1,2,...)
k=yoa

such that
limftp=0 for p=t,2....,

k—yoa
}\1})11;” fpk l“vnl,k (-"Ar'] “ ==,
62) dul<tfp for k=L2,...

Range the double sequences |{ng} and {t,) in a simple {sg}
and {tx} respectively in such a manner that the equalities t; =1,
npr=s;j imply j=i. Thus the sequence {# Us(x)} contains all the
sequences {fpk Uny (X)}i=t.2.... The operations Vi(x)==1; U, (x) be-

long to K: moreover
(6.3) lim [|F(ep)ll=co for p==1,2,...
PR
By (6.2) we have Alim tr=0, and since xeS implies
.

lim ||Usk(-xo)| |<<oo,
k-yoo

we gel
lim [[ I} (x0) 1 == 0.
koo

~ The class K having the property (ry), and F.(x) being conver-
gent to 0 in the set § of the second category, the opcrations
K (x) are equicontinuous. Hence there is a 6=>0 such that
plae, x0) <<d implies [V, (x) =V, (x)| <1 for k=1,2,... From the
imequality

1V e | <1V () — Vi 1 o)

and p being sufficiently large we get contrarily to (6.3)
Him [V, (el < 1 i [V, (o) | = 1.

.It can be .shown by a trivial example that without the hypo-
thesis of X being connected, Theorem 10 is in general false.

icm
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Theorem 10 implies the

Theorem 11. Let X be connected, Y a Banach space, and let
U,y () gy, be a sequence of operations belonging for fixed p
to a (hry)-class Kp. If for each p there exists an element x, such
that the sequence {U, (x,)},_,, . is unbounded, then there exists
a residual set R such that the sequences {U,(x)},_,,. . are un-
bounded mwhatever be p and xeR.

Theorem 11 may be generalized for a wider class of spaces.

A F-space Y will be said to be a F*-space, if it satisfies
the following property:

(f) there exists a >0 such that f,—>co and [[fayall<<é
implies yn—>07).

Examples of F*-spaces are:

19 the space L%, 0<<a<<i, composed of the functions x(f)

b
defined in an interval <a,b) for whichﬂx(t)]“dt< oo, the norm

b
being defined by the formula lel]=f[x(t)|“dt;
2 the space I, 0<<a<C1, composed of the sequences x = {£,}

such that ' |#n/*<<oo. the norm being defined by the formula
n=1

e zﬂz;t-’&n!a'

Introducing some not essential modifications in the proof of
Theorem 10 we can replace in Theorem 11 the hypothesis of Y
being a Banach space by that of Y being a Ft-space.

1f we omit in Theorem 11 the hypothesis of ¥ being a Banach
space, or a F*-space, Theorem 11 may be false. Let e.g.
X=¢{—1,+1> and let ¥ be the space § of measurable functions
{Banacn [L], p. 9). The space § is not a F+-space. Given two num-~
bers 9 and B such that 09, —~oo<<f<+4-co put for xeX

g if d<x 1, or d<tlx,

7 )
Upat: 1) | 0 elsewhere.

7) Mr. Mazur has communicated to the author that this condition is equi-

valent to the existence of a bounded neighbourhood of the element 0.
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' Ugs (x;t) may be considered as an operation Ups(x) from X to
S; let K5 be the family of operations Ups(x) where —co<g<w 400,
Each family K is equicontinuous, for

4‘(’2“1 Bl
It
Wpstx—Upstxalll =1 =g

i 1+I8

s +=

for x a0,

0oy — x|

The family Ky has the property (h), hence it is a (hr,)-class.
Write ay=1—1/,, Vyq(x)==Uqa,(x); the operations of the sequence
{Vog(®)},_, ... belong to the class K.,, and we easily see that
‘this sequence is bounded for —1<Cx<{ap and unbounded for
ap<x<1. In fact, Vpg(x)=0 for —1 <x<a, and

x

iy (. atqa . 1] L O Gt e
lig ‘I/,,q(x)H—“{ Tgiq dt= N (.x—h 14 'p> for up<x 1.
There does not exist any element xs==1 for which the se-

quences {Vpq ()} —y.o,... are simultaneously unbounded.

?. From this section on we shall present some applications
of the foregoing theorems.

