54 R. Sikorski.

For every aeM let X,eX be a fixed set such that3)
[Xs]=A4,. Let f=c(x) be the characteristic function4) of the fa-
mily {X }sen, that is, the mapping of & into €, which associates
with e & an element fe O, defined as follows: f(a)=1 if and
-only if e X, The mapping

WF)=[c4(F)] for FeFy,
is an n-additive homomorphism of F,, into X/I such that

7 h('dm:a)=[c—i(om,a)]z[xa]zliay q.e.d.
Corollary 1 (Rieger’s Theorem 6). The o-field Fy, s
the free Boolean o-algebra with m generators Cu, (@ e M)5).

This follows immediately from the fact that every Boolean
o-algebra is isomorphic to an s,-quotient algebra ©).

Corollary 2. Every n-quotient algebra X/X with of most m
generators is isomorphic to an n-quotient algebra FyylJ, where J is
a suitable n-additive ideal.

This is a generalization of Rieger’s Theorem 4 7).

*) For X ¢ X the symbol [X] will denote the element (coset) of XTI de-
termined by X.

%) M. H. Stone, On Characteristic Functions of Families of Sets, Fund.
Math. 33 (1945), pp. 27-33. See also E. Marczewski, The characteristic function
of sets and some its applications, Fund. Math. 81 (1938), pp. 207-223.

%) Another proof of this fact follows from Theorem VIII in my paper On
an analogy between measures and homomorphisms, Annales Soc. Pol. Math. 23
(1950), pp. 1-20. That proof is based on Loomis’s theorem for Boolean algebras
with N, generators only.

%) See L. H. Loomis, On the representation of o-complete Boolean algebras,
Bull. Am. Math. Soc. 53 (1947), pp. 757-760, and R. Sikorski, On the representa-

iton of Boolean algebras as fields of sets, Fund. Math. 35 (1948), pp. 247-258
{Theorem 5.3).

7} Loe. cit., p. 39.
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Concerning the Cartesian product of Cantor-manifolds.

By

Karol Borsuk (Warszawa).

1. A set of points?) is called an n-dimensional Camfor-mani-
fold ?) if it is an n-dimensional compactum and it cannot be dis-
connected by a subset of dimension <n—2. .

It is known3) that every n-dimensional Cantor-manifold is
n-dimensional in every one of its points and that

(1) If A and B are n-dimensional Cantor-manifolds and dimA:B}
>n—1, then A+ B is also an’ n-dimensional Cantor-manifold.

We can easily see that if in the formmla
@ (=AXB?Y

A and B are polytopes %) then O is a Cantor-manifold if and only
if both polytopes A and B are Cantor-manifolds. .
! thi i les, that for ar-
In this paper I shall show, by certain examples,
bitrary compacta there exists no relation . between fche Cantor-
manifold property of 4, B and . Namely the following theorem
holds: )

1) It is convenient to assume that all sets of points investigated in this

aper are subsets of the Hilbert space. ) .

" 2) P. Urysohn, Mémoire sur les multiplicités Cantoriennes, Fund. Math. 7
(1925), p- 124. )

3) See for instance C. Kuratowski,
1950, p. 106.

i d B.

1) A xB denotes the Cartesian product of 4 and ) )

5) By a polytope we understand a point-set. contained in ﬂle Hﬂbe;'t; ﬂ]sl})aoe
and having a decomposition in a finite collection of geome}ﬁncal (rec to:a;lr)
simplexes such that every face of each simplex of the c-o]lect.mu belo.ngs— o ]
collection. This decomposition of a polytope is f:%lled its triangulation. Every
set homeomorphic to a polytope is called a curvilinear polytope.

Topologie 1I, Warssawa-Wroctaw
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Theorem 1. If we assume only that the sets A, B and C in
formula (2) are locally conmected continue then the supposition that
some of them are Cantor-manifolds does not imply that any of the
others is a Camtor-manifold.

The proof of this theorem is given at the end of the paper.
The main part of the paper concerns the investigation of the Can-
tor-manifold property of some sets, especially of a type of spaces
called approvimative pseudo-manifolds.

2. We have -already observed that, for the polytopes, if 4
and B are Canfor-manifolds then C is also one, and if at least one
of the polytopes A and B is not a Cantor-manifold, then C is also
not a Cantor-manifold. Consequently to prove theorem 1 it only
remains to give the following three examples:

EBzample -1 of two locally conmected OCantor-manifolds A,
and B, such that (y=4,% B, is not a Cantor-manifold.

_ Example 2 of a locally connected Cantor-manifold 4, and of
alocally connected continuum B, which is not a Cantor-manifold,
such that (,==A4,X B, is a Cantor-manifold."

Ezample 3 of two locally connected continua 4, and B, which
are not Cantor-manifolds and sueh that Cy=4,%x B, is a Cantor-
manifold.

8. Suitable examples will be constructed with the aid of the
known surfaces of L. Pontrjagin®) showing the fallacy of the
formula dim (4 X B)=dim 4+ dim B.

