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A Characterization of L Spaces’).
By
R. E. Fullerton (Wisconsin, U.S.A).

1. Introduction. Kakutani [2] has characterized a space
of integrable functions as a Banach lattice satisfying the following
three conditions:

(1) there exists a unit element e>6 such that x>0 implies
eANz>0; ) .

(2) @6, y>6 imply oty = jzll+yl;

(3) wAy=0 implies |z—y|=lz+y| ‘

The set of points, 2, over Wwhich the I, space is defined can be
assumed to have measure 1. Kakutani [3] has also given a similar
type of characterization for Banach lattices of functions continuous
over a bicompact Hausdorff space. More recently, Clarkson [1]
Ras characterized a Banach space of continuous functions in terms
of the shape of the unit sphere. In this characterization an order
relation is introduced by means of & certain type of cone used in
the construction of the unit sphere, and under this ordering the
space in shown to be an M space and hence equivalent to a space
5% continuous functions. In this paper spaces of integrable functions
will be characterized by the shape cf their unit spheres, making
use of methods similar to those of Clarkson. The Borel field of
measurable subsets of the space £ will be ghown' to correspond
to the family of maximal convex subsets of the unit -sphere- in
o fanner similar to the role played by this family in the case of
a space of continuous functions as investigated by Eilenberg [4].
The case in which the measure is completely atomie is of particular
interest and will be treated in more detail. e

1) Presented to the American Mathematical Society, September 9, 1948.
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2. The Characterization Theorem. A cone in a linear
space X is a set @ containing a point » such that if #e€ and 1 is
any non negative real number, then vz ¢ €. A cone will be called
a C-cone if for any two points x, y, of X there exists a point z X
such that (#+C)N(y+ €)=2-+ €. This type of cone was used by
Clarkson in his paper and has received more recent attention in
a paper by Krein and Rutman [5], who have called it a mindihedral
cone. As they have pointed out, Clarkson’s theorem shows that
a necessary and sufficient condition that a Banach space X be iso-
morphic to a space of real-valued functions continuous over a bi-
compact set § is that X contain a proper O-cone with an interior
point.

Theorem 1. Necessary and sufficient conditions that ¢ Banach
space X be equivalent to a space L(2,m) of all real-valued functions
defined on a set Q, integrable with respect to a completely additive
measure m with m(Q)=1, are:

(1) There exists on the surface of the unit sphere a maximal
closed convex set F such that the cone C={Ax|x ¢ F, 2220} is a C-cone;

(2) The unit sphere consists of all points of the form awm-- By;
0,820, at+8=1, xeF, ye—F;

(3) F contains an &lement e such that if % e €, @<= 0, there exisis
ayeQ y=0 such that ecy+C, 2 ey+C.

Proof. Let L(L2,m) be the space described above. If 2,y ¢L(2,m),
42y means z(t)>=y(f) almost everywhere. The norm is defined in
the usual manner

ol = [ la(t) amit).
Q

Let F be the set of all essentially non-negative functions of
unit norm. Evidently F is both closed and convex. To show that F is

2 maximal convex subset of the surface of the unit sphere, suppose

FCF', where F' is-a convex set of elements of unit norm. Suppose
o' ¢ F' but ' <« F. Then there exists a measurable subset ¢CQ2 such
that #'(t) <0 for t e 0. Liet o be the set of all points for which #'(¢)< 0,

and consider ¢, the complement of ¢ in Q. Let # ¢ F, 2t e’ and
’
%ﬁii =1. However
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[ orien

= %f[m’(t) 4+ a(t)] dm(t)‘ 4+ %f[w(t)—a;’(t)] dm(t)<
<3 [tawlam + 5 [ wo)ame +3 f1e6)ant) +

1 fiwwiann =3 [Iswant +5 [1o0)an0.

=Yl + 5lol=1.

This contradiction shows that F'=ZF, and F is maximal.