Let X be an abstract set. Suppose, that for certain pairs of
elements x,x, there is defined their sum x,-Fx, satisfying the
following conditions:

(po) There is an element 0 such thai x40 and 0-Fa exist
for each x,

(pa) 04-0=0,

{py) If 2y-x, exists, then x,+x, exists and Xy Xy = Xy - 20y

{p) If 2=+, then x, =x,,

(ps) If there exists x,-x, and (20 x) x5, there exist
*o2 and x;~(oe, ;)3 moreover, (a, ~F ) a0y = x, |- (x5 L 22,).

The set X will be said to be a pseudogroup.

It can be shown that: (a) x4-0=ux; (b) if it is possible to
define for the elements x,...,x, the sum x+x5-F...+ x, (in the
usual manner), the commutative law holds for this sum.

On sequences of operations, 1. 15

Any element x for which x,=x-4x, will be denoted by
x; —xy; this element is uniquely determined if existing, Suppose
now the space X is simultaneously a pseudogroup and a complete
metric space, and, moreover, the following conditions *) are sa-
tisfied :

(py) Given any x,eX and e>>0, there exists a 60 such
that any element xeK(0,8) is of the form x=x,—x,, where
x4, 06 K(xy, &),

(ps) Given any 6:>0, there exists an w>>0 such that for each
pair x;,x, of elements the inequality o(x;,x;)<<w implies the
existence of elements z,,z, such that

Xy == (2, —2y)F 2y, 2y, 2,6K (0, 0).

Every pseudogroup satisfying the above conditions will be
called a pseudogroup of Saks.

Let Y be a F-space. An operation from a pseudogroup of
Saks X to ¥ will be called additive if the existence of x,+x,
implies  U(x, 4 a5) =Ulx,) - Ulacy}; it follows that U(x) being
additive, and x; — x, existing, we have U(x;—x,)=U(x,)— U(x,).

We will denote by 4 the class of the additive and continuous
operations from X to Y.

(7.1) If the sequence {U.(x)} of operations belonging to A is
equicontinuous at x,, then:

(7.2) this sequence is uniformly equicontinuous,

(7.3) given any >0, there is a §>0 such that o(x,0)<<d
implies ||Uy(x)]|<<e for n=1,2,...

Proof. Denote by d(xy,e) and w(8) the least upper bounds
of the numbers § and w, the existence of which is assured by (pg)
and (p;) respectively. There is a number % such that g(x,x)<<7n
implies [|Un(x)— Unlx,)l|<<&/2 for n=1,2,... Write §=="1/,8(xy, 1)
and let o(x,0)<<s. By (py) there are elements x,,x, such that
p (), x0) <<, @ (3, x) <<y and x=x,—x,; hence

NUn(xe) —Un(x)|<<8/2 for i=1,2 and n=1,2,...

%) These conditions present a generalization of two conditions considered
by Saks [17] in a particular case.
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It follows [|Un(x)l|=IUs(xy) —Un(x}{|<<e. Hence (7.3) is
proved. To prove (7.2) put o=w(8) and let g(x;,x)<<w; by
(p) there are elements z,,z, such that p(z,,0)-<d, o(z,,0)<<0
and x,=(x; —z,)+2: hence

NUn(z)|<e, |Un{zo)ll<<e for n=1,2,...
”Un(xl)“‘Un(xz)“=!|Un(x1)“’Un[(x1_Zl)‘l'%]“"‘:
:'*“Un(xx)“—Un(xJ‘{*U,;(Z1)~—“Un(zz)“<23,

Thus we have shown that the family A is a (ry)-class.
From Theorem 2 we obtain

Theorem 12. Let U,(x) be additive and continuous opera-
tions from a pseudogroup of Saks X to a F-space Y. If the
sequence {Un(x)} converges in a residual set RC X, it converges
in the whole of X, the limit-operation is additive and continuous,
and (7.3) holds?). i

Proof. It remains only to prove that the limit is additive;
this results from the passage to the limit.

A pseudogroup of Saks will be called afomless if the following
condition holds:

(pe) Given any xeX and ¢>0 there exist elements x, %, ..., X
such that x==x,4x5-...Fxn and p(x;,0)<<e for i=1,2,...,n.

(7.4) If the pseudogroup of Saks X is atomless, the family A
has the properties (c), (h) and (b).

Proof. Let {U.(x)} be .a sequence of operations belon-
ging to A.