First we establish some properties of the surfaces of Pontr-
jagin. Let 8 denote the circle composed by all complex numbers 2z
with [¢]=1. Let I be the segment 0<{t<{1. By a Mobius band mod m
‘we understand the continuum M, obtained from the product §x I
by identifying on the circumference Sy=§ X (0) points correspon-
ding to each other under the rotation of angle 2x/m. In general
My is & homogenously 2-dimensional curvilinear polytope, but we
can realize it in the Hilbert space also as a rectilinear polytope.
By the boundary of M, we understand the circle S§=8x(1).

®) L. Pontrjagin, Sur une hypothése fondamentale de la théorie de la di-
mengion, Comptes Rendus de PAc: des Sec. 190 (Paris 1930), p. 1105-1107.
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Lemma. For every proper closed subset ADSy of M, the eircle
8, is a retract7) of A. 7

Proof. Consider a point po= (g, ) € § X I —8;—~8;—A. Mani-
festly there exists a retraction of X T—(p,) to the set Sy+ §’l+(zl) x1I,
where 2; ¢ S—(2). To the set SXI—(p,) corresponds in M,, the
set Mm—(po) and to the seb S+ 8+(2) X I — a 1-dimensional sub-
coptinnum N of M, containing ;. Obviously 8 is retract of N.
Hence §, is a retract of Mn,—(p,) and also a retract of ACM,,f——(po).

4. Let y, denote the 1-dimensional cycle of S defined by the

formula
v Lu—1 n
2 i— 27i-
yvz 2 ({; vy [ v ).
U=

=

Evidently y={y,} is a 1-dimensional true cycle %) in .S (ealled
the basic cycle of §). For every m=1,2,... it can be consnd_ered as
a true cycle modm in §; and then it is homologous to 0 in Mo,
but totally unhomelogous to 0 in 8. On the other hand, for every
closed proper subset AD8; of M., the cycle y is totally unhomo-
logous to 0 in A. For otherwise there would emst'a su?s;qizenge
{7%} of {y} homologous to 0 in A and the retraction o o 8,

would transform the relation {Vi,.}"’o in A into the relation {yi«}NO

in §,, which does not hold. . .
Let 4 be a triangle (closed) lying in the Euchdea.n 5-d1r51eg~
sional space Ey and let A denote the interior of 4. Consider a 5-di-

7) A subset T, of a space I is called a retract of B if there exists a continuous
mapping f (retraction) of B onto E, such that f(z)=wx for every aer,i .
) Let B be a compactum and ¢ a positive number. By an g-simplex O
we understand a finite subset of B with diameter <. In the k.nown manner we
introduce the notion of an oriented e-simplex of F, of an ¢-chain of E w1.t}1 a.r?;—
trarily given coefficients, and of an g-cycle of B. An g-cycle y of B is s.:ndtto ! t:
s-homologous in B i there exists an g:chain x of E such that y constitutes i
"n.
bonnd;I:yY; J-dimensional frue eycle modm of B one understands a lsequ_el{m;
y={yy of k-dimensional g;-cyoles mod m of E, ‘where g—>0. A tlrlue eyc.:t:; ;/;
is homologous to zero in B (symbolically y~0 in E) whenever t tem exi s o se
quence {n,} of positive numbers convergent to zero and such th? ! ]Zi is 2125 "
logous to zero in B. If there exists an £>0 such tha't no one o . e ch}:;mo Lo;im :
s-homologous to zero in E, then the true cyele y={y;} is called totally un
to zero in K. .
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mensional element ®) QCE, containing 4 in its interior. Bvidently
there exists a polytope M7, homeomorphic to M, such that

1° the boundary I'=4—A of 4 constitutes the boundary of
the strip of Mébius M}, (mod m),

2% the set M, —I lies in the interior of Q.

Clearly there is a mapping « of M}, onto 4 which is the iden-
tity on the boundary I

5. By the surface of Ponitrjagin P, we understand the topo-
logical limit 1°) of the sequence {P,,} defined as follows:

Py is a triangle with the diameter 1, lying in By By 11
we denote the triangulation of Ppy consisting of one triangle
Am1=Pmy. By Q. we denote a 5-dimensional convex element
lying in E; and such that its diameter is equal to 1, its interior Rj,,
contains the interior ./1},,,1 of A},,,l and its boundary Q,l,,,l——R
contains the boundary Any— AL of Ay
2 mapping retracting @, to Poy-

Let us suppose that for some » there is already defined a homo-
geneously 2-dimensional polytope PnyCEy-and a triangulation Tmw
of Pr, with the triangles A}, having. diameters <2~ Moreover
let us suppose that to every triangle Aﬁn,,, corresponds a H-dimen-
sional eonvex element @Q.,,CE; such that the interior Ay of AL,
lies in the interior R}, of @', and the boundary I'y,,=4%,—AL,
of Ay, lies on the boundary Qh,—Rh. of @), and that the dia-
meter of Q. s < 2!-*. Furthermore we suppose that for every
two triangles Ams, dins € Tme, i, 1608 Qs Qhy=4k,,-41,,. By
Pmy We denote a mapping retracting the set Q=Y Qi to Poy

i

it
By ¢'m1 we denote

in such a manner that g .{Qn.)=4k. for every i.

‘We now replace every ftriangle A f,,,y by a polytope Mﬁn,, such
that
1° My, is homeomorphic to the Mébius band mod m,
2° I'p, is the boundary of MZ,,,
30 the set ML,,—TI}, lies in the interior of Q..
Putting

Pm,v—{—lzz an,q.

