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in L. R is a compact T-space. We have given a proof (omitted here)
that M is compact for such spaces R=IL-ta.

I) Let L be discrete and non-denumerable. Then R is Haus-
dorff and mot separable, and M is compact.

A special case of R=1L- « is the space K whose closed sets
are R itself and its finite subsets.

II) Let B be non-denumerable. Then R is not Hausdorff, not
- geparable, and M is compact.

IIT) Let R be denumerably infinite. Then R is separable and
not Hausdorff, and M is compact.

Thus B Hausdorff and R separable are not necessary, either
singly or together, for the compactness of M.
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On Free x-complete Boolean Algebras.
(With an Application to Logic).
By
Ladislav Rieger (Praha).

A Boolean algebra 4 is said to be Ns-complete if any subset
of elements of 4 the power of which does not exceed x:has a g.1. b.
and a l.u.b. in 4. An g;-ecomplete Boolean algebra A is said
to be free with m free Ne-generators (where m is any eardinal number)
if there exists a subset GCAN the power of which is m so that &
has the following properties:

(i) The only s:-complete subalgebra of Ay containing G is
A% jtself. (We say that the elements of G sg-generate A5).

(ii) If @ is any mapping of & into another xs-complete algebra
B then @ can be extended to a x:-complete !) homomorphic mapping
of the whole algebra A into B.

Familiarity with these and other (better known) basic notions
of the theory of Boolean algebras will be assumed. I refer to a brief
exposition of these notions in R. Sikorski’s papers [1] and [2]
(this Fund. Math. 1948 and 1949). For a more extensive treatise,
the monograph of G. Birkhoff [1] on Lattice Theory (sec. ed. 1948)
is recommended. B

Note that hy an e-ideal (the symbol due to M. H. Stone), I understand
what sometimes is called a dual idedl, i. e. a (nonvoid) subset I of the algebra 4
in question so that if a,be I then aNbel and if aCd, ael then bel.

Of course, to each of the theorems of the present paper there is a dual
one. The dualisation is left to the reader.

1) Instead of N:-complete Boolean algebra and Ng-complete homo(iso)-
morphie(ism) and Ng complete ideal we simply say Ns-algebra, Ng-homo(iso)-
morphie(ism), R ~1dea1 resp. Especially, & homomorphic mapping f is said to
be R -homomorphic if j(Ur.)—U jl:) holds for any set I of indices with

card (I)<<Ng. N isthen sa.ld to be the level of completeness. Instead of the prefix R -
we use the more common symbol o-(R,-algebra = o-algebra, Ry-ideal= c-ideal,...).
3%
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In this paper, I deal with some simple properties of free xe-al-
gebras in general and of free m,-algebras (also called o-algebras)
especially, within various applications.

The main lemms (of part I) on the existance of a (not trivial)
prime as-ideal P containing a given element a==0 of a free o-algebra
A% is proved in as constructive a manner as possible, by induction
(transfinite, of course, and of the order ;) ?). After being somewhat
strengthened, this lemma produces, by a well known argument due
to M. H. Stone, a o-isomorphic representation of any free o-algebra
by a o-field of sets. A corresponding theorem for free sg-algebras
fails in the case N;>>2% and hence for any uncountable level of
completeness — whenever the (special) Continnum Hypothesis is
assumed. (This follows at once from a result of R. Sikorski [1]).

As an application of the main theorem 3 (on the o-isomorphic
representation of free o-algebras by o-fields of sets) we immediately
get a somewhat strengthened form of the known theorem of
Loomis [1] (see also Sikorski [1] and Birkhoff [1]) on the re-
presentation of o-algebras by o-fields of sets. Further, we easily
obtain @ positive answer to the generalised problem Nr 79 of
Birkhoff [1], asking (in its original form) whether the o-field of
all Borel subsets of a Cantor discontinuum is a free o-algebra.
A generalisation of a theorem of Sikorski [2] (his theorem 5.2)
is an immediate consequence. Negative answers to further pro-
blems Nrs 78 and 80 of Birkhoff [1] are adjoined. A modification
of problem Nr 78 (with affirmative answer) is mentioned.

In part IT of the paper, I briefly trace an application of the
present results to the Tarski-Lindenbaum algebra of the lower
predicate calculus (of mathematical logic). I show that this algebra
can be isomorphically immerged in the o¢-field of Borel subsets
of the Cantor discontinuum. The well known Gdédel’s ([1]) comple-
teness theorem for the lower predicate caleculus is an immediate
consequence. A more carefull treatment of this subject (within
further applications to logic) is planned to be published elsewhere ¥).

%) @, is the first uncountable ordinal, o the first ordinal of power Ng.

3) As a volume of the prepared series of special studies to be published
by the Pahstwowy Instytut Matematyczny (Polish State Institute of Mathe-
maties). — I presented the result of the subject of part IT at prof. Mostowski’s
seminar of mathematical logic, in March and April 1950. It was also presented
at the session of May 5, 1950, of the Polish Math. Soc., Wroctaw Section.
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Part 1. Algebra.