Let C(0,F)={s|w= az,|j2]|=1,2>6,a>>0}. This set is a cone
with vertex 0 generated by the set F. Let @,y ¢ L(2,m). Then
9,4+, y,~+C are evidently cones with verbices ¥, and y,, respectively,
and consist of all elements of L{©Q,m) not less than y; and y,, Tes-
pectively. If 9,V y,= max [4,(t), yo(2)], then (3,+€)O(y,+E) is the seb
of all elements not less than ¥,V ¥,, and (¥;+E)N(y.+C€)= (YY) +C.
Thus € iz a C-cone.

To prove (2), assume |o]<C1, o=+, Where @ =2V 0,
@=o 0. Then |lz]|=|z,||+|w,] Let y be any non negative element

with [y=1—[e]. Let #=o+3, 4=m—3. Then [+ [l =

= |-+l -Hlyl =2l + 1 —[laf=1. Also w=z1+zz=llzllln—2—”+llzzlluz—:—”

. 2 %y ; . .
and since Tal e F, Tl ¢ —F, (2) is true.

If e(f) is almost everywhere positive on 2, (3) is obvious if
we let y=eAz> 0. . .

Tn the proof of the sufficiency it will be shown that it (1), (2),
and (3), hold, it is possible to introduce an order relation in the
space under which the space becomes an abstract L space with
a unit and by Kakutani’s theorem, is equivalent to & space L(Q,m)
as desecribed.

An abstract I space is a Banach space with an order relation
satisfying the following postulates: '

K 1. z>y, y=2, imply y=2;

K 2. o=y, y=>2, imply 2#>%;

Fundamenta Mathematicae. T. XXXVIIL . %
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K 3. z>y and 1>0 imply Aoz Ay;
K 4. x>y implies #-42>=y-+2 for any z eX;

K 5. £,2>Yn, imo,=o, im y,=y, imply #2y;
n-yoa n-»o0

K6. To any pair of elements # and y there exists a supremum
2=w\y such that s>, 2>y, and if ¢'>®, />y, then 2'>%;

K 7. There exists an infimum # Ay with properties dual to K6;

K 8. >0, y>0, imply oy =]l + |yl

K 9. # Ay =0 implies [+ y|=[z—yl|;

K 10. There exists an element e>0 such that if #3>06, then
eAx>0.

The order in € is defined by assuming x>y if 2—y e €(0,F).
Conditions (1), (2), and (3), are assumed to hold, and postulates
K1 to X 10 will be shown to hold under the ordering as defined.

K 3 is obvious.

K 1. This statement means that if #—yeC and y—xC,
then y= . Assume that we € and —w €, w==0. By K 3 it is possible
to assume [[w|=1 and hence w ¢F. This would imply also that
—w ¢ and hence (w—w)/2="0 ¢ F' contrary to the hypothesis that
all elements of F' are of-unit norm. Hence #—y="0.

K 2. This is equivalent to the statement that if x—y ¢¢ and
y—zeCQ, then s—e=(@—y)+(y—2)eC, or if z,¢C, x,¢C, then
-+ 2, € €. This is true if € is convex, since then (z,4#,)/2 € and
-+, € €.

To prove € convex, let o,y € €. It may be assumed that |2]=1
and that y=7Jy’, where |y’|=1 and 2>0. Assume 0,0, at f=I1.

aw+ﬂy=aw+ﬁly’=(a+ﬁ2)( a m+ﬁ_y')_
However a—H%, ot ph

a B 5
— >0, L _> . @ pA
a BT afpl b and ot arm s

Since F is convex and both # and y are in F, then

1.

B
Py ey 7]

az+ By € €.

y' el
and hence

~ K 4 is obvious.
K 5 holds if € is closed, i. e. if @,—y,e¢® and

7 Hm (2p—Yp)=
=g—y imply z—y C. “'>°°( v
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Tiet Wp=Cn—1Yn, w=2—y. If w=>0, K5 is obvious. If wb, -
we may assume without loss of generality that Jewl=1. It must
be shown that w e F. Since lim [w,]=1, it may be assumed that

n-co
Wn

{lwnl} is bounded away from zero. Leb Wy= Twnl' Then w, < F.
Hiat L)
ot < [t [0 = [y 0| om0
= |y 1| ol ool = 1= ]+ a0

Hence Hm w,==w. Since wj, ¢F and F is closed, w e F.
nHoa

K6. Let (2+C)Ny+T=24C. Then z>w, 22>y, and if
w>z, wzy, then w e(m—}—(.f,)ﬁ(y—!—(i')——-z—l—(i and w>>2. Thus
zVYy==r.