°) By an n-dimensional element we understan
an n-dimensional (closed) simplex.

10) See for instance C. Kuratowski,
1948, p. 245.

d a set homeomorphic to

Topologie I, Warszawa-Wroclaw
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consider a triangulation vmpt1 0 Pmayy such that every triangle
AL sts € Tmeqqr has the diameter <27" and that the 1-dimensional
skeleton Tp.™) of Tm, is contained in the 1-dimensional skeleton
Tyi1 Of Tmpys. It follows that for every triangle fﬂnw-'rle Tt
there exists a triangle Afn,,, € T, Such that zz{,,,,+1c Qmy- We infer
ythat there exists a 5-dimensional convex element Q{,,,,,_HC Qmy
such that the interior A{,,,H_l of Alppyr is contained in the inf,eri_or
Ryt Of Qhpt1, the boundary I ,j.,,,,,ﬂ_xzdfnl,,.;_,—A{,,,,ﬂ_l of AL,y les
on the boundary Qh,.ii—Tly iy 0f @hsis, and the diameter of Qfuqy
is <27". We can easily see that the elements Q{,,,H_l can be chosen
in such a manner that

@ Q{;,”+1:A{H,V+1'A';:r,v+1 y
for every two indices j==j’. .
Obviously there exists a mapping @mui1 retmcfj;mg O, =
= Qhsts t0 Py in such a manner that gmwa(@met1)=24mst1
for every index j. Hence

3) oFmppr(2} @)K2T for every o eQmpir-

6. Let us observe that
(4) 8y s a retract -of every proper closed subset ADS; 0} Pmp-
Statement (4) is true for y=1. Assume.it for an » and suppose
that AD8, is a proper closed subset of Pmyyi- Then tihere ez.mts
a triangle A, eTm, such that the Mébius band M. obtained
from it by the construction of Ppmeqs i8 not contained in A. It
follows that there exists a retraction r; of the set
A-MotThy
to the boundary Ik, of db,. Putting _
P(T)=gmy(®) for every « eP,,,,,,+.1 — My
p(x)=r{r) for every @ e.d-Mn, .
we obtain a continuous mapping of A-+(Pumyq1—Mm) into Pm,,.f/ig,,,,-
But by the hypothesis of the induction there exists 2 retractipn
7" of Pp,—AL, to 8. It suffices to pub
r(w)=1"p(z) for every xeA
in order to obtain a retraction of A to §;.

11) By the k-dimensional skeleton of a triangulation ¢ we understan
polytope built of all simplexes of z of dimension <k.

d the
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Furthermore let us observe that

(5) For every v the polytope Ps, is a 2-dimensional pseudo-mani-
fold ®) with the boundary 8. v
To prove it let us observe that P,y is a 2-dimensional pseudo-
manifold with the boundary §; and that the construction of Py

i such that the pseudo-manifold property of P,, implies the pseudo-
manifold property of Py,yq with unchanged boundary.

7. The polytopes P,,, converge to a continuum P, called the
surface of Ponirjagin modm. It is clear that :

(6) -Pm :vg Qm,u~

and that P, contains the 1-dimensional skeleton of Py, for every
»=1,2,... In particnlar - i
(7) §,CPu.

Moreovér let us observe that the common part of the surface
P and of the element @, is connected (even homeomorphic to P,,).
Since the diameter of @f,, is <2'™” we infer that P, is the sum
of & finite number of connected sets each of diameter arbitrarily
small. It follows3) that
(8) Pu is a locally connected continuum.

In particular 14)

(9) Pn is arcwise connected.

2) By an n-dimensional ~ pseudo-manifold we understand here always
& bounded n-dimensional pseudo-manifold, that is an n-dimensional polytope M
which is a Cantor-manifold and has a triangulation z in which every (n—1)-di-
mensional simplex is a face of one or two n-dimensional simplexes of z. The
sum N of all (n—1)-dimensional simplexes of z which are faces of precisely one
n-dimensional simplex of z is called the boundary of the n-dimensional pseudo-
manifold M. Every set homeomorphic to an n-dimensional pseudo-manifold
will be called a curvilinear pseudo-manifold. To the houndary of the pseudo-
manifold corresponds by the homeomorphism the boundary of the curvilinear
pseudo-manifold.

) W. Sierpifski, Sur une condition pour quun continu soit une courbe
jordanienne, Fund. Math. 1 (1920), p. 44.

, ) 8. Mazurkiewicz, Sur les lignes de Jordan, Fund. Math. 1 (1920);

Pp- 201. .
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The mapping ¢ne retracting Qu, t0 Pp, is defined on the
set PpCQumy and it maps Pp into Pn,. For every z belonging to
the 1-dimensional skeleton of Py, it is

¢m,u(‘T)=x‘
We conclude by (3) that

(10) The set P is 2'*-deformable into the 2-dimensional polytope
Puwv i such a manner that S; is carried into itself.

We infer 15) by (10) that the dimension of P,, is <2.