Ad (c). Suppose the sequence converges for every xeK (x,, o).
By (py) there is a >0 such that x¢K(0,d) implies x=;x1———x2,
where x,¢K (x;,5) and x,eK(x,,¢); since the sequences {U,(x,))
and {Un(x;)} are convergent, the same holds for the sequence
1Ua(x)} if xeK(0,0); the convergence in the whole of X follows
now by (pg).

Ad (h). Trivial.

Ad (b). Follows from (h) and (c).

Theorems 2. 6, and 9 imply

%) This theorem is irue also under the hypothesis of Y being a pseudo-
group of Saks.

icm
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Theorem 13. Let {Un(x)} be a sequence of additive and
continuous operations from an atomless pseudogroup of Saks to
a F-space, convergent in a set of the second category; then the
sequence is convergent everyrohere.

Theorem 14. Let {U, (x)}
and continuous operations from an atomless pseudogroup of Saks
to a F-space. If, given any p, there exists an element x, such
that the sequence {U, (x)},_, ,  is divergent (is unbounded), then

there exists a residual set such that the sequence {U, (x)f ., i
divergent (is unbounded) whatever be p and xeR.

_ be a sequence of additive

q=1,2,,

Suppose now X and Y are F-spaces. Any F-space is an
atomless pseudogroup of Saks in which the addition is defined
for every pair of elements; in this case, the notion of additive
and continuous operation is identical with that of linear operation.

Thus Theorems 15 and 14 imply the following theorem due
to Banacu ([3], p. 108), Mazur and Ogucz ([11], p. 156):

(2.5) Let {Un{x)} be a sequence of linear operations convergent
in a set R of the second category, then {U.(x)} converges eve-
rymhere to a linear operation.

(2.6) Let {U,, ()} oy ..

If for any p there exists an element xp such that the sequence

{(Upg (6D} _pa,... 18 divergent (is unbounded), then there exists a resi-

dual set RC X such that the sequences {U,,(x)} ., , . are divergent
(are unbounded) mwhatever be p and xeR.

be a sequence of linear operations.

8. Let S be an abstract set, € a o-field*®) composed of sub-
sets of S. u(e) a totally additive measure in €, such that
u(S)<<oo.

All the sets considered in this section are supposed to be-
long to €.

The subclass € composed of the elements ee€ such that
u(e)=0 is an ideal in ¢; we denote the quotient-field €/ &,
by @ Thus the elements of 6* are classes ¢* of elements of &
such that if e,e,ee* then ple,—e))+ule;—e)==0.

1) G is a ofeld if: 1° Se@, 2° the difference of two sets of & belongs
to @, 30 the sum ol every sequence of disjoints sets of € belongs to G.

Siudia Matbematica. T. XL ]
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ln G we iniroduce a metric in the following manner:
it e*,efe@, choose e e}, e, and pul
‘ ole®, efy=ple,—e)Fpule,—e):
this definition does not depend upon a particular c!l()ictw of e,
and e,. It is easy to show that & is a complete melric space “).‘
" Let G be any subset of € This set will be said to- be of
the first category, ov of the second category, or residual, or closed,
or separable respectively if the set €,/§, is so in G .

Introduce now in & in the usual manner the addition but
only for those pairs ¢f, ¢} of the elemenis, for which e eef and
e eet implies u(e e,)=0.

It is easy to sce that & is a pseudogroup of Saks.

In fact the conditions (p,)-(p;) being evidently satisfied i
remains to prove (p,) and (p,).

Ad (py). Let >0, efe€”, and put §==¢; il ¢*¢K(0,9), choose
eee® and ¢, e¢¥; then e=(g,~}e)—(e,— e} and if e +4-eehf and
eoweeh;’, we have e*==hf—h; and

o(ef, h¥)=pule —e,)

o(€f,

< ule)<e.

h§)=p(e,~— (eg—e)) < ple) <. ¢.

" X . o
Ad (py). Given an ¢>>0, put w=4¢, and given ef,epe€” such
that g(e¥, €f)<<o, choose e, e, and then A%, I} so as to have

. £ &

eee}, e ee}, e,—e,eht, e,—eehy.

s . . o s & -
Then ef =(ef —hf)-+h; and o(h$,0) <28, o(hF, 0) <o

The condition (pg) is equivalent to the following:

(@) given eeG and &:>0 there exist elements €1 €ayenn, CrtE
such that ule er)=0 for i=k, and e=e+e;-...4enpule)<e
for i=1,2,...,n.

This condition being satisfied, the measure will be called
non singular (such is e. g. the Lebesgue~measure).