K 7 is dual to K 6 where the infimum is defined by x#Ay=
=—[(—=) V(-]

K 8. Assume #3>0, y=0. Then w=|zi-a, y=lyll-y,, where
x eF, y, e I

!!w+yii=l|liwll%+‘nlyll%Il
_ =l W — il el

for, since F' is convex, the second factor of the third quantity is
equal to 1.

K 9. s Ay=0 means that ze¢C, yeC, but zez+C, yeat+€
for any 2 €@, z==0. Assume first that |jz]|=|y]|=1. Let

2={az+ fylo+p=1}

and let @=Q—x. & is a line in X passing through the origin
and » translate of 8. Let 4 and —u be the points of &’ for which
jul=1. By hypothesis (2) there exists & line Y through «, which
intersects F and —F. It is evident that w e F. Since M contains
three points of unit norm, the entire segment § containing these
three points lies on the surface of the unit” sphere. Since the sphere
is symmetrie, —& has the same properties. Let oy and v, be the
points in which M and —M intersect F. Let 2y=8'4v;, and
=0’ + v, Since F is convex, at least omne of these lines will
contain no points of norm less than one. Assume that £f is this
Iine. Let v, and w be the points of intersection of 2 with I and

—9n. Bvidently |o,—w|={u+u|=2. Since =Tyl =1, fle—yll<2-
9%
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Let T be the segment {av,+ pw|, 0, >0, a-p=1}. Let

I=T+(@—vy), Ty=T+(—w).

T, and T, are included in { and of length 2 with »; and w trans-
lated to @ respectively. Hence either T; or T, contains the segment
joining # and y. Assume that T, is this set. Then e (z—uv)+C
and y e (z—7v,)+C. Hence 2 and y are in [(z—uv)+C]NE=24-C,
where 2>60 and 2=0, only if #—v, <<0. If v, v,—r>0, and
1=|jv,—2+ zf=|jv;—2|+|z]|>1 by K 8. Hence x=1, since 2<0 by
assumption. Similarly it can be shown that z=w=v, Hence
le—yl=2. Since evidently |lv+yl=2, [p—y|=lle+y| it |z]=]y]=1.

m+yl;_!w—y
2 ||
ments {az+py} and {yz—dy}, «,§,7,6>0, atf=1, y+o6=1,
consist of points of unit norm.

Assume that # and y are not necessarily of unit norm and
2 Ay=10. Then

Since [jo|=[ly[=[l—y[=1 and

H: 1, the entire seg-

| =l = vl . v

= T e+ nyn“

el e oy =\w+y”_ z—y ||
el + Tl Tl ~ Tl +T91 Tl = e +9T) = ol

and
lz+yll=llz—yl|
K 10 is hypothesis (3).

This shows that all the postulates for a Kakutani L space
with a unit are satisfied and that the space is equivalent to a space
of integrable real functions over a totally disconnected bicompact
Hausdorff space 2, where the field of measurable subsets is the
tield of Borel sets and m(Q)=1.

Remark. It is to be noted that, although © is convex and
closed and generates the entire space, it need not have any interior
points. ‘

3. Further properties of the unit sphere.
Th_eorem 2. Let X be an L space with a unit. If xeX, |of=1,
there exists a mawimal closed conver subset H of the surface of the

unit sphere containing @ and such that the unit sphere consists of the
closure of the conver set determined by H and —H.

icm
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Proof. Let x X, |zl=1. 2 is representable in I(Q,m) as an
integrable real function (f) with

f [(8)| dm(t)=1.
Q

If 2(t)>0 or »()<<0 almost everywhere, the theorem follows
from theorem 1. If #(t)>>0 for ¢ e o, #(t)< 0 for t e &, where m(s) >0,
m(5) >0, let H be the set of all functions essentially non negative
on o and essentially non positive on & and of unit norm. By
methods similar to those used in the procf of the necessity in
theorem 1, H can be shown to be both convex and closed. To prove
that H and —H generate the entire unit sphere let y(¢) be any
positive funetion of L(Q,m), |lyf=1. Let y(t)=y(t) for tec and
zero elsewhere and let y.(t)=1y(t) for te& and zero elsewhere. Let

= 11—1 Sp = _1/_2_ :
oy * el
Then
yneH, #e—H,
and

W=l iyl =1, ¥y =l =+l 2,

which is in the closed convex set determined by H and —H.