Consider now the basic cycle y modm of S;. Obviously p is
totally unhomologous to 0 in §; and homologous to zero in Py,
for every »=1,2,... Hence

{11) There exists a 1-dimensional true cycle modm of S, totally un-
homologous to zero in Sy, but homologous to zero in Py
It follows 6) that dim P,>2. Thus we have shown that
dim P,=2.
Moreover (11) implies that
{13) 8; is not a retract of Pp.
Let us observe that
(14) 8, is a retract of every proper closed subset ADS, of Pr-

In fact, for » sufficiently large, ¢m.(4) is a closed proper
subset of Pp, and S;Coms(4). By (4) there exists a mapping
7,(%) retracting the set gp.(4) to 8;.

Putting

(12)

M%) ="vPme(x) for every xed

we obtain a retraction of 4 to 8.

Thus we have shown by (13) and (14) that the mapping de-
fined in §; as the identity cannot be extended over P, but it can
be extended over every closed proper subset ADS; of P,. It fol-
lows1?) that '
(15) P, is a 2-dimensional Cantor-manifold.

15) By Alexandroff’s theorem on approximation to cor.npaet.a by poly-
topes. See for instance, W. Hurewicz and H. Wallman, Dimension Theory,

Princeton 1941, Princeton University Press, p. 72.
18) See, for instance, W. Hurewicz and H. Wallman, 1. c., p. 151.

7) W. Hurewicz and H. Wallman, 1. ¢, p. 95.
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8. The most important property of the surfaces of Pontr-

jagin is that the dimension of P, X P, is equal to 3 if (m,n)=1 and

equal to 4 if (m,n)>1. The proof of this property is only sketched

in the paper of Pontrjagin). For the sake of 'eompleteness I

shall give here the detailed proof elaborated by R Sikorski.
Firstly let us show that

(16) If (myn)=1, then PpyiiX Puyiy it 22*-deformable inio the
3-dimensional polytope TpmyX Pry-t Py X Thy.
Let B;; be the boundary of an,,,xM{,,,,, ie.
Bl,j=FIin,v X M{z,v+ﬂlin,ux T,J;,y,
and let §y; be the boundary of the 4-dimensional cube Ao 4l e,
8 == I‘;z,u X A{l,ﬂ"%‘dx’:n,u X I’,’;,,, .

Bvidently 8;; is a 3-dimensional sphere.

As it was remarked at the end of Nr. 4, there is a continuous
mapping of M, onto 4L, which is the identity on the common
boundary I},,. Consequently there exists a mapping a of P,y
onto Py, such that ‘ ‘ '

o M) =4k, and  o(l%,)=TI,. :
Analogously there exists a mapping f of P,,q4 onto P,, such

BOML)=4%, and AIL)=T1,.

The transformation y(z,y) = (a(), B(y)), where & e Pty
Y ePryrs maps Py X Prpops into PuyX P, so that

that

P Moy X M}, )C AL X A, and BT84y

Let y;; denote the mapping y restricted to the set. M%,, x M.
S.inee (m,n)=1, the polytope M, ,x M, contains no one e’t-dime;l-
sional relative cycle mod By;1%). By Hopt’s theorem 20), there exists
& mapping x;; of M, X M3, into S;; such that :

;‘iyi(xa?/.)='}’iJ(mﬂ/):?(maf‘/) for (m;y)sBi,j-
T @67 and  (2,y) € (MhyX ML) - (ML, % 32,) then

(#,9) € By,;> By, y. Hence
%4, (8, Y) = p(, ) =zp (2, 7).
1) See footnote 6).

%) See P. Alexandroff and H.
0) See P. Alexandroff and H.

Hopf, Topologie I, Berlin 1935, 'p. 310.
Hopf, Le., p. 501.
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The union x of all mappings x; ; is a transformation of the set

Mo X My = Pt X P
into the set 4 7
%’Si,j = Tm,vXPn,v_}'Pm,vx Tn,v-

The mapping # is a 22—-deformation, since

© (M X M) C8yCQN X @y My X ML ,COL % G,

and the diameter of QL,,x ¢!, is <92+
"~ By (16) and (10)
- dim PrX Pp<3.

The converse inequality being evidently also true2), we infer:
17) If (m,n)=1 then dim P,x P,=3.

‘Now. let us observe that if (m,n)>1 and % is a prime common
factor of m and n and y={y} denotes (as in Nt 4) the basic cycle
of §; then y can be considered as a true cycle mod % totally un-
homologous to 0 in §;. Then y X y={y,Xy,} %) is a 2-dimensional
true cycle mod k totally unhomologous to 0 in §;X §; but homol-
ogous to 0 in §;XP, and also in P, X S;. Hence there exists in
8; X Pr a sequence {»;} of chaing mod % with the diameter of sim-
plexes convergent to 0 such that 8x =y, for i{=1,2,... Similarly
there exists in P, X S; 2 sequence {i;} of chains mod % with the
diameter of simplexes convergent to 0 such that 94,=1y,for i=1,2, ...
It follows that putting

yE=—2 for every i=1,2....

we obtain a 3-dimensional true eycle mod¥% in P, X P, If we ob-
serve that yX y is totally unhomologous to 0 in S;X8; and that
(PmX 8y) (§; X Pp)==8;x8; we infer by the known theorem of
Phragmen-Brouwer ) that the 3-dimensional true cycle {y}} is

2) W, Hurewicz, Uber den sogenannten Produkisatz der Dimensionstheorie,
Math. Ann. 102 (1929), p. 306.