Theorem 1 (Existence of free xgs-algebras). Let x; be any in-
finite cardinal, m another (not necessarily infinite ) cardinal 0.
Then there emisis o free Nyalgebra AN with m free Ng-generators.

Proof. I. Let & be any set of the power m. Choose three fixed
auxiliary elements denoted as =, o, 6 to be used in order to define
complements, joins and meets respectively. Denoting by wgis the
first ordinal of the power Ry let us define what may be called
(infinite) words, by a transfinite construction of the order wgyy.

(i) Let I'y contain all the g ¢ G and all the ordered pairs (g, =)
denoted for convenience by the symbol g*. We say I'y contains
the words of order 0.

(ii) Let all the sets Iz of the words of orders at most § be
defined for each B = a<wgyi®). Suppose [3CIy for f<pf’ Sa
Let Sq41 be any subset of the seb ;’ T (of the already defined words)

b=y
with 2=card (Sey11)=s:. Then the set I'nys of words of order at
most a—-1 consists of the words of 3 I'; and of all the ordered pairs
Sy
(Sa41,0) and (Sets,8) and of all the ordered triples (Saut1,0, %) and
(Sa41,0, =). We denote these pairs or respective triples (i. e. the
words of order a-1) for convenience by the symbols Sut1,e, Set,8,
S%y10, Skyis respectively, to show their dependence on the set Set1-
(Hence, the orders of words are non-limit ordinals by definition,
which allows some formal simplifications). Clearly I3Cly for any
two (non-limit) ordinals < ' < wga. We pub [’z0 5}2 T
=i<o
(4 non-limit) as the resulting set of (infinite) words. i

In the sequel, arbitrary words (i. e. elements of I') may also
be denoted as X, ¥, Z,... If X has one of the forms g, Spo, Sps
then X* means ¢* Sis Sis respectively. If, on the contrary,
X is of one of the later forms then X* means the corresponding
one of the former. In order to denote the assumed forming set Sp

(and an assumed order ) of a word X explicitly, we write X= Sé*),,.
"5

1) The relation ﬂé)"‘ (#, o ordinals) excludes identity if and only if « is
a limit ordinal. 3 and II denote set-sum and set-product.
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II. Let ¢ be an arbitrary mapping of the set GCI" in a given
xe-complete algebra B, ¢(g) € B for g ¢ G. Extend ¢ to a mapping g
of the whole set I" of words in B by the following induction of the
order wgyq: '

(1) For the words or order 0, only
be defined ).

P(g*) =(p(g)) remains to

(2) If @ is defined in Iy (for words of order at most ), where
ﬁé) a< wgyq, then put (for words of order a—--1):

FBupr=_U FX), &

N
e (Sat1,8)=

N gx),

~ Gk
@ (8 1,9
XeSqqq 0

= (F(Satry)s
where

a1 C ; Ts, 2= card (Sep) =8,
ey

9 is defined for any X eI" and it is $(X) ¢B. We call ¢ an evaluation
(with values in B).

Letting §.run over . ~adl eva,luamons and ta:kmg each of the
different (in the gense of N:-isomorphism) Ng-algebras of not more
than m¥s+t elements as a value algebra we finally say that X and ¥
are equivalent words if @(X)=0(X) for each evaluation . Now,
denoting by [X],[Y],[Z],... the corresponding classes of mutually
equivalent words and by A} the set of all these classes we conside:r
A% as a gealgebra in the following (essentially well-known) sense:

(i) The complements in A} are given by

(XY

(ii) The xe-joins and se-meets in AN arve given as follows:

Let 8 be any subset of elements of 43 with 2<card (8) <.
For each [X] eS8 let us choose a fixed representative word X e [X].
Then there exists exactly one ordinal a< wgyy which is the lowest
upper bound of orders of the representative words X when [X]e §.
Denoting by Szy4 the set of all these words we see (on account of

the above construction) that Sz4C Z I's and hence Szy; give rise
=k

=[X*].

%) 7 always denotes complement.
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to the words Sgyi,e, Szt1s of order a--1. Therefore we can put

U [X]=[Sariel € 4, 0 [X]=[Szp10] e 43

[XleS [XleS
as the Mgqjoin and as the zpmeet respectively, performed on
elements of the set SCAMN.

With these definitions, the verification of postulates of nz-alge-
bras may be obvious if we observe the lattice ordering relation
[X]C[¥] given by F(X)C(Y) with each ). We can omit the
details and only note that both the xginfinite distributive laws

(v E)n (L [X)=_L

(8)
(X)es YV C{mmssxv([X]m[Y]) 2 eard(V)<RE)

— and duaily —hold in A} as well as in any Ngalgebra (for this
fact, see Birkhoff [1], p. 165).

It remains to be shown that the postulational properties
(i) and (ii) (of the Introduction) of free Ng-algebras are satisfied
by 4%, with the set of free wy-generators [g] (ge @), this set of
evidently different one element classes identified with &, if desired.

