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En posant ¢=0,1,2,...h, on obtient successivement h--1
progressions arithmétiques {g-+r(h41)} a différence constante
h+1; lensemble de ces progressions constitue la suite {n)
des nombres naturels. En appliquant (39) successivement

a q=0,1,..l.l,ll+1, ou conclut que (39) subsiste pour tous les ¢
g=h+1

et tout te [[T,=T%* donc
g=1

(40) flx,(t)<a,x,,,(t)<<p}=F(a)-F(f) pour tous les a,f et tout
teT* on [T* =1,
Or, on a en vertu du théoréme I (f désignant la fréquence des n)

(41) f{xn(t)<a}=F(a) et f{xn+,,(t)<ﬂ}=F(ﬂ) pour tous les «a,f
et tout teT° o |79 =1.
En posant Ti=T°-T, on a en vertu de (40) et (41)

(42) nf{xn(t)<a,xn+h(t)<ﬂ}=f{xn(t)<a}-f{xn+,,(t)</3} pour tous
les a,B et pour tout teT} o IT;,[-——lrl

En posant TﬁgTh et en appliquant (42) & h=1,2,..., on

conch}t que (42) subsistc pour tous les h entiers, pour tous les
a,f riels fl:t pour tout .teT; cela équivaut a ind[x,(f),x ()]
?’0111: ous les h, donc a ind [%,4.(8), %, (O] pour hstk, teT étant
ixe; comme |T|=1, le théoréme IV se trouve &tabli.

On démontre par des moyens analogues le

; Théoré.me’ V. Si les fonctions x,(t) aux distributrices iden-
iques s?nt ‘mdependantes en bloc, la suite {x,(f)} est complite-
ment aléatoire pour presque tous les t. '

) Nq?tons quil est facile de donner des exemples des suites
a%eatou_es, quand on admet des distributrices dégénérées c’esvt-z‘l-
d%r.e qui ne prennent qu’une ou deux valeurs différentes ’La con-
dition que la distributrice d’une suite prenne au m(;ins troi
valeurs dlffér(.ant'es exclut les suites convergentes et celles dijg:f
gf}l}tes vers Vinfini, qui satisfont d’une manitre banale i L]a d"l"-
mtl_on d’une suite aléatoire, tout comme les fonction ‘L t (J‘ 1 ]
satisfont & la définition de I'indépendance. " constanies

(Regu par la Rédaction le 2. . 1949).
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A. E. TAYLOR (Los Angeles).

Introduction.

Tt is by now very well known that the concepts and methods
of functional analysis play an important part in the theory of
functions of a real variable. The concept of function space
which has been most widely and successfully used in analysis
is that of the normed linear space, called a Banach space, if
it is complete. Most of the function spaces which have received
careful attention are spaces of functions of a real variable. Very
little work has been done on classes of analytic functions which
form Banach spaces. .

In this paper we propose to study spaces whose elements
are functions analytic in the unit circle. Originally we began
by studying particular spaces, with nmorms defined in a definite
analytical manner (e. g. the bounded analytic functions, with [ifll
equal to the least upper bound of If(z)] for |z|<<1). It gradually
became clear, however, that very general theorems could be
proved merely by postulating a few additional properties of the
space beyond the assumption that it was a normed linear space
of analytic functions. We have thus been led to a theory which
is quite abstract, in that it applies to a whole class of spaces,
without reference to the particular analytical definition of the
norm in any given space. The theory is also satisfactorily com-
prehensive, for it applies to the spaces which seem to be of
greatest interest in the theory of functions.

This abstract theory is developed in Part I of the paper.
There are four main axioms in addition to the assumption that
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we are dealing with a normed linear space of analytic functions.
Later we consider three more axioms which have interesting con-
sequences. One of the main goals in Part | is the determination
of the representation of linear functionals. The study. of this
problem leads to the construction of new spaces of analytic func-
tions, which, under certain conditions are isomorphic or equiva-
lent to the space of linear functionals defined on a given space.
Part II of the paper ') deals with realizations of the abstract
theory of Part 1. We study the spaces H", (- ps«lco; H™ is
the space of bounded analytic functions. We also study the
space K of analytic funciions which are continuous in the closed
unit circle. Representation theorems for linear functionals are
obtained in case [<ip-<ca. In this connection we introduce
smean values® N,(f;r) in certain ways analogous to the integral
means :
1

- 1p
My (f3r) =5 If(l‘e"&);”dﬁ) :

1]

When 1< p<co there is a close relation beiween these two
kinds of mean values, the link being provided by M. Riesz’s
theorem on conjugate harmonic functions. Indeed, we show the
equivalence between M. Riesz’s theorem and certain important
propositions about the Banach space H”.

For the convenience of the reader we have included a table
of contents of the paper.

Table of Contents.
PART 1 Axiomatic Development and General Theory.

Notations and definitions.

Spaces of type 2. Axioms P,-P,.
Spaces of type 2;.

Spaces of type 2,.

A convexily theorem.

Spaces of type 2.

7. The spaces B” and B°.

8. Banach spaces of type 2.

9. Axioms P;, Pg, P,

10. Representation of linear functionals,

SN e

') To appear in the next volume of Studia Mathemalica.
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PART I. Axiomatic Development and General Theory.

1. Notations and definitions. Throughout the paper we
shall use the following notations.

A: the open set z<<1 in the complex plane;

2: the class of all complex-valued functions which are de-
fined (single-valued) and analytic in 4. :

Clearly 2 is a linear class, 1. e. 2 is closed under addition
and multiplication by complex constants;

r,o: real variables subject to the inequalities 0-Ir<ci,
0= p <<l

We use the symbols f,g.....F.G,..., for elements of . In
general we suppress the independent variable except when we
refer to the values of a function.

Definition 1.1. We define

un(z)=12", n=0,1,2....
and use u. to denote these functions as elements of 2.

We have occasion to introduce two very simple operaiions
which may be performed on elements of 2. Fach of these ope-
rations depends upon a parameter.

Definition 1.2, If fe?l and if x is a real parameter, we
write g="U.f when g is that element of 2 defined by

g(z2)="{(ze"), zed.