2) y,X#, denotes the Cartesian product of the chains y; and x,. See
P.Alexandroffand H. Hopf,l.c., p. 302 and 8. Lefschetz, Algebraic Topology,
New York 1942, p.138. Also K. Borsuk, On the Decomposition of Mamifolds
into Producis of Curves and Surfaces, Fund. Math. 33 (1945), p. 280.

#) See P. Alexandroff, Dimensionstheorie. Ein Beitrag zur Geometrie
der abgeschlossenen Mengen, Math. Ann. 106 (1932), p. 186. Also K. Borsuk,
Uber spharoidale und H-sphéroidale Riuwme, Recueil Mathématique I (43), Moscou
1936, p. 646. :
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totally unhomologous to 0 jin P, X8 +8; XP,. On the other
hand, {y}} is evidently homologous to -0 in P,XP, Hence
dim (P, X P,)>4. The inverse inequality is also.true, because 24)
dim P,, X Pp,< dim P,,+ dim P,=4. Consequently

(18) If (m,n)>1 then dim PpX Po=4.

9. Let M be an n-dimensional pseudo-manifold with the boun-
dary N+0. If v denotes a triangulation of M, then the (n—1)-
dimensional chain mod 2 consisting of all (n—1)-dimensional sim-
plexes lying on & with coefficients equal to 1 is a eycle mod 2 homol-
ogous to zero on M and not homologous to zero on N. Evidently
the last two properties characterize this cycle among all (n—1)-
dimensional cycles mod 2 on N 25). It follows that if » is an (n—1)-
dimensional true cycle mod2 on N homologous to zero on M but
totally unhomologous to zero on N then y is homologous on N to
the true cycle y={y} in which , denotes the (n—1)-dimensional
cycle mod 2 consisting of all (n—1)-dimensional simplexes of the
i-th barycentric subdivision of an arbitrarily given triangulation
of the polytope ¥ with the coefficients equal to 1.

Lemma. Let N be the boundary of an n-dimensional pseudo-
manifold M and let A be a closed proper subset of M. Then every
continuous mapping f of N into the (n—1)-dimensional sphere Sn—y
has a continuous ertension over A-+N.

Proot. This statement is a simple consequence of Hopf's
well known extension theorem ). But it is also easy to give an
elementary proof of it. It suffices to observe that for every point
ae¢ M—N—A there exists a mapping r(x) retracting M—(a) to
a closed subset B of M such that

NCFE and dim E=n—1.

The last condition implies that f has a continuous extension f
on B with values belonging to S,—;. Putting
M@)=fr(z) for every zed+N

we obtain the required extension of f over A+4N.

*#) W. Hurewicz and H. Wallman, L c., p. 33.

28) See, for instance, H. Seifert and W. Threlfall, Lehrbuch der To-
pologie, Chalsea Publishing Company, New York 1947, p. 91.

“6) Bee, for instance, W. Hurewicz and H. Wallman, 1. c., p. 147.
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10. We shall say that a compactum € is an approximative
n-pseudo-manifold with the boundary C, if the following conditions
are satisfied: .

19 Gy is @ closed subset of C.

20 There exists in C, an (n—1)-dimensional irue cycle y mod 2
homologous to zero on C, but totally unhomologous io zero on C,.

3% For every e>0 there exists an s-mapping ¥} f. of C onto an
n-dimensional pseudo-manifold M such that F(Cy) is a subset of the
boundary N of M.

By a general theorem %) the condition 3° is equivalent to
the condition

3% For every e>0 there exists an e-deformation ) f, of C onto
an n-dimensional curvilinear pseudo-manifold M such that f(Cy) is
a subset of the boundary N of M.

Examples. Every pseudo-manifold (with boundary) is an
approximative pseudo-manifold, but the reciprocal assertion is not
true. Namely let us observe that

(19) P, is an approzimative 2-pseudo-manifold with the boundary S,

In fact condition 2° follows by (11), and condition 3% is a con-
sequence of (5) and (10).

11. Let us consider some elementary properties of the appro-
ximative pseudo-manifolds:

(20) If C is an approgximative n-pseudo-manifold then dim C=mn.

Proof. By the condition 3% an approximative n-pseudo-mani-
fold € is e-deformable (for every £>>0) into an n-dimensional poly-
tope. Hence 30) dim 0<{n. On the other hand the existence in C,
of an (n—1)-dimensional true cyecle ¥ homologous to zero in O,
but totally unhomologous to zero in C, (assured by the condition 2%
implies that the dimension of € is >>n. Hence (20) is true.

27) We say that fe is & g-mapping of C if f; is continuous and the inverse
image of every point y e fs(C) has a’”diameter less than &.

28) C. Kuratowski, Topologie 1I, Warszawa-Wroctaw 1950, p. 18. )

29) We say that fe is an e-deformation if f. is continuous and for every point
ze (it is o (m,fs(x))<e-

#0) See footnote 8).

Fundamenia Mathematicae. T, XXXVIII. s
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(21) If G, is the boundary of am approximative n-pseudo-manifold
C and A is a closed proper subset of C, then every continuous
mapping ¢ of Oy into the (n—1)-dimensional sphere Sp—; has
a continuous ewtension over A-- (.