Let ¥ be a F-space; a set function ¢(e) defined from € to ¥
will be said p-additive if ule; e,)=0 implies p(e,+e.)=ple)4-gple,).

) considered first by Nikodym [13].

On sequences of operations. 1. o

This condition implies ¢(e)=0 if p(e;==10.
The function g(e) is called tofally p-additive it

() ule)==0 implies ¢(e)=0,
(ta) ?‘(Een);"‘jw((’n) if ejep=10 for i==k.
n=1 n=1

It is called p-absolutely continuous if u(e} 0 hmplies p(e)—> 0.

Every u-absolutely continuous function satisfies the condi-
tion (f); moreover. if it is w-additive. it satisfies also (f.). For
real-valued functions the converse is irue: if a real-valued
function satisfies (£,) and (1,1 it is p-absolutely additive. -

A family K of set functions is called equi-u-absolutely conti-
nuous il ple)) = 0. gue K implies gn(e.)— 0. : _

p(e) being any additive and p-absolutely continuous set
function, let e*eG": if e, e, e, then ¢le;) =g (e,). Hence ¢(e) may he
considered as an additive operation I'fe*) from 6" to ¥; moreoy er.
we will show that U(e*) is continuous. Let ol ef) -~ 0: choose
e,ech and ¢jeef. Then we have ple,-—e)--ute,— et~ 0. hence
Ued)—» Uled), for

lo(e,) —plell < ligple, —e)—ple,—e,e )| <
-~ o Hi 1
Lllgple,— el +llgle,—e )= 0.

The converse is obviously true: if Uie*) is an additive and
continuous operation from ¢ 1o ¥, and if we put ¢ler=U(e*)
for eee®. we obtain a g-additive and u-continuous set [unction.

From Theorems (3 and 14 we obtain the following theorems
proved by Saks ([I8]. p. 967) in the case when ¥ is the space of
real numbers:

Theorem 15, let lgule)} be a sequence of additive and
u-absolutely continuous sef functions, convergent in a residual
set Re@; then this sequence converges everymhere to an additive
and p-absolutely continuous set function, and this sequence is
equi-g-absolutely continuous.

Moreover, if e suppose the measure to be non-singular, e
may replace the hypothesis of R being residual by that of R being
of the second category.

%
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Theorem 16. Suppose the measure ule) is non-singular, and
let {g,q(€)} ... be a sequence of additive and u-absolutely con-
tinuous set functions. Suppose that, given any p, there exists a set ¢)
such that the sequence {p,,(ep)lymys... 18 divergent (is unbounded);
then there exists a residual set ReG® such that the sequences
{pq(@mr.a,... are divergent (unbounded) mwhatever be p and eck.

Let now Y be a Banach-space. A set-function g(e) from €
to ¥ will be termed meakly u-absolutely continuous (weakly
totally u-additive) if, given any linear functional 7%(y) in Y, the
real-valued set function gn(p(e)) is also u-absolutely continuous
(totally u-additive). .

We deduce from Theovem 4 the following theorem of Pers [10]:

Theorem 17. Any additive and meakly p-absolutely con-
tinuous set function from € to a Banach space Y is u-absolutely
continuous. )

Proof. Consider the function @(e) as an additive operation
Uie*) from & to Y. This operation is weakly continuous. In order
to apply Theorem 4 it suffices to prove the following proposition:

8.1) Given any sequence {ro.} of sets of G, there exists

4 o-field G, (G composed of subsets of the set So=2 100, se-
parable and closed in €. n=t
Let & ={S, m,m,,...} and let € be the smallest field')
containing &, Siremskt has shown ([19], p. 14) that C=={(C.)pes;
this class is obviously denumerable. Let €, be the class
of the sets for which there exist sets hne@, such thal
y(e—hn)+y(hn—e) —0. The set &, is separable and closed.
We shall prove that €, is a o-field. Let ¢;,e,,¢®, and choose
¢, ee€, to have i
ulei—em)-l-ulem —e) >0  for n—-co, i==1,2.
The formulac
(e1-—ep) —(e1n—-em) C (e1 — ern)-}-(ean—e2),
(e1n — €20) — (€1 — €2) C (e1n— €1) -+ (e2— €2n)

) A class @ of sets is a field if it contains the sum and the union of
any two sets belongiog to it. @, denotes the class of the sets of the form
e;—e, where e, e,e 8. ;s is the class of the sets of the form e, 4 e, ... €,
where ey, e,,...,ene G,

icm
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give e,—e,eC,, for
#{(es—e2)— (e —eza)) + p{(en—€2n)— (&1 —e2)l <
L pley—erm) + e — e2) + plea— ean) + e —er) = 0.

