AN ALGEBRAIC PROOF OF COMPLETENESS FOR THE
TWO-VALUED PROPOSITIONAL CALCULUS
BY
J. LOS (WROCLAW)

The chiel result of the propositional calculus is the theorem
of his completeness, which says that every formula satisfying
the 0-1-truth-table of Schrider derives from accepted axioms.

By a truth-table we mean a quadruple M=<A4, B, »,” >, where
A and B are sets, BC 4, and —, ~, are functions of two and of one
variable defined on 4 with values in 4. The set B is called set
of designated vpalues, the functions — and ~ are interpretations
for implication and negation, respectively. The O-~1-trulh-table
is defined in the section 2, )

Many proofs of the theorem mentioned above are known;
the first of them is due to Lukasiewicz?), the simplest ones
are that of Hilbert? and that recently published by Tlenkin #),

In this paper we give a proof of this theorem which differs
from the others by its algebraical method. We use the known

construction of Lindenbaum?), which gives for each system of

propositional calculus a truth-table, whose elements are formulae,
and which is adequate to this system, and then we prove that
\if a formula ¢ does not falfil this truth-table, then a homomor-
phism h of this truth-table on the 0-i-truth-table exists, so that
h{a)=0. The existence of this homomorphism enables us to con-
clude that a does not fulfil the 0-1-truth-table, which compleies
the proof.

) J. Lukasiewicz, Elemently logiki matemalycanej, Warszawa 1929,

%) D, Hilbert und W. Ackermann, Grunduiige doer lheoretischen Logik,
Bexlin 1928, p. 3-341. :

%) L. Henkin, Fragments of the proposilional calenlus, Journal of Sym~
bolic Logic 14 (1949), p. 42-48.

9 ].'C. C. McKinsey, 4 solution of the decision problem for (he lLewis
systems 82 and S4, with an application to topology, Journal of Symbolic Logic
6 (1941), p. 117-134, especially p. 122,
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The truth-table M=={A4,B,—,—> is normal, if a, a— beB,
implies beB, and is called fruth-table of trwo-valued propositional
calculus if it is adeguate for the system of this calculus (i.e.
E(M)=E(B), vide 2). It is known that every normal truth-table
of the two-valued propositional calculus may be considered as
a Boolean algebra, and therefore the 0-1-truth-table is the algebra
of subsets of a onc-point set. Hence it is clear that this proof
is closely connected with the theorem of M. H, Stone5);

For every clement a of a Boolean algebra A (with exception
of the greatest element in A), there exists a homomorphism h of 4
into the onc-point set algebra, such that h(a)=0 (0 —the empty set).

1. System L. We denote by § the set of all well formed for-

" mulae which comsists of the signs: -» (implication), ~ (negation),

p. 7.8, ... (variables), and parentheses. By LS we denote the
system of those formulae which follow (using the rules of sub-
stitution and derivation) from the five axioms:

(Ay) [p->{g->n]=>lp—q) = -1l
(Az) p=+{g-p),

(Ay) pP>p,

(&) p->p)~>p,

(Ag) P (p-q).

2, Truth-tables B and L. The truth-table
B= <(0,1) > (1)= =, >
in which the functions => and = are defined by the equations
@.1) (0= 0) = (0 =>1) = (1 =>1) = (0 =1),
(2.2) (l=r0)=(1=0),
is called 0O-1-fruth-table of Schréder. By
L={(S,L,~,">

we denote the adequate Lindenbaum’s truth-table for the system 1,
and thus ‘
(3.3) the value of the binary function — for troo formulac a, ¢S,
is the formmula a-+ 8 (implication roith the antecedent a and the
consequent f),

"} M. I, Stone, The theory of representations for Boolean algebras, Trans-
actions of the American Mathematical Society 40 (1936), p. 78.


GUEST


C OMMUNTIZCATI ONS

238

(2.4) the value of the function = for the formula a is the formula
@ (negation of a).

The signs - and ~ are thus used in both meanings: as pri-
mitive signs in the formulae and as signs of functions in the
truth-table Z, but this does not cause any misunderstanding.
Should we, to avoid this equivocality, denote the functions of
L by > and ~, we could write down their definitions:

(2.3%) a-rf=a->f,
(2.4%
If M is a truth-table, then we denote . by E(M) the set of all
those formulae which fulfil M. I'rom the theorem of Lindenbaum
it follows that L is adequate for the system [, which means
2.5) = E(L).
If h maps § into (1,0), we say that h is & homomorphism of L
into B, if for 8,y eS
2.6)
@.7)

It is easy to see that

(2.8) if h is a homomorphism of L into B, «eS, and h(a)=0,
then « non-¢E(B).

a==u.

h{g)=>h(y) =h(a- p)
h(g)=h(p).