For (i), it is sufficient to point out that to any [X] e A we
have a suitable subset Gx of the set @ of free r;-generators so that
card (Gx) =§¢ and the elements of Gy concide to build [X] by means
of repeated ss-operations of AR

Indeed, if X iz word of order 0 or 1 then our asserfion is
trivially true. Hence suppose it is true for words of an order not
exceeding B, f< wers. Since any word Y= Sm 4 of the order g1
is formed by a set Sz of not more than & WOI‘dS of orders at
most g (no matter whether g is a limit ordinal or not) ‘and since
each of such words (elements of I') is constructed by, means of not
more than §: free xe-generators (on account of the inductive as-
sumption) hence our assertion becomes true for f+1 too, by the
equality R~ g, i. e. it is true in general.

For (ii), it suffices to note that the above construction itself,
by any evaluation § represents exactly ome desired Kg-complete
homomorphic extension g of a mapping ? (of @ in B) simply given
by @(g)=¢(g) (on @) and by @([X])=¢(X) (on the whole A%,
q. e. d.

8) For defining lattice operations by means of the lattice odering see
Birkhoff [1].
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Theorem 2. Let AN be o free Sg-algebra of theorem 1 and G be
the set of its free Negemerators. Let v be any mapping of G in an
Ne-algebra B. ‘

» Then the extended ss-homomorphic mapping p of the whole AN
in B is uniguely determined. If the set p(G)CB Re-generates B then B
is @ Nzhomomorphic image of AN and we have an Ne-isomorphism

A/p=(1)= B,

where I=7p—%(1) is the ang-ideal of all the elements of AN the image
of which (under ) is the unit 1 of the algebra B.

Proof, The first agsertion is clear. Indeed, in general, if a homo-

. morphic mapping of any algebraic system in another system of the

same kind exists and has preassigned values on a set of generators
of the first system, then there exists only one such homomorphic
mapping. (A rigorous inductive elaboration of this known argument
in our case is clear).

The second assertion including the so-called first lemoma on
isomorphism (in our case) may obviously be proved mutatis mutandi
of the well known argument.

Corollary 1 (The uniqueness of AN). A free Re-complete
algebra is (up to Ne-isomorphisms) uniquely determined by the car-
dinal nwmber m of its free sg-generators and by the level Ng of its
completeness.

Because if G; and @ are sets of free x; generators (of the free
se-algebras 4 and A with card (¢;)=m) then the one-one mapping @
of G onto @; can be transfinitely extended to a srhomomorphic
mapping p of A onto A. If this sc-homomorphism @ were not,
in fact, an Kg-isomorphism, then the inverse mapping ¢—! of @,
onto @ could not be extended to an rs-homomorphic mapping of 4
onto A% which contradicts the fact that 4 it free. (The plurality
of counter-images of the unit 1 of A by p implies that in extending
! one must get an ambiguity of obtained values of p—! at a certain
stage of the induction).

Corollary 2 (The universality of A). Any sgsalgebra B
which has a set H of sggenerators with card (H) =m is an Rg-homo-
morphic émage of the free ng-complete algebra AzE and hence B = AST
with a suitable axg-ideal I.

) This follows immediately from theorem 2 by a suitable map-
ping v with y(6G)=H,
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Note that the universality property of corollary 2 does not suffice to give
a characterisation of A":‘S. Indeed, one can easily prove that the direct produet
AREx(0,1) is not free although it has, of course, the universality property in
question. On the other hand, one cannot assert that A’:;* is directly irreducible

which is clear from the (trivial finite) example of A% x AN =78, (m positive
o m-+1

integer) caused by 272" =2
There remains a quite natural question, namely that of whether there is
an infinite free complele algebra in the sense of being a free Ng-algebra with respect
to any level N¢ of completeness.
It seems plausible that such an algebra does not exist (see the impossibility
of its construction by direct application of the method of proof of theorem 1)
but I have not been able to prove this.

In the sequel, we shall be interested almost exclusively in
x,-complete free algebras (free o—aigebras) which represent by far
the most important case for their application. Further justification
of this limitation of the subject will appear from theorem 7.

Lemma 1 (The main lemma on prime ag-ideals in free o-alge-
bras). Let A% be the free o-algebra (from theorem 1). Let @ with
card (G)=m1 be a set of free o-generators of Am. Let [X]e A be any
given element different from the zero 0 of A,

Then there ewisis (and, moreover, can be constructed) a prime
ac-ideal P of A% so that [X]e P==Ay.

Proof. (For the notation, see proof of theorem 1). Choose
a fixed representative word X in the class [X] being the given non-
zero element of AN. It can be assumed that X is not of the
order 0. Indeed, if X=g¢ then the lemma is trivially proved with
the prime ac-ideal P=gp—1(1) determined by the correspondence
w(g)=1, ¢(§)=0 [for any g=g (where p maps @ onto the value
algebra B=(0,1)), in the sense of the proofs of theorems 1 and 2.
And if X=g¢* then the same is true with ¢(9)=0 and ¢(g)=1 for
§=g. Hence it can be assumed that X= SS?;” where 1=a< wjy,

« is a non-limit countable ordinal, i.e. the order of X.

First, let us determine what can be called a subword of the
word X.