Let now {e} be a sequence of disjoint sets of & and put

e=Ye,; given an >0, let fy(en)<s. Choose the sets h,e€; to
n=1 n=p-+1

have p{hn— e+ plen—ha)<<¥/p. The set h=h,~+hy-t...4h,

belongs to €, and we have

wle—h)+pth—e=
=;¢(e—§-h——eh)‘§,_’/l(h—’;—e1...+ep—ehj+2111(en),
n=p+
and since
h-te +...4+e,—ehCh+e—+...4e,—hie,+...+e)C
C(ey-+hy—e hy)~F...-F eyt hp—ephyp),
we get ple—h)+ph—e)<pep~t+e=2¢, hence e¢€,.
Theorem 18. A u-additive ®) set function from € to a Ba-
nach space Y is u-absolutely continuous, if and only if it is

mweakly totally u-additive.

Proof. This follows from the validness of Theorem 18 for
real-valued functions.

From Theorems 15 and 18 we obtain easily

Theorem 19. Let {pn.(e)} be a meakly convergent™) se-
quence of p-additive and p-absolutely continuous set functions
from & to a Banach space, convergent everymhere. Then the limit-
-function is also u-additive and p-absolutely confinuous.

9, Let N be the set of the sequences x=={e,} composed of
zeros and ones, the distance between the points x={et} and
xp=={eos} being defined by the formula

13) Remark that, according to our definition, the p-additivness of gle}
implies @(e) =0 for p{el=0.

1) ‘A sequence {x,} of elements of a Banach space is said to be meakly
convergent if there exists an element x, such that Elx,) > £x) for any linear
functional £(x); see Banach [1], p. 133.
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o
g(xi.A'z):Z (),llfm — @ayn .
=1 =

N is a complete metric space ). lu this space we define
the addition in the usual manner, but only for those elements
xr={em} and xo={esn} for which &, el t.

(9.1). The space N is a pseudogroup of Saks.

Proof. Ad (p)-(py). Trivial.

Ad (py). Let xg={e0a} €N : choose p such that 27«22 and put
0=2"" 1 If =1} eK(0.8). we have &=0 for n=1,2,...,p;
put

J eon for n=—1,2,....p.
&n=— .
" e for nmp.
| e for m=1,2,....p.
pay == .
"10 for np,
Xy = {81;2} " Xy === =£2H} .
o, x)<le  and  p(acy,a0) << 8.
Ad (p,). Given a =0 choose p so that 277<<2, and put
o— P+ ;
0=2"""" Let xi=/{ewm}. xa=|e] and
sm==eop for n=1,2,...,p. Write

lhus x»=x; —ux,.

o(x,x?)<<w, then

] 0 if n=12,..,p,

=+ 0 il n>p and ewn=ecom,

l e if n>>p and em son,
[ 0 if n=1,2,...,p,

bw=2 0 if n>>p and &= s
l £2n if &in T o

21={Cln}e Zy == {6211}-

We have then x,=(x,—z,)-+2, and z,2,¢K(0,8).

The space N does not satisfy the condition (pg).

Let ¥ be a F-space. A series Yy, is said to be unconditio-
n*"l

nall_/ convergent if it converges independently of the arrangement

15} This space with an homeomorphical distance hus been introduced b
Orliez [15]. ?

On sequences of operations, 1. 23

of its terms. Oruicz has shown ({1, p. 33) thai a series jyn is
n={
unconditionally comelgent if and only if, given any element

x-—{en}eN the series Zenyn converges.
n=1
It is easily seen that the general form of additive and conti-
nuous operations from N to Y is

(9.2) Uix) =_§ enlYn.

n=1

‘where Y'yn is an unconditionally convergent series the terms of

n={ .

‘which belong to Y.

Let Up(x) :——-Sa,,y,,v be a sequence of additive and continuous
p==1

operations in N. The condition (7.3) introduced in section 7 may
be formulated in the following equivalent fashion:

(9.3) Given any >0, there exists a p such that x={e}eN
implies |13 e, Yol << .

v=p
From Theorem 12 follows

Theorem 20. Let Yyn be an uncondifionally convergent

=1

series. If the sequence of operations sty woluey.. CONDErges for

every x=/{z.} belonging to a resldual set RC N, then it con-
verges everymhere to an -operation of the form (9.2), and the

condition of (9.3) is satisfied.