Similarly all negative functions of unit norm are in the set
and, by theorem 1, the closed convex set determined by H and —H
is the unit sphere of X.

Corollary. Bvery maximal convew set on the surface of the
unit sphere in an L space with a unit generates a C-cone with vertex 0
which satisfies the conditions of theorem 1.

4. Construction of the function space. Maximal con-
vex subsets of the surface of the unit sphere will be called faces
of the unit sphere. To each face of the unit sphere in an L space
with a unit corresponds the set of integrable functions of L(2,m)
which are essentially non negative on a measurable subseb oCQ
and essentially non positive on &. In this way to each face of the
unit sphere can be associated a class of measurable subsets of 2,
each differring from the other on a set of measure zero on which
the elements of the face F, are essentially non negative. The po-
sitive face Fo corresponds to ©Q, and the negative face Fy=—Fog
to the sets of measure zero. If m(c;Nc,)=0, then Fg NF,CF,.
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) Tn this section the usual notations for a relation will indicate
that the relation holds almost everywhere.
For any ¢, let I'o= UF(w—i— §). If 6,Co, for m ey, there exists
x€F;

an @, e F,, such that o, <oy, and if y,eF, there exists a y; ¢F,
with 7, <ys.

Thus ¢;Co, if and only if FgCly,.

This ordering of the faces will be denoted by Fo<3 Fo,.

It Iy = L;)F(wWG), then F,<3F,, is equivalent to the staterent

X
that ¥, Cl5,.

Consider the face Foy, This set has the following properties:

(1) Toue, CI's, N I'g;

(2) If for some o, I';DI6e, and I's==loyys, then I 16N 1Yy,

Let Ag0=15 a0 ] for ¢ such that I',CI',,NI,. Then
Foyo,C Ao, and, in'fact, Fyye=4»A0,0,MN8, where § is the surface of
the unit sphere.

To prove this, let #eds.q, [#|=1. Then, since x eI, UIY,,
£(t)=0 on aang. Since 2z el'y for each ¢DoyUo,, 2(t)<<0 on the
complement & of each such o. Hence #(f)<<0 on 6,0 d 5. Thus 2 e Foyq,

Similarly if {o,} it any family of measurable subsets of Q
then '

. A{g“}—-——-[ﬁal‘ga] NN L% ], FUa‘x =-A{a“} ng,

where the second intersection in the firgt expression is taken over
all sets such that I'oC Mol

Similarly Fre,=[Nel5,]1 N[N I'x] N8, where 1,0 Uy ly,.

Hence under the ordering as defined, the faces of the unit
gphere form a lattice.

Since m(Q)=1, by the Radon-Nikodym theorem, the space
L(Q) can be represented as the space of all completely additive,
absolutely continuous set functions defined over measurable sub-
sets of 2. Hence X is equivalent to the space of all real functions {0}
defined over the {F,} such that

(1) O(F,)=0,

(2) it {F,,,} is a sequence of faces such that F,NOF for
i+, then o ngFo for

; q)(Fai) = (p(FUa‘i)~
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5. Characterization of the space & The space 1is
an L space determined over a completely atomic measure space
where m(Q2)<co. A completely atomic measure space is a Borel
field of measurable sets such that each set of positive measure con-
tains a subset of minimal positive measure.

Theorem 8. Necessary and sufficient conditions that a Banach
space X be equivalent to the space 1 are that the conditions of Theorem 1
be satisfied and in addition that there exist a countable set of ewtreme
points {vi}, o =1, i=1,2,3,.. such that the unit sphere in X 18
the closed convem set determined by the {£2i}.

Proof. Let ¥=1 and let v,=(0,0,...,0,1,0,...) with 1 in the
4-th place and 0 elsewhere. It can easily be shown that the set B
of theorem 1 is the convex closure of the {--vs}, and hence that the
conditions are necessary.