(1) A word Y is & subword of a word Z, Z being of order 0
exactly if ¥=2 in the case Z=g and if Y=2 or Y=g in the case
Z=g¢*. A word Y is a subword of the word Z == Sg*) (of order 1)

4
6
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if either Y=g e §; respectively ¥Y=g*eS;, or Y:Sj,g, or Y=12.
The set of all subwords of a word Z may be (for a moment) denoted
by I'z.

(I1) A word Z= S.(,Z)H g (of order a+1>1) possesses the set I'y
of subwords formed by the set sum Sa+,+ 2 I'y, where § with

0< ﬁ(ﬁ o ?) is determined by &t ,,e»S’,H_l (and enhrged by adjoin-
ing Z itself).

By induction, we easily see that card (I'z) =
Zel.

Now, let us form the set I'y+I'y, i.e. let us adjoin to I'y
every Y* with ¥ e[y, as it is easily seen from the definition, or,
if one wishes, from the de Morgan laws. We can and will assume
I'yx+ 'z« to be arranged in a fixed finite or infinite sequence

XZX]_, 'X27 ..,Xk,...
(k is a positive integer) which will be the subject of our further
considerations.

Our next step is to construct an auxiliary increasing &equence
of ac-ideals I,CI,C...CI,C... (n is a non-negative integer) in the
algebra A}, by complete mduetlon

(i) Set as I, the principal a-ideal generated by the element [X]
0+[X]=[X ] 4y. I, is moreover a non-trivial ac-ideal Conmm-’
ing [X].

(ii) Let I, be defined as a non-trivial ac-ideal so that I 1C1,
for 0=<l<mn. Let I, have the following property (pn):

If a word X, (of the designed sequence) with i=<n is of the
form X,=8, (of course, §==a) and if [Xi]el, then—there exists
a suitable subword X;eSp of X, so that [X]] e 7, '

Note that I, enjoys the property (p0) with respect to the
void subset of the X/s with ¢=80.

From I,, we proceed to I,.11 as follows.

Let 1?,4.1 be the a-ideal formed by I, and by the  element
[X.] e A%, whenever, of course, this ideal does not contain 0. In
the contrary case (that the ideal to be formed is trivial) put IS ,=1 .
1?,_1.1 is an (non-trivial) ac-ideal, which immediately follows by the
{(countably) infinite dlstnbuhve law (see the proof of theorem 1).

8y for any word

78Sy always denote that equality is excluded for a limit .
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1%, being defined, let us consider all the words X;, with
1=<j<n-+1, such that X;=38,, (with a suitable y<a), and that
(X} € Inta-

Let us prove that to any such X; there is a word X, e 8, (in
our sequence) so that the a-ideal formed by I,,+1 and by [X] does
not contain 0.

Indeed, suppose on the contrary that under the above assump-
tion (on X;) to any Y, =Xe8, (I=1,2,...) there isin I34 an
element [Z;] so that [Y)] ﬂ[Zl]ﬂO. Then [Z;)C[Y;]' whenece
[¥ eIl a1 for each integer =1 . Since I?,+1 is an ac-ideal we

get E'%[y,]= U[Y,])e]'o ;. But because [X]=[8ye= u[Y,]eJﬂ+1,

by hypothesm, we get 0 GIrb}-l which is exeluded

Hence we can and will form the as-ideal Thyy by the ac-ideal
1o 211 a0d by the element [X] (s is a suitable positive integer), where
[X,]=([Y¥ is one of the factors of the join U [1’,] [X]1=[8;,4),
whenever our assumption holds for Xj.

Repeating this adjoining process as many times as possible
(i. e. at least n-+1 times) we get I,iq by the last step. We have
I1,ClI,y, the ao-ideal I,y does not contain 0 and it obviously
has the property (pn-+1).

Tinally, put I=2 I as the result of our auxiliary construction.

We point out ’?l?eo following needed properties of I:

(a) I is an a-ideal not containing 0 (I is non-trivial).

(b) If X;=8. and [Xj eI (with any fixed j) then at least
one X;eS; aatlsﬁes [X]el.

(This is a weakened property of being ao-prime of I with
respect to ,,components” of [X7]).

) [X]eI if and only if [X]'=[X}{Inonel.

(This is ancther weakened property of being prime of I).

Sinee (a) and (b) follow directly from the above construction
of I, we prove only (c). Indeed, [XeI immediately implies
[XYnonel by (a). On the other hand, suppose [X;] non el, i.e.
[X;Inon e I;. This can only be caused by a suitable [Z] e I;—;y such
that [X;]N[Z]=0, on account of the above construction of I. But
this means [Z]C[X;) € ;-1 CI, which proves property (c).

Remembering the proof of theorem 1,let us put ¢(g)=1 whenever
the word g or g* is a member of the sequence X=X, X,,... and
either g=[g]leI or g'=[g) nonel holds. Otherwise, put ¢(g)=
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With the help of ¢ determine the unique ¢-homomorphie mapping p
of 45 onto the value algebra B=(0,1), in the sense of the proof
of theorem 1, so that g(g9)=¢(g), ¢(g")=q¢(g*)-

We shall prove that if [X,] ¢ I then g([X;])=1.