Theorem 16 is not true for the additive and continuous ope-
rations in N.

Example. Let ygeY, y,+0 and put:
Ulq(x)’—‘gl('— 1)qyo+£2(_1)qyo l

for y=1.2,...,
Uy, (%)= &y (— 1gy—en(— 17y, |

qu (x) =& (_ 1)q Yo
U (%) = ey (— 7y,

U,y )=U,,4(x)

for g =1. 2,'..'. ,

if n=m (mod 4).
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Then the sequences {U,,(x)},,,, .. are divergent foran x=ux,
and there does not exist any x, for which these sequences should
be simultaneously divergent. However from (5.4) follows

Theorem 21. Let the series Yy, =~ be unconditionally con-

p=1
vergent for p,q=1,2,..., and put U, (x)= e, Ypgw- Suppose that,
ya=i

given any p, there exists a set D, dense in N, and an element x,
such that the sequence {U, (x) _,, . is divergent (is unbounded)
for x=ux,, and convergent (bounded) for xe¢Dp. Then there exists
a set R, residual in N, such that the sequences {U, (x)},_, ., . are
divergent (are unbounded) rohatever be p and xeR.

Remark. The convergene of {U,, ()}, .. . in aset D, dense
in N, is equivalent to the existence of the limit lim Yoo

for v=1,2,... aee

Theorem 22. Every additive and meakly continuous opera-
tion U(x) from N to a Banach space Y is continuous.

Proof. Note first that the range of U(x) is separable. This fol-
lows from the separability of N and from the fact that the weak
convergence of a sequence in Y implies the strong convergence
of linear combinations with rational coefficients of the elements
of this sequence to the same limit. Thus, the class of operations
of the form n(U(x)) where neY being by (7.1) a (r,)-class, it is
sufficient to apply Theorem 4.

The above theorem enables us to obtain immediately a theorem
due to Orucz (see Banacu [1], p. 240):

(94) Let Y be a Banach space. A necessary and sufficient

condition for the series D y. to be unconditionally convergent is
n=1

that any partial series be mweakly convergent to an element of Y.

Proof. The necessity being trivial, we prove only the con-
dition to be sufﬂcient. By hypothesis, given any element xeN,

»there exists an element y.eY such that the series f@: Yn coOD-
n=d

verges weakly to y.. Put U(x)==y.; this operation is additive

in N, moreover, as U(x) is the weak limit of the continuous and

icm
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n
linear operations Un(x)=3e,y,, it is also weakly continuous. -
»=1

Thus, by Theorem 22, U{x) is continuous. Since U(x) is additive,

there is an unconditionally convergent series Yz, such that
n=t

U@x)=3 e 2z.. To finish, we remark that y,=z, for »=1,2,...
=1

10. As an application of the results of the preceding section,
we will prove two theorems concerning the linear operations
defined in spaces of more general character then the F-spaces.

Let X be a linear space, and at the same time a #-space in
the sense of Frecrer'®). Suppose that addition and multiplication
by real numbers are continuous; moreover, suppose the following
axiom satisfied:

() If x,—0 then there exists a partial sequence {xn;} such

that the series fxnk is unconditionally convergent (i. e. such
n=1
that any subseries converges).
An additive and continuous operation U(x) from X to a F-space
Y will be called linear.
We will prove the following theorems due to Orucz¥?) which
generalize two theorems of Banacu (2], p. 157):

Theorem 23. Let {U,(x)} be an everymwhere convergent se-
quence of linear operations. Then x,—0 implies Un(xs)—> 0.

Proof. Suppose, if possible, that for a sequence {x.} and
for e=0 we have x,->0 and ||U,(xx,}>e. By (u we can

suppose the series xy, to be unconditionally convergent. Given

=1
any z={e:}eN, put ‘
Va(2)=U, ( > svxk,,) = e, U, (n,).
w=1 =1
The operations V,(z) being obviously additive and continuous
from N to Y, we see by Theorem 20 that (9.1) holds, and this

1) i, e..a space with the notion of limit.
1) Not yet published. The author is indebted to Mr. Orlicz for having
permitted to enclose here these results.
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implies || Uy, (%%, ) 1<~ & for n sufficiently large. This is. however,

impossible.