To prove the sufficiency of the conditions, suppose that the
unit sphere in the space is the smallest closed convex seb determined
by the {tv;}. Since these are extreme points, they lie in F' or —P.
Assume that all v;eF. Also o Avy=0 for i=j, since a geometric
argument shows that v; €+ @ for any w=dv;, veC.

In fact, if = and =’ are two disjoint sets of integers and
{&}, {&}, tem, jea’, are sets of non negative numbers, since the
{v} are integrable functions, it is possible to deduce from this that

(Sen) (I im) =0

ien J
Hence by K9
1% St &) =H25rvi—2 £y
“tem jea' iew jen

Consider two disjoint sets of integers = and «' and let {as}, {B}
be finite sets of non negative numbers, where i ex and § en’ with

Sa+ k=1

iemw jen'

and if S is the closure of the convex set determined by {vr}; te7i
{—vp}, jen’, then Sna consists of all elements of the form

S awi— 2 by :

ter len’
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plus all limit points of such elements. ﬁowever
”2 aw,——z ﬂjvj“ = ”2 o0 + 2 ﬂﬂ),” =1
lem Jjea’ iem jen

and the same holds for the limit points. Hence each Sy lies on
the surface of the unit sphere. If zUwx’ is all the positive integers
then S, is a face of the unit sphere. Also every point of unit norn;
is in such a set, for otherwise it would be in a set Sp» with zNa’
non empty and could be approximated by a point of the form

Z:Z aﬂ)i—Zﬂjv,

iem Jjent

= 3 avi+ 2 (ax—Pr)or—

iem—(mM\n) kem\n!

> By

Je n'—(n\n’)
with {a;}, {8;}, finite sets of non negative numbers such that

St Sh=1.
J

By properties K8 and X 9 it can be seen that ||2| <1. Hence
the 8n with #0 %' empty and zUa'=1, consist of all the faces.
of the unit sphere.

The faces S determined by vz and {—v;}, j==k, represent sub-
sets o of minimal positive measure, since the only face for which
F38 is Fy. If 8, is any face, then S8, for all k for which ke .

Thus every measurable subset contains an atomic subset
and since the space Q is of finite measure, the space of integrablé.
functions represented is the space 1.

University of Wisconsin.
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Undecidability of Some Topological Theories.
By

Andrzej Grzegorczyk (Warszawa).

The purpose of the present paper is to prove the essential
undecidability of some elementary theories or closure algebral),
of Brouwerian algebra, of the algebra of bodies, of the algebra of
convexity and of the semi-projective algebra. This is attained by
means of the mathod of interpretation based on the general theorems
of Tarski?) and on the theorems of Mostowski, Tarski and Ro-
binson 3) concerning the essential undecidability of a finitely axio-
matizable arithmetic. The main idea of the proof is that this
arithmetic ean be interpreted as an arithmetic of finite sets. Hence
each theory in which we can define the class of finite sets and some
operations on the finite sets is undecidable.

The elementary theories Gy, Gy, - discussed herein are assumed
to be formalized in the lower functional caleulus, they all have
the same logical constants (connectives, quantifiers, identity sym-
bol), logical axiom schemes and rules of inference. Each theory
Gul%,01,0,,0;> is determined by its non-logical (primitive) con-
stanbs: X,0;,0,,0; and non-logical axioms. The terms: X,0;,0,, T4
denote ,univers du discours”, and certain relations. The non-
elementary theories &y,d,,... of order contain the simple theory
of (finite) types. (L. e. each type of the order n-1 is the class of
all subclasses of the types of order =). The non-logical (primitive)
constants: ¥/,0%,0}, 03 of anon-elementary theory S.2%,01,04,05>
denote only the relations and operations defined over the indi-
viduals of the lowest type. The variable letters A, Ay, Ayy As will
be used to designate theories which can be Gr O Sn. A" will be

1) The undecidability of the closure algebra has been proved in another
way hy Stanistaw Jaskowski in 1939. See [2].

2) See Tarski [11] and Robinsen [10].

) See Mostowski [9].
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