Since this is true by definition for each X, of the order 0,
suppose, on the contrary, that there is an X; of the lowest possible
order $>0 so that [X;]e I, yet g([X;])=0.

(1) If X;=8;, then by the property (b) of I there is an [Xj]el
so that X;e8; and [XJ:[S;,»,,,]:X US[X r]- By inductive assumption

6858

and since X is of an order lower than 8, [X 71 € I implies p([X;])=1
and hence 0=g([X;])= US ([ Xr]) D@([X;))=1, which is impossible.
Xpe 8

(2) Let X=8p,. Since p{[X])= N F[X;])=0 there is at
P jsSﬁ
least one X;e S (of order lower than 8) so that g({X;])=0. Hence,
by induetive assumption, [X;] non e I and therefore [XF]=[Xs eI
by the property (¢} of 7. But since [X,]= O [XjIC[X ] eI we get
%<Sg

the impossible result [X,]N[X;]'=0<I. Because the Temaining
cages (3) of X;=8j, and (4) of X,—8%; reduce to the former
by de Morgan’s laws, we finally conclude:

[X]=[X;] being itself contained in I we have o([X])=1.
Now, g~!(1)=P is the desired prime ac-ideal (compare with theo-
rem 2, if desired), which completes the proof ¢f lemma 1.

A methodological remark on the proof of the lemma 1.

It is perhaps not without interest to notice that the basic suggestion of
the inductive construction of an auxiliary ideal such as I above, goes back to ma-
thematical logic, namely to the use of Hilberts g-symbol 8). (See Hilbert-Ber-
nays, Grundlagen der Mathematik I and esp. I1). A similarly developed argument
was used by L. Henkin [1]3) to prove G&del’s [1] theorem on the completeness
of lower predicate calculus. Since lemma 1 leads almost directly to Loomis
theorem (see theorem 5 below) on the representation of g-algebras by o-fields
of sets (see Loomis [1]), and since we can prove ) that Godels completeness
theorem can easily be deduced with the help of the theorem of Loomis as the
only essential lemma, one surprisingly concludes that Godels theorem and
Loomis’ theorem are equivalent in a certain methodological sense (each of
them desling, of course, with quite different subjects). The existence of the

#) I owe this remark to A. Mostowski who also called my attention to
L. Henkin’s paper.

) ?) See author’s paper On countable generalized o-algebras, with & proof of
Godel’s completeness theorem, to appear in Cas. mat. fys. 1951.

3
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prime ideal P of lemma 1 can be (perhaps in a somewhat shorte?r v;vay) inferred in
2 nonconstructive manner from Sikorski’s (see [1]) use of Bam'i s theorem con-
cerning sets of the first category in M. H Stone’s rfapreseutatwe sI')atcehof the
algebra in question. (3ikorski gave a simple proof in [1] ?f Loomis" t! eore.n.:
by this method). Another method of proof of lemma 1 directly u.fses1 Loomlss
theorem (compare Birkhoff [1], ex. 3 (b), p. 168). For methodologlc'a TeasoN!
which seem to be quite natural, I have chosen the present order of ideas.

Lemma 2. To any two elements [X] and [Y] of the f'rfe a-alge.b-m
A% such that the conirary of [X1C[Y] is true, there is a prime
ac-ideal P such that [X]e P and [¥]none P.

Proof. Since [X]N[Y]'<=0 by supposition, apply I.em_ma 1 to
the element [X]N[Y7]. Of course, the resulting P con.rams [X:! ‘Fmt
it cannot contain [Y] because it contains [Y]" and is not trivial.

By a well known argument of M. H. Stone (cf. [2!.], see also
Birkhoff [1]) we can prove without difficulty, on account of the
lemma 2, the main

Theorem 3. The free o-algebra A% with any cardinal numbew" m
of free o-gemeraiors ecan be o-isomorphically ?'epieseﬂted by a G-ﬁilg«
i of subsets of the set & of prime ac-ideals P;A}.ﬁ when.an.y [X]e ii;‘,:
corresponds one-one to the set S(XNC S of prime ac-ideals P+ An
containing [X]. .

Anotber formulation: In order to conmsiruct Ay by the proof
of theorem 1, it is sufficient to use B=(0,1) as the only value a-algebra.

An immediate consequence of theorems 3 and 2 is thg follow-
ing somewhat strengthened form of the theorem of Loomis:

Theorem 4. An arbitrary o-algebra B i3 @ a—homomorg?hic
image of any o-field F% of sets of theorem 3, whenever the cardinal
qumber mm is not exceeded by the lowest cardinal number of any se_t H
of o-generators of B. Any o-homomorphism @ of F% onto B is gwezbo
by o mapping ¢ of any family G of sets being free gemerators of I';m
onto any H, in the sense of the construclions of t}'worgms 1 ankfl 2.
Each g induces the c-isomorphism of B with the qm.wtzve'nt alqebm F..../Ig,,
where Ip=p(1) is the ac-ideal of all sets of Fr whose image is the
unit 1 of B.

Notice that a further topological strengthening of the theorem
is presented in theorem 6 below.