Definition 1.3. If fe2 and if m is a complex parameter
such that |m|<{1, we write g=Twf when ¢ is that element
of A defined by g(z)=f(zmw), zed.

It is evident that U. and Tp are distributive operators map-
ping ¥ into itself. That is, Usf and Twf are elements of 2 if
fe. Also

Udaf-+bg=al.f+bl.g,
with a similar relation for To.
1f fe2, f(z) can be expanded in a power series in z, con-

vergent in 4. The coefficients in this series are well-defined
functionals of f; we need a notation for them,

10*
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Definition 1.4. If fe2 has the expansion
f(2) =f a,z",

we use the notation a,==y,(f). Thus

1
= f
7aP=-1 10 0)
We observe the distributive property
ralaf-+bg)=ay,(f)+by,(9

The symbol y, will often be used by itself when we discuss
linear functionals on various spaces whose elements are mem-

bers of 2L.
Definition 15. If f and g are elements of A with deve-.
lopments
(Z)=§“an Z, g(2) =Z; bazn,
we define

B(f,g;l)=26anbnz", zed.

This series defines an element of 2[; to see that this is true
we write z=z,z,, with iz|<1, k=1,2. For example, z, and
z, may be taken as the two square roots of z. Then

a,b,z, = (anz?) (bn2}).

Now a.2; >0 as n-»co, and the series

is absolutely convergent. Hence the series defining B(f,g;z) is
absolutely convergent.

For later reference we unote the following relations, which
are either immediately evident, or are easily verified:
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) (T, FY=m"y,(f),

) B(f.g;m)=Blg.f;m).

) Blaf-+-bg.h;z)=aB(f.h;z)-+bB(g.h;2),
)

(
(
(
( B(Twf.g:2)=B(f.g:mz), Imw|<L,

—aeRe =
= L 1o =

(15) B(f.8:2)= %T‘ff(zlei‘*)g(zze—i")dﬁ,
=JT 0

where z=z2,, l|z|<l, k==1,2.

2. Spaces of type 2. Axioms P,-P,. Let B be a complex
normed linear space each element of which is a member of 2.
Such a space will be called a space of type U provided it con-
tains at least two elements.

A space of type ¥ is first of all a linear subclass of . Such
a linear subclass with more than one element becomes a space
of type 2 when with each element f of the subclass we associate
a number ||f]| having the properties of a norm, that is,

[ifll=>>0, |IfilI=0 if and only if f(2)=0,
llafl =lalllfll.
1+ gl <l +-ligll-

For example, the set of all the bounded functions in the
class 2 becomes a space of type % if we define

[ifll=sup|f(2)].
1zi<l

We shall be interested in spaces of B of type 2 having cer-
tain additional properties. For the present we list four properties
which B may enjoy.

P,. There exists a constant A such that |y (f)|-< 4l if feB
and 11-—(),1,2 . The least such constant A4 depends on the
space B; it will be denoted hereafter by 4, (B).

P,. u,eB, n=0,1,2,... There exists a constdut A such that
[u, 1l A for all n. The least such constant 4 here will be deno-
ted by A, (B).

P, D feB if feB and x is real; also, [[U flI=Ifll.

P T "feB if feB and 0<r<C1. There exists a constant 4 such
that H T,fH\’Ath The least such 4 will be denoted by A4,(B).
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We shall presently proceed to develop certain of the proper-
ties of spaces of type 2 which satisfy one or more of these
four axioms.

We shall say that B is a space of type 2, (where k==1,2,3,4)
if it is a space of type ¥ satisfying axioms P,,...,P,.

In part II of this paper we study in some detail a whole
class of spaces of type %, Consequently we shall not take space
at this point to discuss concrete examples of such spaces.

We denote by B* the space of linear (continuous and disiri-
butive) functionals defined on B. Linear functionals will be repre-
sented by small Greek letters p, 4,.... The axiom P, states that
v,€B* and that the sequence !y, || is bounded. lt is readily seen
that

(2.1) Ay (By=sup|ly,ll.
For reference we set out explicitly the definition.
(2.2) A,(B)=sup||u,ll.

If X is any normed linear space, the space of all (bounded)
linear transformations of X into itself is denoted by [X]. The
axiom P, states that U e|B] for each real x, and that U, is an
isometric operator. It is clear that the operators U, form a one
parameter commutative group, with Uy=I. The axiom P, states
that Tre[B] and that the norms ||T;|| are bounded uniformly in r.
Evidently we have

(2.3) A, (B)=sup]|TII.

We shall observe a few simple relations which the constants
A, (B) must satisfy.. In the first place, yo(u,)=1. Therefore, if
axioms P, and P, hold, we have

24) 1<y liliwll, 1< 4,(B)4,(B).

‘ Also, sz‘tn=r"un. Hence, if u,eB for some particular value
(.)l n, and if P, holds, we have r w7 M, | < 4, (B) [l )],
from which it follows that "

(2.5) 1 <A, (B).

icm
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With r=0 we have T,f=/(0)=1,(f)u,. Hence, if u,eB and
y e B*, we have T,e[B], and ||T /l=lly,/lllull. But, if P, holds,
I|T,l| < A4(B). Hence, in this situation,

(2.6) iyl | < A, (B).

In many of the most interesting concrete examples, the con-
stants 4, (B) are all equal to unity. It is not difficult to constru‘C't
examples in which 4;(B) and 4,(B) are different from unity. We
have not discovered any spaces of type 2, for which A4,(B)>1.

3. Spaces of type 2. In this section we explore some of
the consequences of axiom P).

Theorem 3.1. If B is a space of type U, and feB, zed, we
have

A,(B)IIf]
) <~

The proof follows at once from (2.1) and the expansion

Theorem 3.1 shows us that, for a fixed zed, f(z) defines an
element of B*, of norm not exceeding A (B)t—|z) Tt also
follows from Theorem 3.1 that if {f,} is a sequence of elements
of B such that the norms [|f,/l are bounded then the sequence
{f.} is a normal family in the sense of Montel. For, the moduli
f (z)! are uniformly bounded on each compact subset of 4.