‘Proof. It is known ) that there exists a neighbourhood U
of Oy (in the Hilbert space *)) and a eontinuous extension g of ¢
over U with values belonging to Sp—. Let f, denote the e-defor-
mation considered in condition 3%. If ¢ iy sufficiently small then

Je(Co)CT amd fo(4) § M.

Consider the mapping @ only in the set fi(C,). By the lemma
of Nr 9 there exists a continuous extension p of @ over the set f,(4)
with values belonging to S,_;. Let us put

for every = e C,,
for every xed+C,.

?e() = pfe(@)
V(@) = (@)

We see at once that for ¢ sufficiently small the mapping ¢,
is on O, arbitrarily near to the mapping ¢ and v, constitutes a con
tinuous extension of ¢, over the set 4 C,. It follows 33) that the
mapping ¢ also has a continuous extension over A-- ¢, with values
belonging to S,_;.

(22) Bvery approvimative pseudo-manifold is a Cantor-manifold.

Proof. Let ¢ be an approximative n-pseudo-manifold with

the houndary C, and let y denote the (n—1)-dimensional true cycle
satisfying the condition 2° Let f, be an e-deformation of O satis-
iying the condition 3. If ¢ is sufficiently small then f, carries y
into an (n—1)-dimensional true cycle y,={y.} of N homologous
to zero on M, but totally unhomologous to zero on N. As we have
observed in Nr 9, the true cycle y, is homologous in ¥ to the true
cycle y={y;} in which P, denotes the cycle mod 2 consisting of all
(n—1)-dimensional simplexes of the i-th barycentric subdivision of
an arbitrarily given triangulation of the polytope N with coeffi-
cients equal to 1.

81) See, for instance, W. Hurewicz and H. Wallman, 1 c., p. 82.

3%) See footnote ).

) See K. Borsuk, Sur un espace des transformations continues et ses appli-
eations topologiques, Monatsh. f. Math. u. Phys. 38 (1931), p.-382.
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By Hopf’s extension theorem *) there exists a continuous
mapping ¢ of ¥ into S, carrying the true cyele 7 into a true
cyele §9, totally unhomologous to zero in S,_;. The mapping ¢f,
transforms €, into S,-; in such a manner that the true cycle y is
carried by it onto a true cycle y, homologous in S, to the true
cycle y,. We infer that ¢f.'is not extendable over ¢ (with respect
to S,—). But, by (21), the mapping ¢f, is extendable over every
closed proper subset of C containing C,. It follows %) that (' is an
n-dimensional Cantor-manifold.

Remark, We can easily see that not every n-dimensional
Cantor-manifold is an approximative pseudo-manifold. For instance
the continuum composed of 3 segments having one end-point in
common is evidently a 1-dimensional Cantor-manifold, but it is
not an approximative pseudo-manifold.

12. Theorem 2. If C is an appromimative n-pseudo-manifold
with the boundary Cy and (' is aw approzimative n'-pseudo-manifold
with the boundary Cg, then D=CX 0" is an appromimative (n+4n')-
pseudo-manifold with the boundary Dy= CyX C'+ C'X Ci.

Proof. Let y be an (n—1)-dimensional true cycle mod 2 in ¢,
satisfying the condition 2° and let y* be an (n'—1)-dimensional
true cycle satisfying the analogous condition for (5 and ¢’. Then
there exists a sequence {g} of positive numbers convergent to zero
and two sequences x={x»;} composed of n-dimensional &-chains s,
mod 2 in ¢ such that dxy=y;, and x»'={x} composed of n’-dimen-
sional erchains »; mod 2 in €’ such that 9x§=y;. Putting

1=y Xx' +xXy ={y, X+ %Xy}

‘we obtain an (n-+n’—1)-dimensional true cycle mod 2 in D,.

Let f, denote an e-deformation of € into an m-dimensional
curvilinear pseudo-manifold M with the boundary N satisfying
condition 3° and f; and e-deformation of ¢’ onto an n’-dimensional
eurvilinear pseudo-manifold M; with the boundary N’ satisfying
a condition analogous to 3. Putting

0@,9)=(fo(@), f2(y)) for every (z,y)eD

) See footnote 28). -

%) See footnote 17).
5*
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we obtain an s'ﬁ-deformation of D into the (n+4n')-dimensional
curvilinear pseudo-manifold M x M'. Evidently g, maps the set D,
into the boundary M X N'+N X M’ of the pseudo-manifold M x M’.
Thus the conditions 1° and 3% are satisfied.
The true cycle y bounds in D the infinite chain
5 X % ={2; X %3}

Hence our theorem will be proved if we show that the true
cycle y is totally unhomologous to zero in D).

Suppose, on the contrary that y is not totally nnhomolegous
to zero in D,. Then there exists an increasing sequence of indices
{i»} such that the true cycle

v={y, X% +x, Xy}
is homologous to zero in D,. This means that there exists a sequence
{A} such that A, is an (n+n')-dimensional chain mod2 in D, with
the diameter of simplexes <#,, where ,—0 and with

A=y, X ”,i,,+ L 7‘1,,‘

Applying a- suitable dislocation of vertices of 4,, we may as-
sume that every simplex of A, either lies in one of the sets (yx "
and OX Cp or is disjoint with it. Let 4, denote the chain mod2
composed by all simplexes of A, lying in €y X 0", and let =2, A,.
Then o . B B

v=2y+ A, and 04 = 7, % ”;u+ #y, X y;p= oA+ %, .