Theorem 24. Let {U,(x)] be a sequence of linear operations
convergent everymhere to U(x). Then Ulx) is also linear.

Proof It suffices to prove that x,—0 implies U(x,) ,_)0
Let £>0 be arbitrary; given any n there exists a m, such that
[1U (%) — Uny ()} <& Write P (v) = U, () ; these ave linear opera-
tions which converge everywhere to U(x). By Theorem 24 we
have |[Va(xn)||<<& for n sufficiently lavge, hence

\‘[/ ()= JU .Xn)—‘”m" xa)ll 411U Sy ()] = 26,

11. In this section we show how the theorems of Mazur and
Ogruicz concerning the sequences of polynomial operations may
be deduced from the ours. We slate first the fundamental de-
finitions.

Let X and Y be iwo linear spaces. An operation U(x,x,,..., %)
from X* to Y is called k-additive and homogeneous if il is ad-
ditive and homogeneous relatively to each variable separately.
U(x,,xy,...;xx) being k-additive and homogeneous, the operation
Ug(x)=Ul(x,x,...,x) is called homogeneous of degree k; any
constant operation is called to be homogeneous of degree 0.
For any operation of degree k there exists exactly one k-addiiive
operation U%(x,,x,,...,x,), homogeneous and symmetrical in all
the variables, and such that U, (x)=Uj(x,x,...,x). This operation
is called the primitive for Ur(x). Any operation of the form

(1.1 Vi) = U (¢ YU () .. A U

where Ui(x) is homogeneous of degree i, is termed an opera-
tion of degree m. The representation given by formula (11.1)
is called the canonical for U(x). .
Mazur and Oriicz proved ([12], p. 50-53) the following theorems:
(11.2) Giben any m, there exist real numbers n,; (i, k=0,1,...,m)
:such that (1[ 1) implies

Ur (%)= ar, U (0x) - ar, Uloe) ... + agm Um).

(11.3) Ui(x) being homogeneous of degree k, its primitive
operation may be represented by the formula

icm
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i
. e, &, ) o L
RUUS (%2 Xgoes X ) =3 (— 1) 7 5 WU (e, 20 ey Xy = o X )
51,52....,5;::0

(11:4) Ux(x) being homogeneous of degree k, me have for any
rational t '
DL(.x—‘—th)——}“t‘ B @, ho.. 0.

=1 s i

Let now X and Y be iwo F-spaces. Any continuous opera-
tion of degree m is called the polynomial of degree m.
From (11.2) and (11.3) it follows that

Ux)=U,(x)+U(x)+ ...+ Unix)

being a polvnomial of degree m. the operations Up(x) and their
primitives U7 (x,x,,....2 x,) are continuous for k=0.1,....m. "

Denote by Kn the family of the polynomials of degree
at most m. We will prove that Kn. is a (cbhry)-class. This resulis
from the following propositions:

(11.5) Every sequence {U.(x)} of polynomials of degree at most
m, equicontinuous at one point x,, is equicontinuous.

(11.6) Every sequence {U{x)} of polynomials of degree at most
m, and convergent (bounded) in a sphere, is convergent (bounded)
everyrohere.

Proof. Ad (11.3). Note first that it is sufficient to suppose
that x,==0, for in the conirary case we may consider the se-
quence of polynomials V,(x)=U,(x,~}-x) which are also of de-
gree at most m. Let

Un (x) == Un() (JC) —!" Unj (.‘Xf) "i” e "[’ Unm (x)

be the canonical representation of Uj(x). We will prove that
the sequence {U,(x)},_,, . is equicontinuous everywhere for
k=1,2,....m. Let ¢=0 be arbitrary: from (11.2) it follows that
the operations {U_(x)},_,, . -are equicontinuous at 0, hence we
see b) (11 3) that there exists a 6=>0 such that xl|<<é for
i=1,2,....k imply

nU:;;(xp ‘2='“~,xk)“'<l',9

U%, being the primitive operation for U,,.
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Let z,eX be arbitrary; choose p so as to have [p~ z]<<é,
and then let 6, be such that 0<<8,<<é and [[p*—i(z—z,){| <6
for |jz—z,]|<d,, i=1,2,...,k. Then

HU",’:k(z‘_i...,Zl,z-—z,,...,zmzi)J\=|lp"“"U,j§(p‘1 Zps s D121, 2~ 2y 2— 21
e o i
=|U*(p~tz..c, p 20, P22\, 2= 2150, 2— 24|

k—i i—1

for ||lz—z,||<<d, and i, and by (11.4)
&
Ui (2) — Ui (2 ) 1 37 (F) & << 2Fe.