Theorem 3.2. Let B be a space of type ¥U,. Suppose f, f.eB
and ||f,—fll = 0. Then f,(z)->f(2) uniformly on compact subsets
of A. '

This is an immediate corollary of Theorem 3.1, as applied
to the function f,—f. o N

The theorem can be strengthened, for it suffices to assun;e
that f, converges weakly to f (i.e. that y(f,) > (f) for each yeB¥).

Theorem 3.3. Let B be a space of type . Suppose 'f, f.eB,
and that f, converges mweakly to f. Then f, (z) converges uniformly
to f(z) on compact subsets of 4.
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Proof. The weak convergence implies that |[f | is bounded
(Banacu [1]%), p. 133), say [|f,[[<A. Hence, by Theorem 3.1, there
is a uniform bound for |f,(z)] on each compact subset of 4.
Now f,(z)—> f(z) for each zeA since, for fixed z,f(z) is a linear
functional of f. The uniformity of convergence now follows by
Vitali’s theorem.

The next theorem is still sironger:

Theorem 3.4. Let B be a space of type 2,. Suppose that

li_lhll vy =), k=0,1,2, ...

mwhere f, and [ are members of B, and let the norms || f,|| be boun-
ded, say ||f || <A. Then f (z) converges uniformly to f(z) oi com-
pact subsets of A.

Proof. Let S be a compact subset of 4, and choose r<<1 so
that |z{ < r when zeS. Now, for zeS and for any natural number m,

=1 S =N - S 1A, 14 A

am A 1

. ;
<2 nlh=Hl+-2(A+Ifl) 4 B 7=,
If e>0 is given, we can choose m so large that
p rm{—l . £
2 A, B <

Then choose ny(e) so that n>>ng(e) implies
&

17k(fu—f)!<%“~2‘= k=0, 1, ..., m.

Then n>>ny(e) and zeS imply |f,(z)—Ff(z)| <e; this completes
the proof.

Theorem 3.5. Let B, and B, be complete spaces of type A,
and suppose that each element of B, is also an element of B,. If
feB,, let |Ifll, and ||fll, denote the norms of f as an element 07' B,
and B, respectively. Then there exists a constant A depending
only on B, and B, such that Wil < Al flly for each feB,. ‘

Proof. The assertion is that the identity mapping of B, onto
itself is bounded as an operator mapping B, into B,. Since both

%) Numbers in square brackets refer to the bibliography at the end of this
paper,
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spaces are compleie it is sufficient to show that the mapping is
closed (Bavacu [1], p. 41). Suppose that f, feB,, g¢B,, and that
lif,— fil,=0, IIf,—gll,=>0. From Theorem 3.2 we conclude that
f=ag, since the limit of f, (z) is unique. This proves that the map-
ping is closed, and completes the proof of the theorem.

We now consider the expression B(f, g;z) (see Definition 1.5).
Fixing zed, ge, and taking feB, we have

Bif.gi)=3 1077,

(B2 < Sl llza @112 <1171 ,(B) S, ) 2

Thus B(f.4;2z) defines a linear functional of f over B if B
is of type .

Definition 3.1, When B is of type ¥, we define, for fixed
ge? and zed,

N(g;z)=sup |B(f.4;2)\.
lfli=1

It is immediately evident that
(3.1) N(g-+h;2z)< N(g;2)+N(h; 2),

(3.2) N(ag;z)=1a|N(g;2).

From (1.2) and (1.4) it is clear that
(3.3) N(ngQZ):N(gUUZ): jn)l\'i\fl-

We shall have a good deal more to say about N(g;z) later
on, when we assume that B is of type 2.

4. Spaces of type 2, In this section we shall make use
of axioms P, and P,. We also assume that B is a Banach space,
i.c. that it is complete.

We shall deal with the notion of analyticity for functions
defined on 4, with values in a complex Banach space. Many
features of the classical theory of functions are known to extend
al once to such a situation (Wiener [6]; Hure [2], p. 52-04).

Theorem 4.1. Let B be a Banach space of type U, Suppose
fe?l and wed. Then TwfeB. 4s a function of m, Twf is analytic
in A, with the porwer series expansion

co

(4.0) T, f= goy"(f) wh,.
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Proof. The series appearing in (4.1) is certainly convergent
in B, since it is absolutely convergent and B is complete. The
absolute convergence is clear, for by (2.2)

Iy, (Nt w 1< |y, (o 4,(B),

and the series
=Sy
n=10

is absolutely convergent.
To show that the value of the series in (4.1) is the element
Twf of 2, we fix m and write

oo

g= 2y, (it

S =k-§07k(f .
Then

T,s. **2, yk(f)m"l,lk, )

and so [iT,s,—gll-0. Let Ymsn-—gn Then g,(2) - g(z), by Theo-
rem 3.2, But we see that g,(z) - f(mz). Fheletom g(2)= f(rz), or
g_=7m f. This proves that T\,f is in B and has the series expan-
sion (4.1). The analyticity in m of Twf is thereby proved.
Theorem 4.2. Let B be a Banach space of type ¥, and let
f(z) be analytic in some circle \z| <R, where R>1. Then feB.
Proof. VDefine g(z)=/f(Rz), zed. Then ge2 and Tng=f if
w=R—! Now apply Theorem 4.1,
Theorem 4.3. Let B be a Banach space of type 2,. Suppose
l”, f.el and let f (z)— f(z) wniformly on compact subsets of A.
Then ||T,f,—T,fll=0 uniformly in w on compact subsets of A.
Proof. Given ¢>0 and a compa(t subset S of 4, choose
r<<1 so that § lies in the circle || <r. Choose p so that r-<g<C1,
and let
s=le=ne
4,(B) e

For any fe2 we have, by Cauchy’s formulas,

Vk( ff ge“")e—"‘" do.

T 2mgk
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Now gh()osch110:110(5,9) so that n=>n, and [z/<o imply
|f.(2)—f(z)]<<6. Then

=P 5o =2,

Therefore. if |m|-{r and n>n, we have

Ty he= T = St Dt S g =202 —
k=0 p—Tr

This completes the proof.