It follows that

3,:1;-1;— ¥, X z;v=a)__;+ #, X y:.”.

But the chain on the left side lies in Oy X ¢’ and the chain
on ‘the right side lies in €% Ch. Consequenth every one of them
Hes in (G,,x C") (G Op)= 0y Cp and

9(9)*,,”‘!" 7, X ki‘,)= Y1, X ax1v= yiu X '}’;" -
Hence y,vx'y’,.u is n homologous to zero in CyX Cp, that is the
true eycle {y, X 3} is homologous to zero in Cyx Cp. But this is
impossible, because the suppositions that {y} is totally unhomol-
ogous o zero in €, and {y;} totally unhomologous to zero in Cs
imply ) that {y,xy}} is totally unhomologous to zero in Uy X Co.

34) See for instance K. Borsuk, On the Decomposition of Manifolds mfo
Products of Curves and Surfaces, Fund. Math. 33 (1945), p. 282.
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Corollary 1. For approzimative pseudo-manifolds the formula
dm(XxY) =dimX -+ dim Y holds.

Proof. This is an application of theorem 2 and of (20).

Coroliary 2. If C is an appromimative n-pseudo-manifold
and K a polytope which is an m-dimensional Cantor-manifold, then
CX K is an (n+m)-dimensional Cantor-manifold.

Proof. The m-dimensional simplexes of an arbitrarily given
triangulation of K may be ordered in a finite sequence 4y,4,, ..., 4,
such that every of the sets

Appar (44 ... +4y) for i=1,2,..,(k—1)
contains an (m—1)-dimensional simplex Af. Let us put
Ky=A4A3+...+4; for i=1,2,..,k.

By theorem 2 the set (XEK,=C(X4, is an approximative
{n+m)-pseudo-manifold. It follows by (20) and (22) that OX Ky
is an (n-+m)-dimensional Cantor-manifold. Let us assume that for
an i<k—1 the set CXXK; is an (n-m)-dimensional Cantor-mani-
fold. Applying theorem 2 to the sets ¢ and 4.4 and to the sets ¢
and Af we infer by (1) that Ox Ky is an (n-4m)-dimensional
Cantor-manifold. This proves that the set OxKj=OxXK ig also
an (n-m)-dimensional Cantor-manifold.

18. Theorém 3. If E is a compactum of dimension <n and
there ewists a sequence {Ey} of n-dimensional Camtor-manifolds such that
E.CE, lmE=2E
k=oo

then E is an n-dimensional Cantor-manifold.

Proof. Consider a decomposition of E into two closed proper
subsets B’ and E’’. Then there exist two points a’ € B'—E" and

e B'""—E'. Let ¢ be a positive number such that
&< Min (o{a’,E"'), o(a”,E")).
By our hypothesis, for k sufficiently large they are
ola’,Bx)<e and p(a",Ex)<e.

It follows that there gaxist two points b’ e Bx—E' and b' e By—E'.
Evidently the set E- B’ B’ cuts B between b’ and b'’. But Ey is an
n-dimensional Cantor-manifold. Consequently dim (Ex E'* E"')=n—1

and also dim (E'-E'")>>n—1. Hence E i8 an n-dimensional Oantor—
manifold.
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Corollary 1. If C is an approvimative. n-pseudo-manifold
and B an arcwise conmected curve, then OX E is an (n-1)-dimen-
sional G’mztor-mamfold

Proof. Let {as} be a countable dense subset of. B. Because
of the arcwise connectedness of E there exifts’ a sequence of
curvilinear 1-dimensional connected polytopes {H;} such that
ECE and a; € By for every i=1,2,...,k. Then lim E;=F and also

. k=00
hm(G’ XE;,) C’XE Moreover it is dim ¢ X E<n-+1. But corollary 2
k=0

of Nt 12 implies that the sets €' X B, are (n-+ 1)-dimensional Can-
tor-manifolds. Hence our statement is a consequence of theorem 3.

Corollary 2. The set Py X Py is a 3-dimensional Cantor-ma-
nifold. .

Proof. By (17) it is dim P, X P;=3. Let {az} be a countable
dense _subset of P,. By (9) there exists a sequence of curvilinear 1-di-
Inensional connected polytopes {Ej} such that E,CP, and a; e By for
every i=1,2,...,k. Then P_mEkzPs and also}ilix(szEk)szx P
But- (19) and the eorollary 2 of Nr 12 imply that the sets P,X Eji
are 3-dimensional Cantor-manifolds. Applving theorem 3 we: obtam
the required statement.

Corollary 3. The set P2 X Py X Py X P3
Cantor-manifold.