=1

Ad (11.6). We may suppose that the sequence {Un(x)} is
convergent (bounded) for |x||<r. By (11.2) the sequences
{U,.(%)},—y5,... are convergent (bounded) if ||x||<<r/m, k=0,1,...,m;
by (11.3) the same holds for the sequences {U¥ (), %p o)}y n
if Jlxf|<r/m?, i=1,2,....,k and k=0,1,...,m. The operations
Uk, (x,,%,....,x;) being homogeneous in each variable separately,
we see that the seq’:Jences {Une(es %50 %),y o, are convergent
for (x,x,,....x)eX"

From Theorems 3, 6, 9 we obtain

Theorem 25. Let {U.(x)} be a sequence of polynomials of
degree at most m, convergent in a residual set RCX. Then the
sequence converges everyrhere, and the limit is a polynomial of
degree at most m.

Theorem 206. Let (U, (x)},_,,. be a sequence of polyno-
mials of degree at most m,. If, given any p,. there exists an ele-
ment x, such that the sequerice (U, (x,)} a=t,2,... 18 divergent (un-
bounded), then there exists a residual set RCX such that the se-
quences {U, (x)},_,, . are divergent (unbounded) mhatever be p
and xeR.

‘ (11.7) Any sequence {U.(x)} of polynomials of degree at most m,
bounded in a set RCX of the second category, is equicontinuous.

Proof. We prove first that the sequence is bounded eve-
rywhere. Let 9,0, and write Vo(x)=0,U.(x); this sequence
converges to 0 in R, hence by Theorem 25 everywhere, and
the limit is a polynomial ¥{x). Since V(x)=0 in E and since this
set contains a sphere, Vix)=0.

icm

On sequences of operations, I. 20

Let  Un(x)=Unt(x)F Uns(x)+...-+Unm(x) be the canonical
representation of U,(x). It is sufficient te prove that the opera-
tions {U . (x)},_, . _ are equicontinuous for k=1,2,...,m, i.e. that
x,—0 implies Un (%) >0 as n—oo. Let k be fixed. Choose
4,00 such that 4,x,-0 and put W, (x)=2%U,,(x); the se-
quence {W,(x)} converges to 0 everywhere; as by Theorem 2
it is equicontinuous, it follows Wy (A, xa)= Un{as) 0.

From (11.6) and (1.3) we get the following theorem due to
Mazor and Ogrucz ([12], p. 180):

(11.8) Let {U,(x)} be a sequence of polynomials of degree at
most m, bounded in a set of the second category and convergeni
in a set dense in X: then this sequence is convergent everymhere.
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Sur les moyennes
par

C. RYLL-NARDZEWSKI (Lublin)

1. M. Aczat a démontré ') que toute fonction M(xy) qui est
(i) croissante par rapport i chacune des variables x,y.
(i) continue.
(iii) bisymétrique: M{M(x.y), Mz, u)|= M[Mix,z), My, wl.
fiv) refléxive: M(x,x)=ux,
{(v) symétrique: M(x, y)= M(y. x)
est de la forme

i S M= [T,

Je me propose de montrer que Phypothése (iii) peut éire
remplacée dans le théoréme de M. Aczer par la suivante:

(2) Mlx, M(y.2)|= M [M(x,y). M(z.x)]

et que les hypothéses (iv) et (v) deviennent alors superflues. De
plus, il suffit de supposer la continuit¢ de M{x.,y) seulement sur
la droite x=0, ce qui entraine déja la continuité partout.

Plus précisément, je vais démonirer le théoréme suivant:

Si une fonction M(x,y), croissante par rapport & chacune des
variables x,y et continue sur la droite x=0, satisfait a Uéquation (2),
pour tous x et y réels, elle est de la forme (1), ot f(x) est une
fonction continue croissante.

Pour déduire de ce théoreme celui de M. Aczir, il soffit évi-
demment de monirer que toute fonction M(x,y) satisfaisant aux
(:unditions (i)-(v) satisfait a la condition (2).

). A czel On mean values. Bulletin of the American Mathematical So-
ciety 54 (1948). p. 392-400.
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