Before staling the next theorem we observe that Abel’s the-
orem on the continuity of power series holds in case the coeffi-
cients in the power series are elements of a Banach space. We
have only to inspect the proof to see that this extension of the
classical theorem is valid (Tircemarsu [5], p. 229).

Let m, be a point for which |m,!=1. By salient of 4 at mw,
we mean the part of 4 lying in Lhe angular region (of angle less
than 180%) between two chords of the unit circle which meet at m,.

Theorem 4.4. Let B be a Banach space of type %,. Let f be
an element of B such that

(4.2) ! =ﬂ§ﬂ v (hu,,

the series converging in the metric of B. Then ||[Tnf-—fll-0 as
o ->1 mwithin a salient of 4 at w=1.

Proof. Observe that the series in (4.2) is what we obtain
when we set o=1 in the serics (4.1). The present theorem is
{hus seen to be an immediate corollary of Theorem 4.1 and the
extended version of Abel’s theorem.

There are spaces (e. g. the spaces H", t<p<eo, which we
consider in Part 1) such that 4.2 holds for each f in the space.

Theorem 4.5. If B is a Banach space of type U,, Twe|B] for
cach mwed. As a function on A to |Bl. Ty is analytic, roith the
series expansion

, N
Tw= ,21 w E, s

n=0

the coefficients being elements of |B] defined by
E,(h=yr.(hu
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Proof. From Theorem 4.1 we have

4,( VI
B 5 o — 2O AL

1T, F1l< 4, (B) 4,( l——‘m]

This shows that Te[B]. Since T,/ is analytic in 4 for

fixed f, it follows from a theorem of the author (layvror |3],
p. 570) that T, is analytic and that its power series coefficients
are the ones indicated ahove.

5. A convexity theorem. We now prove

Theorem 5.1. Let M be a nonvoid subset of 2 mith the
property that U feIM if x is real and feM. Corresponding to each
feM let M(f;z) be a member of 2 mwith the properties:

(a) MU, f;z)=M(f;ze"), x real, ze4,

(b) for fixed zed, |M(f;z)| is bounded as f varies over M.

Let M(z)=-sup|M(f;z)|. Then mwe conclude:

!

(1) M(z)=M(z]),

(2) M(r) is a nondecreasing function of r,

(3) either M(r)=0, or M(r)=>0 mwhen 0<<r-<1; in the latter
case log M(r) is convex as a function of logr.

Proof. For any real x, U, f runs over all of O when f runs
over all of M (for f=U,(U_,f)). Hence, from (a) we conclude
that M(ze™)=M (z); assertion (1) now follows.

To prove (2), assume 0<{r;<tr,<<1, feM. The function
[M(f;z)! assumes its maximum value on the circle |z|=r, at some
point z=z, (k=12). By the maximum modulus theorem we have

IM(f;2,)| < M{f;z,)}. But IM(f;2,)| < M(z,)=M(r,). Therefore
M(fsr) <7 M (f52,)] < M(ry),
whence M(r,)< M(r,).

To prove (3) we follow a similar argument, depending on the
three circles theorem of Hadamard. If O<<r <r,<<r,<<t, let

M,=M(r,), k=1,2,3 Write

r;
n;=log—,
j
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and let [M(f;z)! assume its maximum on the circle |z/=r, at
z=2z,. By Hadamard’s theorem

\M(f;2,) " << | M{f32)™ | M(F32) ™
Therefore
M(f, 22)1"31 e M1"32M3"21’

and so, since |M(f:r,) <IM(f;z,)|, we easily conclude that

51 M

From this inequality and (2) it follows that if M(r)==0 for
some r such that 0<<r<<1, then M(r)=0. The proof of (3) i
thus complete, the convexity as asserted being a consequence
of (5.1).

Remark. M(r) has the additional property that if it is con-
stant on any interval, say r,<{r<r,, where r,<<r,, then it is
constant on the interval 0<<r <r,. This property is shared by
any function enjoying the properties (2) and (3) of Theorem 5.1.
In fact, if 0<<r;<<r,, we have (5.1) holding M, < M,, and M,=M,.
Now ny —ny =n,,. We may assume M,;#0; hence we conclude
from (5.1) that M, < M,. But then M,=M,. This proves the con-
stancy of M(r) on 0<<r<r,.

Theorem 5.2. Let B be a space of type 2 satisfying axiom
P, and the further axiom that, for each ze 4, {(z) defines a linear
functional of | over B (mhich is certainly the case if axiom P,
holds). Let

m(y)—n}pilh)[[ ££0, feB.

Then m(z) has the properties (1)—(3) of the function M(z)
of Theorem 5.1; furthermore, m(r)=>0 if 0<<r<1.

Proof. Take OM as the set of non-zero elements of B; define

M(/';z):{%‘?, zed, feM.

The proof now follows by application of Theorem 5.1. We
cannot lave m(r)==0, since no element of M vanishes
identically.
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6. Spaces of type 2. In this section we deal with spaces
in which axioms P,, P, and P, hold.

Theorem 6.1. Let B be a space of type N,. The function
N(g:z) of Definition 3.1 has the folloming properties:

(1) N(g:z)=N(g:|z]), g, zed;

(2) N(g:r) is a nondecreasing function of r;

(3) N(g:r)=0 for all r if and only if g=0;

() if g=#0. logN(g:r) is a convex function of logr,
0<<r<C{;

(5) N(g;r) is continuous in r. )

Proof. We take M as in the proof of Theorem 5.2, and
define

. _B(f.8:2)
M(f;2z)= T
where g is fixed in 20, Then M(z)= N( z). We apply Theorem
5.1. It remains only to discuss (3) and ()) Clearly g==0 implies
N(g;r)==0 identically in r. On the other hand, if g0, we have
7.(8)#0 for some n. Take f=u,. Then B(u,.g:r)=y,(8)r"+0
if r#0. Since u,#0, this implies N(g:r)%0. Thus (3) is esta-
blished. !

In proving (5) we may assume g0, by (3). Continuity in r
on the range 0<r<1 is a consequence of (4), since a convex
function is continuous. To prove continuity at r==0 we observe
that from the definition of N(g;r) we have

N(g;r)~<“§0!\yn||171,.(g)\7'"
lri_l)x%N(g;r)\<\Hvo|H70(g)! =N(g:0).