’ Tet us return, for a moment, to free xe-complete algebras
in general.
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" Theorem &. For any 8:==2" (and hence for any uncountable 8¢,
by the Comtinuum Hypothesis) the free Ne-algebra Ay with mZ=y,
cannot be Ng-isomorphically represented by an Sg-additive field of sets.

Proof. Let L/L, be the quotient algebra of Lebesgue mea-
surable subsets of the interval (0,1) taken modulo the ideal L, of
subsets of measure zero. As is well known (see Wecken [1]),
LL, is complete (in the sense of any cardinal level x¢). Now, Si-
korski ([1], p. 257) has shown that, for x;==2"%, L/L, cannot be
isomorphic to a guotient algebra A/J, where A is an Neadditive
(i. e. gecomplete) field of sets and J is an avg-ideal in 4. (Strictly
speaking Sikorski shows the dual of this fact). Hence if 4%
with m>=g, and $:292% could be represented as an mgadditive
field of sets, then we should obtain a contradiction in applying
theorem 2, corellary (2), with B=L/L,.

Notice that we can prove theorem 5 without using Sikorski’s
or Wecken's result, although assuming the general Continuum
Hypothesis.

Theorem 5, of course, makes free x:—a,lgebras of httle im-
portance.

It is time to call attention to the fact that the mentioned
result of RSikorski divectly yields the impossibility of a (positive)
solution of the problem Nr 80 of Birkhoff [1], p. 168. This problem
consists in seeking for a generalisation of Loomis’ theorem (theo-
rem 14, p. 168, in Birkhoff [1]) to cardinals (i. e. levels of com-
pleteness) other than . (Strictly speaking, without the Continunm
Hypothesis one gets the impessibility of such generalisation for

" ordinals at least 2%),

For free xgalgebras, one has, by theorem 6 below and by
the proof of theorem 1, a weak surrogate of the representability
by fields of sets:

Every free ne-algebra A% can be taken as an ewtenszon of & o-field
F of sets.

Let us return to topological 19) representations of fr%ee o-algebras
by Borel subsets of a generalised Cantor discontinuum.

‘We recall that by a generalised Cantor discontinuum G, de-
termined by the infinite cardinal m only, we mean, as is usual in

) For basic topological notions used in the sequel see Kuratowski,
Topologie I, Warszawa-Wroctaw 1948, or Alexandroff-Hopf, Topologie I,
Berlin, Springer 1935.
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topology, the topological (combinatorial) product of an infinity
of m spaces each consisting of only two points, say 0 and 1. Points
of @, are then functions ¢ defined on an abstract set G of the po-
wer m, taking only the values 0 and 1. The open basis of €, con-
sists of open-closed subsets of €, each such set being formed by
functions ¢ € €, 30 that ¢(g)=0 or ¢(g)=1 for a finite set of argu-
ments g¢G. It is well known that G, is a (bi)compact Hausdorff
space which is totally disconnected, i.e. zerodimensional.

Consider a free g-algebra 4% (of theorem 1). Then we ob-
serve at once the one-one correspondence (see proof of theorem 1
and theorem 2) between prime ac-ideals P, in A® and points ¢
of ©,, given by Py=p~'(1); B=(0,1).

Now, Ay contains the free (finitely additive) algebra A,
with m free generators as a subalgebra. It is well known (see Stone [1]
and compare Birkhoff [1]) that the above mentioned open-closed
of sets, Fy, being iso-
morphic with 4, and this isomorphism is given by the one-one
correspondence g<>Qy=4,. Py of a-prime ideals @, of 4,, with points
¢ of €. But it is evident (by the construction in the proof of theo-
rem 1) that any prime g-ideal Qp=AnPy of A, can be extended
to exactly one prime ac-ideal Py, of A2 A, the converse of this
one-one correspondence Pp<»>@, being obvious.

Now, in the s-isomorphic representation of the free o-algebra
A% by the o-field Py of sets of prime ag-ideals in theorem 4, the
points may be taken as points of . Since by this interpretation
the free finitary subalgebra A, of A% ijsomorphically goes into
the open-closed basis F, of €, and since the whole isomorphic
image of A%, the o-field of (certain) subsets of C, is generated
by its subfield F,, hence F¥ is contained in the o-field of Borel’s
subsets of @, (by the postulational property (i) of free algebras).

The least o-field containing all open and eclosed subsets of
a Boolean topological space € will be called the minimal o-field of
(Borel) subsets of C.

Theorem 6. The free o-algebra Ay with m generalors is o-iso-
morphically represenied by the minimal o-field of Borel subsets of the
generalised Cantor discontinuum .

Corollary (1). The free o-algebra AR with couniably muany
free o-yemerators is c-isomorphic with the o-field of Borel's subsets
of Cantor’s discontinuum €= Cyg,.
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This is the positive solution of problem Nr 79 of Birkhoff [11,
whereas theorem 6 is its generalisation.

Note that the usual representation of points of g, as real
numbers ¢ can be obtained by the well known correspondence

oo

) =2 3 2

n=1

with @=(1,2,..,7,..)

Corollary (2). Any c-algebra B generated by m generators is
a o-homomorphic image of the minimal o-field Fy of Borel's subseis
of the gemeralised Cantor discontinuum C,.