3. Theorem of completeness. This theovem can be expressed
in the terminology of the sections 1 and 2 as follows:

(3.1) L=E(B),

or equivalently, in view of (2.5),

(3.2) E(L)=E(B).
It is obvious that
(3.3) LCE®B);
therefore in order to prove (3.1) it is sufficient to show that
(3.4) E(B)CL.

4. Lemma. If aeS—L, there exists a set ¢S such that

(4.1) Bel and B-ryel imply yel,
(4.2) LI,

(4.3) anon-el,

(4.4) for every BeS, either el or fel.

~

COMMUNICATIONS.

Proof 1 A4S and 8¢S, we denote by A(p) the set of all
xeS such that f —wxed.

Let allonjﬁL, and let a,4a,... be the sequence of all ele-
ments of §. We shall define by induction an increasing sequence
of sets as follows:

(4.5) Ay=L{a),
A if anpied
'( A”_4 — n JTNY LX)
*.0) . { Anlanyt) i Gurynon-edy,

and we set

(«.7) T=Y4;.

fos
Every set 4. has the properiies (4.1), (4.2) (for I =4;), because L
has these properties (for I==1I) and if 4 has these properties
and a;non-e4, then for 4(a) the property (4.1) results from (4,),
{4.2) from (4,). Moreover from (d4,) it follows that AnC Apeq and

this enables us 1o conclude that I=3 4, has both these first

=l
propertics. From (4y) we have Gedy=DL(a); therefore weA,.
Suppose thai for some n, aednri=A,(anss); then (45) implies
Apyg==8 and by definition Gusi=> anyiedn; therefore in view of
(dy) we have ani1eAn, which contradicts (4.6); this proves that
anon-e 4y, for any n and (4.3) holds for I

Finally, if ani6dn, then anviel, if anpqnon-ed,, then by
(4.0) and (4,), GneA,C L This proves (4.4) for I, qed

5. Proof of (3.4). Let anon-eL==FE(L); then by lemma there
exists a set I with properties (4.1)-(4.4). We have:

(5.1) If  BeS, yel, then B-yel;

this follows from (4.1), (4.2) and A4,.

(5.2) I BeS—I, yeS, then p-yel;

this follows from (h1), (4.2), (4.4) and (4,).

(5.3) IF Bel, peS—J, then g->yeS—I;

this follows from (4.1).

54) If pel, then  peS—I;, if BeS—I, then Bel;

this follows from (4.6),
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These four properties show that the mapping

0 if xeS—1,
5:3) h(x)={ 1t xel
is a homomorphism of L into B, and in view of (4.3},
(5.6 : h{a)=0.

From (5.5), (5.6) and (2.8), we have anon-¢E(B), q. ¢. d.

6. Remarks. It is easy to see that this proof can be carried
out without the use of the construction of Lindenbaum and the
truth-table L. We have introduced these notions rather in order
to emphasize the algebraic method of this proof.

The axioms (A)-(A;) are not independent, but only (A,) is
dependent from the others. Therefore the axioms (A,), (), (A,),
and (A;), form an independent and complete set of postulates
for the two-valued propositional calculus.

SUR LA CONVERGENCE STATISTIQUE *
PAR
IL FAST (WROCLAW)

Soit {ka) wne suile croissante de nombres naturels, Désignons
par i, le nombre des termes kj<In. Si la limite limin/n existe
nous Pappellons fréquence de {k.} dans la suite de tous les nom-
brés naturels (ou fréquence de {kn), tout court). W(x) étant une
fonction propositionnelle et {a,} étant une suite, nous désignerons
par fr [W{an)] la fréquence de la suite des nombres n pour les-

quels W (an) est vérifiée,

Définition 1. Une suite {a,} de nombres réels est dite
mesurable si [1 [an<<a] existe pour tout a sauf pour les valeurs

cxceptlonnellcq qui constituent un ensemble au plus denombrable

Définition 2. Nous disons cque la suite {a.} converge statis-
tiquement vers a si elle est mesurable et si, pour tout =0, on
a [r{lan—a|> e ==0. Nous écrivons alors lim stata,=a.

o :

Evidemment

(1) la condition limstata,==a équivaut & ce qu'il existe une
suite g —0, =0 telle que ir;r [lan—a| = ¢] =0 pour tout j,

(ii) les théorémes élémentaires sur la somme, la différence, le
produit et le quotient de deux suiles convergentes sont aussi
valables pour les suites statistiquement convergentes,

Nous aurons encore besoin de la proposition suivante qu'on
prouve sans difficullé:

(iii) pour une suite bornée {a,} de nombres non négatifs, la

Zai—()

(==

condition limstat a,==0 équivaut & lim 1—
* La démonstration primitive du théordme de la page 242 préseniée le

18 février 1949 par H. Steinhaus i la Section de Wroctaw de la Société Polo-~

naise de Mathématique (cf. ce volume, p. 73) esi remplacée ici par une version

simplifiée et basée sux les idées de A, Zygmund et les miennes.
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