Thus

The conclusion follows, since N(g;r) is nondecreasing.

Theorem 6.2. Let B be a Banach space of type %,. Suppose
feA. Then

O T fll=NT:fl| if |w]=r<1;

( IT:fl is a nondecreasing continuous function of r;

() if f#0 and 0<r<<1, then |T,f|>0, and log||T+f]| is a
convex function of logr;

@) NT:All is strictly mcreaemg on an open mbmtemal of

0.1) if and only if lyy(f)lliull<<||T.fl| for each r of the sub-
interval.
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Proof. We appeal to Theorem 4.1. Let mw==r¢*. Then
Tn) f= Ux Trf

Assertion (1) now follows from axiom P,. In view of (1) and
the fact that Twf is analytic in m, (2) follows from the maximum
modulus theorem for functions with values in a Banach space
(Hiee [2], p. 59; Tavior [4], Theorem 2.1). The first part of (3)
is evident. The second part is merely the Hadamard three cir-
cles theorem for the function Thnf. The classical proof of this
theorem (Tircnmarsy [5], p. 172) extends at once to functions
with values in a complex Banach space. To prove (4) we observe
that, by the maximum modulus theorem, the equality

1 Tn Fi=NTn 1l

where 0<Ir \'1,\ {, can occur only if ||7.f]| is constant on the
interval 0 < r<r,. Assertion (4) follows from this observation,
because || Ty fll=o(F)]llo]l-

Theorem 6.3. Let B be a Banach space of type %,. Then

() NTwll=ITH if wl=r<t,

(2) IITV|| is a nondecreasing continuous function of r,

3) WTe|=0 if r>0; logl|T:l| is a convex function of logr.

The proof depends on Theorem 4.5. We omit details, for the
argument is almost identical with the proof of Theorem 6.2.

We conclude this section with the proof of an inequality
complementary to (2.4.)

Theorem 6.4. Suppose that B is a Banach space of type ¥s.

Then
[y < IT L

If B satisfies the axiom P, me have |jy, Il |l <<A,(B). In par-
ticular, if A,(B)=1, we have ||y,/|llu,[|=1.

Proof. From Theorem 4.1 we have, by Cauchy’s formulas
for the coefficients in a power series,

n=0,1,2,...

Thus, by Theorem 6.3(1),

gl < LA,
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The conclusions of the theorem now follow; for the last asser-
iion we use (2.4).

7. The spaces B’ and B°. In this section we deal with a space
B of type 2, and we show how to construct certain related spa-
ces, which are of type 2,. These spaces are closely related to
the study of linear functionals on B.

Definition 7.1. Let B be a space of type 2,, not necessarily
complete. We define B’ as the class of all elements Fe?2l such
that N(F;r) is uniformly bounded as a function of r. If FeB’
we write

N(F)=sup N(I';r), 0<{r<1.

We know (Theorem 6.1) that N(F;r) is a nondecreasing func-
tion of r. Hence, if FeB', '

N(F)=lim N(F;r).
r—1

Later we shall find it convenient to write ||F||" instead of N(I')

Theorem 7.1 If B is a space of type 2, the class B" forms
a complete normed linear space with N(F) as the norm of F.

Proof. The fact that B’ is a normed linear space is evident
from the relations (3.1), (3.2), and Theorem 6.1, part (3). To prove
that B’ is complete, assume that {F.} is a Cauchy sequence in B’.
Then N(F.) is bounded, say N(F.)<{4. Now

74l Fy— F, ) = B, F,—F,:r) | < ||, | N(F,— F,) < 4,(B)N(F,—F,)

whence it follows that {y,(F.}} is a Cauchy sequence for each k.
Let us define
a,=lim y, (F).

n-yoo

We observe that the convergence here is uniform in k. The
sequence {a,} is bounded, for

[y F) | < A, (B)N(F,) < 4,(B) A4,

by an argument like that given above, and therefore |a,|-< 4,(B) 4.
We now define
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This function is a member of %. We shall show that FeB’
and that N(F,—F)—>0 as n—coc.

First of all we observe that for fixed r. and fe?,
hmB (f,F ;r)=B(f.F;r).

For

B Fan) =B Fin) | =| 2y Pl F) —a,]r

A

(S Vh(f)rk) S}:P nl(F)—a,

K=o
the assertion follows, since y,(F,)—a,~ 0 uniformly in k. Now,
if feB,
B(f.F,; EMFE<ANfIL
Letting n —»co, we conclude B(f,F;r)| < Alifll, whence FeB',

for N(F:r)<A. Now suppose e>0, and let us choose nq(e)
so that m,n>>ne(e) imply N(F,—F )<<e. Then, if feB,

B, F,—Fin| <NWF,—F I fll<<elfll.

Letiing m-»co, we conclude that B(f,F,—F;r)|<lellfl] if
nzzny(e). It now follows that N(F,—F)<e. This completes the
proof that B” is complete.

Theorem 7.2. Let B be a space of type U,. Then the space
B’ is a space of type ,. The constants Ak(B satisfy the folloroing
relations:

() 4,(B)<A,B),
(b) Ag (B,) :AI(B)a
(c) A,(B)=1.

Proof. We have y, (F)r”— ,F:r). Hence, if FeB’, we have
[y (F)yr| <<l lIN(F), and so |y, I‘)[ < {lu, || N(F). This means that
y,e(BY*. If we denote the norm of y, in this sense by N(y,),
see that N(y,)<|[w,||<<4,(B). Thus Axiom P, holds for B’, and (a)
is true.

For any feB we have B(f,u,;r)=yv,(f)r". Thus N(u,;r)=|y,llr™
It follows that u,eB’ and N(u)=/ly,|l. This settles (b). Taking
m=e¢* in (3.3), we have N(U,F;p)=N(F;pe*)=N(F;0); the last
equality comes from Theorem 6.1(1). Thus FeB’ implies U, FeB’
and N(U,F)=N(F); Axiom P, is satisfied. Again, from (3.3) and

Studia Mathematica. T. XI. 11
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Theorem 6.1(2), N(T,.F;p)=N({F;ro)< N(F;p). Therefore, if FeB’,
we have T FeB’ and N(7, F) < N(F). We conclude that Axiom P,
holds for B’ with 4,(B)«t. The reverse inequality also ho]dq

by (25). The proot is now complete.