(Proof by theorem 2).

This is a generalisation of Sikorski’s theorem 5.2 of [2], p. 20.

It is noteworthy that though the minimal o-field of Borel's
subsets of the generalised Cantor discontinuum G, enjoys the pro-
perty of being algebraically universal for any cardinal m, the topo-
logical universality of €=Ge has no full analogue in G, with m >Ry,
is well known.

Let us turn to the discussion of problem Nr 78 of Birkhotf [1], p. 168,
reprinted as follows:

Prove (or disprove) that if a Boolean o-algebra A is o-generated by a sub-
set @ then every a=0 in A contfains some finite or infinite countable meet Ng;+0
of elements of G.

First, the disproving is almost trivially accomplished by finite free o-algebras
with n-free generators 912950+ §,€ & and a=g7. Of course, gj=a40 and1<(.l 9,¥0.

In

. . . Pid
The evaluation Pg9,)=9lg,)=..=p(g,) =1 implies Plg)=0 whereas (N g,)=1
=1

which shows that ﬂgig g7 is impossible. But since the equality is obviously im-
possible too, the counterexample is clear. — An infinite counterexample of
the other kind is that of 4 being the o-field of Borel’s subsets of Cantor discon-
tinuum with G consisting of the family of open-closed subsets each being formed

oo
by the reals c=23 p(n)/3" with g(n)=1 under fixed %, and finally with a being
=1

the one-point Borel subset (0)=¢ containing the number 0 only.

Hence a stronger modification of the problem may be desirable. Such
a question could be, e.g., the following one: Does there exist, for any a=0 in
any free o-algebra AN a set of free generators @ so what 0+ My;Ca, g;eG?
(A modification of this kind without limiting the set of generators to free gene-
rators would be trivial, of course).

The answer now is yes. The proof of this fact is not difficult, on account
of theorem 6.
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Part IL. Application to logic.

The reader’s familiarity with basic noticns of ‘the lower pre-
dicate caleulus 1) will be assumed. ) .

We lay down the following eonvenient and usual notv_alinox.ls.

Capital Latin letters such as X,Y,Z,... (eventually with in-
dices) denote propositional variables. o -

Small Latin letters such a8 #,9,2,... denote individual variables
(eventually with indices). )

By symbols such as F(),G(,),H(-,"5"), .- Wo denote predicate
variables with 1,2,3,... argnments resp.

The logical ’ju,nétives and quantifiers and brackets are denoted
by the symbols &, V,—>, ~, V, &, (, )

v Weya,ssu_me T;he ,Wel,l known concept of a formula'®) as & re-
cursively defined kind ‘of certain finite sequences formed by the
already enumerated elements. Formulae will be denoted by the
letters A, B, ... .

We’as’sume a system of axioms of the two-valued log.m a:nd
the well known rules of inference: modus ponens, the substitution
rule and the quantifier rules. The definition of a provable formula

= identical formula) is clear.

( If we identify two formulae % and B8 whenever (9[—»&3)&(2—»%[.)
is provable, then we obtain a Boolean algebra, called the Tarski-
Lindenbaum algebra of the lower predicate calculus and denoted
by TL. The element of 7L which is determined by 2 formula %,
will be denoted by [%]. The following equations define the Boo-
Jean operations and the elements 0 and 1 in TL:

[U[B] = [(WV(B)], [AIN[B]=[(W&(B)],
[U) = [~(0)], 0= [(W&(~W)], 1= 7[>

The Boolean interpretation of implication is the following:

(@) —(B)] = [AY W [B]-

11) See D. Hilbert and P. Bernays, Grundlagen de’r“Mathema,tik, ]?d. II
Sup. I. A. or D. Hilbert and A. Ackermann, Grundziige der theoretischen

TLogik, Zw. Aufl. ) ) B
’ 12) Formel, well formed formula by certain logicians.

Fundamenta Mathematicae. T. XXXVIIL
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Moreover, besides these finitary opera.tlons, we get a coun-
table set of some meets- and joins of a.countable infinity of ele-
ments of T ), as well defined by the equations,

ﬂ[i’I @)] = [VyA(y)], :}[ﬂ(w)]=[ﬁy‘ﬂ(y)1

(where I denotes the set-of individual variables, 2 contains @ freely,
91 not contains y) ). It is to be noted that the special countably
infinite meets and joins, though infinite operations (in the obvious
sense of Boolean algebras), they are in each case given by a finite
number of inference steps, in the sense of the calculus.

Let us also mention that 7L is (up to isomorphism) uniquely
determined by the numbers of different variables of any one kind,
hence there are many types of TL.

Now- we shall apply to the Boolean algebm LT the results
already stated in part I of this paper.