Theorem 7.3. Let B be a space of type ¥,. If ge?l and mwed,
then T, geB’ and
(7.1) N(T, 8)=N(g:|m').

An element ge®l is in B’ if and only if N(T,g) is bounded as
a function of r; in this epent

N(g)=lin}N(Trg).

Proof. From (3.5 and Theorem 6.1(1) we have N(T, &:r)
=N(g;rm)=N(g;r|m!). As r—>1 we sce by Theorem 0.1(5) that
T, geB’ and that (7.1) is true. The rest of the theorem is now

obvious.
The property of B’ expressed in this last sentence is used

as an axiom later (Axiom P, § 9). It has some interesting con-
sequences (e. g., Theorem 9.2).

The next theorem is related to Theorem 3.5.

Theorem 7.4. Let B, and B, be tmwo spaces of type ;. De-
note the norm in B, by |-, and that in B, by N,(-). Suppose that
each element of B, is contained in B, and fhat there exists a con-
stant 4 such that ||f|,<< ANfll, if feB,. Then the class B; is con-
tained in the class By, and if FeB,, N,(I)<AN,(F). I"urthermore,
if ge¥,

72 Ny(g;7) < AN,(g5 7).

Proof. 1f feB, and ge?, we have

[B(f.g: 7)< flla Ny (g 7).
Thus, if feB,, o
IB(F, 5] < Al Nytai)

whence (7.2) follows. If now FeB, we have N (F;r)<<AN,(F), and
the remaining conclusion of the theorem follows.

Definition 7.2. Let B be a space of type 2[ We define
B® as the class of all Fe2 such that hmB (f,F;r) exists for
each feB.
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The set B° is not of much interest unless we put some addi-
tional restriction on B. If, for example, B consists of all polyno-
mials in z, with any norm, then it is easily seen that B is the
entire class 2.

A situation of real interest is obtained by assuming that B
is complete.

. T-heorem 7.5. Let B be a Banach space of type ¥,. Then B°
is a linear subset of B'. If me adopt the norm N(F) for elements
of B°, then B’ is a complete space of type ¥,. Furthermore,

(a) 4 (B°)~\A (B,

b) o(B)=A4,(B),

(c) 4 (B")“1

Proof. That B® is a linear subset of 2 follows from (1.2) and
(1.3). Now the norm of B(f,F;r) as a functional of f over B is
N(F:r). Hence the hypothesis FeB® implies that N(F;r) is boun-
ded as function of r, by the Banach-Steinhaus theorem (now often
called the principle of uniform boundedness) (Bawacr [t], Théore-
me 5, p.80; Hiwe [2], Theorem 2.12.2, p. 26). Hence B°® is a linear
subset of B

To show that B° is complete, or what is equivalent, that B
is .closed in B’, we suppose F eB’, FeB, N(F,—F)—0. We shall
show that, for each feB,

limliB(ﬁF;r)—B(f,F; 0)|=0:
g .

this will imply FeB. Now
|B(f.F;r)—B(f,F; )]
LB, F—Fsn)|+|B{f.F ;1) — B(f, F,; )|+ |B(f. F,— F; 0}
L2N(F,—P)Ifl+[B(f.F,:r)—B(f.F:0)l.

With f fixed in B and &>>0 given, chose n so large that
ON(F,—F)|ifl|<?2. With n thus fixed, we may choose r and ¢ so
near 1 that-

lB(f’anr)—B(f!F,.;9)[<E/’2>

since F,¢B°. This concludes the proof that B® is closed in B
Of the remainder of the proof we consider only (c) and the
axioms P,, P,, the other considerations being extremely obvious.
. 11*
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By (1.2) and (1.4) we have B(f.UF;r)=B(ULF: r).‘ From this it
follows that P, holds for BY. Next, B(f.T,F:0) =B(f,Firo—>B(f.F;r)
as o1, Hence T,FeB® if Fe?l. It is now clear that P, holds
for B. The relation (c) is true by virtue of (2.5), Theorem 7.2 (c),
and the fact that 4,(B%)<A4,(B).

For a case where B' is a proper subset of B, see § 13.

We write B” for (BY. In dealing with B” it is convenient to
introduce ‘some new notation. The functions N(g;r) and N(I) de-
pend upon the underlying space B. 1t we foi‘sh to show this fle-
pendence explicitly we shall write N(g;r:B) for N(g;r) and N([‘;-B)
for N(F). The norm in B” is then introduced in accordance with
definitions 3.1 and 7.1, with B’ replacing B. It is also convenient
to use the notations

WFIl =N(F:B), FeB',
VP =N(f:B), feB
for the norms in B' and B” respectively.

Theorem 7.6. Let B be a space of type ;. Then B is a sub-
set of B”. If feB me have ||f||”<IIfll.

Proof. Suppose feB. Then, if FeB',

B(F.f;n)|={B(f.E;n|<IIFIIT.
so that N(f:r:B)<|Ifll. It follows that feB” and [If["<IIfl.

Theorem 7.7. Let B be a space of type U,. Let f be an ele-
ment of ¥ such that T:feB and

sup ||T,fll=A4<co,
prgl

Then feB” and ||f]|”< 4.

Proof With an f as assumed in the theorem, and any FeB',
we have

iB(F, firo)l=IB(T.f, F:0) | I TAINFI.
Hence, letting p 1, we have
IB(F,fsn)|<CAIFII", N(fir:B) < 4,
whence the truth of the theorem follows.

8. Banach spaces of type 2, In this section we assume
that B is complete and that axioms P,-P, hold. Our first con-
cern is with the.relation between the spaces B°, B, and the space
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B* of all linear functionals defined on B. We recall that if X and
Y are normed linear spaces, the set of linear operators which
map X into Y is also a normed linear space. We denote it by
[X.Y].