First, we extend the notion of a free o-algebra (free o-generator,
o-ideal, o-homomorphism, a. s. 0.) in relativising them to o-operations
(i. e. countably infinite joins and meets) of a certain defined kind
(an algebraic characterisation of the kind of s-operations considered
in. the Lindenbaum-Tarski algebra may be elaborated else-
where; see the last footnote of the Introduction). This will be
done hy simply adjoining to the points (i) and (ii) of the Intro-
duction the condition that in the (in this generalised sense) o-free
algebra (to be defined) the s-operations in question are to be limited
to the preassigned kind. (This preassigned kind of operations will
be assumed, of eourse, to include the usual finite operations). Second;
we prove without great difficulty that the Tarski-Lindenbaum
algebra of the lower predicate calculus 4s o-free in this extended
sense, with respect to the above mentioned g-operations (given by quan-
tifiers) the free generators \in the extended sense) being the classes
[F(x,y,.:.,2)],... and [X],... On the other hand, as we have seen, the
o-field of Borel’s subsets of Cantor’s discontinuum is a ¢-complete
free algebra. Hence any of its subalgebras containing all the open-

18) The idea of interpreting quantifiers as infinite algebraic operations
is, of course, not new. (For an interesting recent conception of this idea, see
F. 1. Mautner, Logic as Invariant Theory, an Extension of Klein's E'rlange'r
Program, Amer. J. Math. 68 (1946), pp. 345-386.

14) Strictly speaking, there is a little formal complication: For the possi-
bility of substituting any free individual variable x in 9I( ), sometimes a suitable
»change of nomination* (,Umbenennung®) of variables in 2( ) is needed.

icm

On Free wxscomplete Boolean Algebras b1

closed sets is o-free even in the mentioned extended sense, with
respect to a suitable limitation in performing countably infinite
joins and meets.

Now, remembering that the Tarski-Lindenbaum algebra
is, in fact, an extension of the free (usual) Boolean algebra of the
propositional caleulus, we can conclude with:

Theorem 7. The Tarski-Lindenbaum algebra TL of the lower
predicate caleulus can be isomorphically represented (with respect to
all the finite and the defined infinite operations) by a subalgebra of
the o-field BN of Borel subseis of the Camtor discontinuum €. A re-
presentation is emecuted by any one-one correspondence between the
countably infinite set of the o-free gemerators of TL (in the extended
sense) of the form [F(z)],[G(%,1)],--- or [XL,[Y],... — and the coun-
tably infinite set of free o-gemerators of FQ, represented by the open-
closed sets of Canmtors numbers ¢ with 1 at the fized k-th place in the

expansion
k .
om2 3R

It is to be noted that the Borel subsets of € which can occur
in a representation of the Tarski-Lindenbaum algebra TL are
of a finitary Borel class (with a finite repetition of the indices o, 6)
and that each such ,finitary*“ Borel subset can be used to repre-
sent a class of mutually equivalent formulae in a suitable repre-
sentation of TL.

As an easy corrollary, we get the Gddel completeness theorem,
in the following algebraical form:

To any element [A]==0 of the Tarski-Lindenbaum algebra TL
of the lower predicate caleulus, there exists a o-homomorphic mapping
(in the extended semse of defined c-operations) g of TL onto the al-
gebra B=(0,1) of ,true“=1 and ,false* =0, so that @([UA)=

Choose a fixed point ¢ in the nonvoid Borel subset (of €)
representing [A]4=0. Put p([€])=1 or 0 according to whether
the Borel subset corresponding to [€] contains ¢ or not. Then
this homomorphic mapping g of TL onto (0,1) is nothing more
than a logical evaluation, and hence it defines — by ascribing either
the ,true‘ or the ,false’ to any ,atomic formula* — F(x,y,...,2)
individual predicates (fulfilling the formula % in question) if in-
dividual variables are taken for individua. (Indeed, ¢ gives more,

s . 4%
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i.e. a simultaneous interpretation of all predicate variables as in-
dividual predicates. An analogous situation is in Henkin [1]. For
a detailed discussion of the already sketched application of part I
to logie, see my paper announced in the footnote 3} of the end of
Introduction. :
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A Note to Rieger’'s Paper ,,On Free $;-complete
Boolean Algebras“?).

By

Roman Sikorski (Warszawa).

The subject of this note is a simple proof of Rieger’s
Theorem 6 2).

Let M be an abstract set, with cardinal m (finite or infinite),
and let . denote the set of all functions f on M, the values of
which are the numbers 0 and 1 only. (Cy, is the so-called generalized
Cantor discontinuum, i. e. the Cartesian product of m spaces, each
of which is composed of the numbers 0 and 1 only).

For aeM let Cn, denote the set of all fe (, such that
fla)=1. For every (infinite) cardinal 1 let ¥y, denote the least
n-additive field of subsets of C,, containing all the sets Cmaq (& ¢ M).

If X is an n-additive field of subsets of a set &, and if I is
an n-additive ideal of X, then the n-complete Boolean algebra
X/T is called an n-quotient alzebra. In particular, every n-additive
field of sets is also an n-quotient algebra (the ideal T then contains
only the emptly set).

Theorem. Fy, is the free n-quotient algebra with m generators
(a e M). ) -

This means:

Cma

3

For every fomily {As}aen 0f elements of any n-quoiient algebra
X/T there ewisis an n-additive homomorphism h of Fn, into X/T
such that h(Cwao)=A. (@ € M). N

1) This volume, pp. 29-46.
2} Loe. cit., p. 41.
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