Theorem 8.1. Let B be a Banach space of type ¥, If y is
an element of B*, consider the function defined by

(8.1) G(z)=§y(un)z“, zed.

n=0
Then GeB’ and |G| < A,(B)|y].
Proof. Certainly Ge¥, for y(u,) <llyllu |yl 4,(B). Ob-

oS
serve the relation y(u)=y, (G). From it and Theorem 4.1 we

derive the useful relation
(8.2) y(T,)=B(f,G:m), med, fel
From (8.2) we see that if feB,
B(f.Gir)i <IN T, flI<C iyl A, (B)IFIL.

It now follows that GeB’ and that [[G|'<4.(B)|lyll. as
asserted.

Definition 8.1. The passage from y to G as indicated in
(8.1) defines an operator which we denote by I'' G=1Iy).

Theorem 8.2. Let B be a Banach space of type Ui Then
Ie[B*,B'] and ||I'||=A4,(B). The operator I' has an inverse (i. e,
I'(y)=0 implies y=0) if and only if the linear subspace of B
spanned by {u,} is dense in B (or, equivalently, if and only if
{ua) is total in B).

Proof. Clearly I'e[B*,B’] and ||I']|<Z 4,(B), by Theorem 8.1.
From (8.2) we see that

(TG ST DI AL

We can choose y so that ||yl|=1 and [p(T.f), =||T+fil. The-
refore || T, fll< ||FIlI ). It follows that ||T]|<||I]| and hence that
A,(B)<||T'|l. Thus 4,(B)={I1.

The supposition I'(y)=0 is equivalent to y(u)=0, n==0,1,...
Hence I'! exists if and only if the latter sequence of conditions
is equivalent to y=0. In other words, ™! exists if and only if
{us} is total in B (Bawacu [1], p. 58). The fact that {u.} is total
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if and only if the linear subspace spanned by {u.} is dense in B
is a well known theorem (Bawacu [1], Théoréme 7, p. 58).

We recall that, as f varies over B, B(f, F;r) defines a linear
functional of norm N(F;r). Hence it is clear that if FeDB",
©3) y(f)= lim B(.F5n)
defines an element y of B*.

Definition 8.2. The passage from I to y as indicated in
(8.3) defines an operator which we denote by A: A(F)=y.

Theorem 83. Let B be a Banach space of type 2. Then
Ae[B,B*]. Furthermore
(8.4) TAF)=F if FeB,

(85) IAEWNIFI <A, BIAEN if FeB.

Thus A defines a one to one mapping, mwith bounded inverse,
of B® onto a subspace of B*.

Proof. From |B(f, F;r)l<|IfII|F]I’ we conclude jy (f) |« NfIINEFI,
where FeB!, and y=A(F). Thus || AF)|| <[ F]l’s To establish (8.4)
it is enough to prove y,(G)=y,(F) for each n, where G==I'(y).
Now yu(G)xy(un)——-:linllB(un,F;r)———lin;yn(l")r"=yn(F), as required.

T T
The second inequality in (8.5) follows at once from (8.4) and the
first assertion in Theorem 8:2. This completes the proof.

Theorem 84. Let B be a Banach space of type 2, Then

the image A(B°) of B® in B* is all of B* if and only if T.f con-

perges weakly to f as r—>1 for each feB. When this is the case,
the operator I' defines a 1-1 mapping of B* onto B mith
I'=4. ’
Proof. If FeB® and y=A(F) we have
(8.6) y(T:f)=B(f.Fir), fe¥,
for
y(Trf)=1imlB(Trf,l“;@)=1in}3(f,l’;rg).
e~ e~
From (8.6) and the definition of A we see that
y(fi=limy(T-f)

for each feB and each yeA(B°). Hence T.f converges weakly to
f as r—>1 if A(B")=B*. .
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Suppose now that, for each feB, T:f converges weakly to
f as.r—> 1. By (8.2) we see that

lim B(f,I(y);r)=limy (T H=7(f)

for each feB and each yeB*. Thus I'(y)eB® and .AI'(y)==y. This
shows that ypeA(B’), and henee that B*=A(B’). The last
assertion of the theorem follows from (8.4) and what we have
just shown.

As a corollary of Theorems 8.2 and 8.4 we have

Theorem 8.5. Let B be a Banach space of type #,. Suppose
that, for each feB, T.f converges mweakly to f as r—1. Then
the set of all finite linear combinations of w, wi, Uz,... is every-
mhere dense in B.

We. can now sharpen the statement of Theorem 7.7:

Theorem 8.6. Let B be a Banach space of type 2,. The
space B” consists of all elements fe® such that | Trfl| is bounded
as a function of r. The following inequalities are satisfied by each
element of B”: :

(a) lif!l"~ssisgpllT,fll:
(b) S‘}PHT,fU~'~‘€5A4(B)§Ifli”.

Preptf. In view of Theorem 7.7 we have only to prove the
inequality (b). Given feB”, we kuow that 7,feB by Theorem 4.1.
With r and f fixed we choose yeB* so that liyll=1 and that

y(T-H) =T fll. Let G=Ty), so that. by (8.2), y(T:f)=B(.G;r).

_ Now GeB’ and ||Gl|’<4,(B)jyll, by Theorem 8.1. Hence

1T, fil= B(f,G;r)i%ill}”!i”HGH’-‘-;fA4(B)HfH”v

Thus (b) is established. It is to be noted that if 4,(B)=1,
the inequalities (a) and (b) become equalities. Now we know
(Theorem 7.2 (¢)) that A,(B)==1. We also know (Theorem 7.3)
that an element fe? belongs to B if and only if || T>f]|" is boun-
ded as a function of r, in which case'Hfll'z—-liE}HTer/. In view

of Theorems 7.1, 7.2 and 8.6 we therefore have, writing

BII' — (BI)N — (B”)’,
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Theorem 8.7. Let B be any space of type 2, (not necessa-
rily complete). Then B’ and B"" are identical Banach spaces..

9. Axioms P, P, P,. We now iniroduce three more axioms
which a space of type 2 may satisfy, and consider some conse-
quences of subjecting a space to one of these axioms in addi-
tion to P,-P,.

P,. If feB then T.feB and [|f]|==sup||T./]|.
P, If feB then T.feB and lim|[|T.f—f||=0.
=1

P, If fed is such that T feB for each r, and supl| T, f|j< oo,
then feB and || fl|=sup | T, f]. '

1t is clear that when Axiom P; holds, P, does also, and that
A4,(B)=1. Axioms P, and P, together imply Axiom P, If B is a
complete space of type ¥, in which Py holds, then P, holds also
(by Theorem 6.2(2)).
' Theorem 9.1. If B is a complete space of type ¥, (i.e., sa-
tisfying P,-P;) then B is a subspace of B".
. Proof. We know (Theorem 7.0) that BCCB” and ||f||”<||fll
lf: feB. From Theorem 8.6 (b) and Axiom P, we have || f]|<|[f1",
since 4,(B)=1. Thus {|f||=||f|", and the proof is complete.
Theorem 9.2. Let B be a complete space of type @, satis-

fying the additional axiom P, (and henceP; also). Then the spaces
B and B" coincide.

Pl‘O(?f. By Theorem 9.1 we have only to prove that B is the
whole of B”. This follows from P, and Theorem 8.6.

We use P, to sharpen the results of Theorems 8.1-8.4:

- Theorem 93 Let B be a complete space of type A, safis-
fymg fhe additional axiom P, Then B° and B’ coincide, and B’
is equivalent to B* (i.e., there is a 1-1 linear isometric mapping

of B' onto all of B*).

Proof. We first prove that B'C B'. We already k
’ . C < that
B°CB'. From (1.2) and (1.4) we see that y know tha

(©.1) B(T,f,F;0)=B(T,},F;r).
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With the aid of (9.1) we find that
B(f.Fir)—B(f.F;0)
— B =T, F. i\ BT, f—T,f.Fig)+-B(T,f—f.Fie).
Therefore, if feB and FeB’,
IB(f.Fir)—B(f.F;o) < {20 f— T flA-NT f—=T, fIHIFI"
From P; it now follows that

lim|B(f,F;r)—B(f, F;0)=0;
T, ¥l

this implies that FeB’. Thus B® and B’ coincide.

Next we observe that 4,(B)=1. For I|T.fi|-lifil as r—1, by
P, and ||T.fll is nondecreasing in r. Finally, if Py holds it is
certainly true that 7,f converges weakly to fas r—1. Theorems
8.3 and 8.4 now show that the operator .4 defines an isometric
mapping of B’ onto B*; the inverse mapping of B* onto B’ is
defined by the operator I. This completes the proof.

Theorem 9.4. Let B be a Banach space of type 2, satisfying
axiom P, Let B, be a closed subspace of B which is in itself
a space of type ¥, Then B,” and B are identical, and B, and B’
are identical.

Proof. From the remarks at the beginning of this section
we see that 4,(B)=1. Hence 4,(B)=1 also. The identity of B,”
and B now follows from Theorem 8.6, applied to B, and from
axiom P,. By Theorem 8.7 and the result just proved we have
B'=B/"=FH.

It is clear from Theorem 9.2 that B, cannot satisfy axiom
P, if it is a proper subspace of B.

10. Representation of linear functionals. Theorems 8.4
and 9.5 give representation theorems for linear functionals on B.
The function B(f,F;r) figures in the representation. This function
was defined by an infinite series (Definition 1.5), but there is also
an integral represeniation, as given in formula (1.5). In the latter
formula let us put z,=¢, z,=rg~", where r<<e<Cl. Then

n

s 1 oy T
(10.1) B(/,ﬁ;r):aﬁj floe®) I'( 7 % dg.

0
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The number o is arbitrary, subject to the limitation indicated.

Theorem 10.1. Let B be a Banach space of type A, such
that T,f converges weakly to f as r— 1, for each feB. Then every
linear functional y e B* is representable in the form

Tr=l o

2T .
(102) y(f)=lim ;- [Hee®) F(y eyds, e,

where r<<p<<l and FeB', The element I of B® uniquely determi-
nes and is uniquely determined by y. Furthermore,

(10.3) Il <ZHEI <2 Ay (B) I}
Under the stronger hypothesis that Em{|T f—fll=0 for each
751

feB mwe have the same representation (10.2). In this case, horvever,
F may be any element of B, and Hyll=]F||".

The theorem is merely a restatement of Theorems 8.4 and 9.3,

There will be circumstances under which it is legitimate to
make ¢->1 under the integral sign in (10.2). Sometimes we may
even take the limit with respect to r under the integral sign. The
possibility of carrying out these processes depends upon the cha-
racter of the functions f and F at the boundary of the unit circle.
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a finite sequence,

Independent fields and cartesian products
by
R. SIKORSKI (Warszawa).

For every reT(f}Q) let X. be a o-field') of subsets f’f a
fixed set & We shall say that the fields X: (xeT) are o-inde-
pendent ?) if
(*) [TXn0

n
for every o-sequence?) of non-empty sets XneX:,, where 7,57,
for ’;fpl}.)osc i is a g-measure’) on X;. We shall say that the
o-fields X, (reT) are stochastically c-independent (with respect t.o
the o-measures us), if there is a oc-measure u (called the stochastic
o-extension of all w) on the least o-field X containing all the
o-fields X, such that x is a common extension of all & (veT) and

* #(gxn)zljﬂ(xn)

for every sequence ) of sets XneX.,, where 7,71, for k=1

1) Ar non-void class P of subsets of a set 2 is c.alled. a field, if l;,QeP
implies @ —PeP and P+QeP. A field P is called a o-field, if P eP(n=1,2,53....)
implies P,+P,+Py+...eP. ) )

' ?) Tlllj cgcmceﬂpt of the independence of fields has been introduced by

rczewski in paper [7]. ) . )

e c“)Z In this pnI:)el; we shall write, for convenience, a sequence instead of
and a o-sequence instead of a finite or enumerable sequence.
1) A g-measure u on a o-field P of subsets of a set 2 is a non-negative

D)= =2 v - f dis-

function such that u(®)=1 and y(-{n‘:Pn)——%y(Pn) for every o-sequence o' i

joint sets P eP. By omitting the letter o in the above definition we obtain the
n

analogous definition of a measure on a field.
5) Consequently for every o-sequence also.
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