Proof. The set PyX P,X P3X Py is homeomorphic to the set
(PyX P3) X (PyX Pg). But dim (P, X Py)=3, hence %7)

dim (Py X Py X Py X Py)< 6.

s, @ 6-dimensional

-Consider now, as in the proof of corollary 2, a sequence {H:}
of curvilinear 1-dimensional connected polytopes such that E,CPy
and lim E,=P,. It follows that the curvilinear 2-dimensional con-

k=00
nected polytopes EpX Fyare 2-dimensional Cantor-manifolds such that
}.E';(E"XE")= Py X Py and Hm (PyX Py X By X Bp)= Py X Py X Py X Py.
=00

Applying (19), theorem 2 and corollary 2 of Nr 12 we conclude
that the sets PyX Py X HiX By are 6-dimensional Cantor-manifolds.
We mfer, by theorem 3, that P, X Py X PyX Pyis Also a 6-dimensionaf
Cantor- manifold.

"')7 See footnote “5.
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14. Now it is easy to finish the proof of theorem 1. As we
have observed in Nr 2 it remains to give the three examples enu-
merated there:

Example 1. Let @ be a 2-dimensional element such that the
part common to @ and P; is a simple arc. Putting -

A;=P, and B;=P,}@Q

we obtain, by (15), (8) and (1) two 2-dimensional Iocally connected
Cantor-manifolds. But the Cartesian product

=4, X By=P,X P+ P,x 0

is not a Cantor-manifold because it is 3-dimensional at every point
0f P, X (P;—@Q) and is 4-dimensional in every point of Py (@ —P,).

Example 2. Let L be a simple arc such that L-P, containg
only one point. Putting

4,=P,

s and B,=L-+ P,
we obtain by (8) two locally connected continua such that 4, is
by (15) a 2-dimensional Cantor-manifold and B, is not a Cantor-
manifold, because it is 1-dimensional at every point of L—P,; and
2-dimensional at every point of Py—IL. The Cartesian product
Co=A;X By=P, XL+ P, X P,
is however a 3-dimensional Cantor-manifold, because PyX L i8 by
corollary 2 of Nr 12, a 3-dimensional Cantor-manifold, P, X Py is,
by corollary 2 of Nr 13, a 3-dimensional Cantor-manifold and the
set (PyX L) (PyX P3)=P, X (L-P;), as homeomorphic to P, is
2-dimensional.

Example 3, Besides the surfaces of Pontrjagin P, and Py,
eonsider two others, copies of analogous surfaces P; and Pj such
that every one of the sets P;-P;is a simple are L;, for i=2,3. Putting

Ag=(PyX Py)+(Psx P3),

By= (P3 X Pg)+(P3x i)
we obtain two locally connected 4-dimensional continua which are
not Cantorian-manifolds, because the common part of the sets
P;xX P; and P;x P; where ¢=2,8, is equal to IL;XI; hence it is
2-dimensional. But the Cartesian product

C3= A3 X By=(Py X Py) X (Py X Py)+ (P X Pa) X (P4X P3)+

+ (P3X P3) X (Py X Pg)+ (PiX P) X (Ps X P3)
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is a 6-dimensional Cantor-manifold. In fact by corollary 3 of Nr 13,
every one of the four summands is & 6-dimensional Cantor-manifold
and the common part of two successive summands is the Cartesian
product of the 4-dimensional (by (18)) set homeomorphic to P, X Py
or to Pyx Py and of a 2-dimensional element, hence ®) it is also
6-dimensional.

15. Problems. Is the Carterian product of an n-dimensional

Cantor-manifold and a 1-dimensional continuum always an (n-+1)-

dimensional Cantor-manifold ?
Is the Cartesian product of two locally contractible Cantor-

manifolds always a Cantor-manifold?
If Ax B is a locally contractible Cantor-manifold is it true

that 4 and B are also Cantor-manifolds? .
If Ax B is an approximative psendo-manifold is it true that
A and B are also approximative pseudo-manifolds?

%) See footnote 22),

Panstwowy Instytut Matematyozny.
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Measures in Fully Normal Spaces.
By
M. Katétov (Praha).

The present note contains two decomposition theorems con-
cerning Borel measures in fully normal (i. e. paracompact) spaces.
These theorems are closely related to the results of B. Marezewski
and R. Sikorski [5] on Borel measures in metric spaces. The third
theorem, proved by similar methods, asserts that every fully noz-
mal space is a @-space, in the sense of B. Hewitt [2], unless some
of its closed discrete subspaces are not so. It may be noticed that
it is possible to deduce this result from the decomposition theorems
of the present note and E. Hewitt’s resnlts 1) concerning measures
in @-spaces.

All spaces considered are completely regular?) topological
spaces. .
The following notations are used: if P is a space, then F(P),
G(P), F*P), GXP) denote, respectively, the family of all closed
sets, the family of all open sets, the family of all sets of the form
Ia I(M), f continuous real-valued, M closed (or, equivalently, of the
form f~ 1(0), / continuous real-valued), and the family of comple-
ments of sets from F*(P). The meaning of Fo(P), FsP), GyP),
G3(P) is clear. B(P) or B*(P) denotes the least o-field containing
F(P) or F*(P) respectively. The sets belonging to B(P) will be
called Borel sets (relative to P); those belonging to B*(P) will be
called Baire sets (relative to P).

Clearly, we always have B*(P)CB(P). If P is perfectly nor-
mal 3), then F*(P)=F(P) (see e.g.[9]) and therefore BYP)=B(P).

') Bee [2a], Theorem 16.

%) A Hausdorff space P is called completely regular if, for any closed set
ACP and any we P—4, there exists a real-valued continuous funetion f in P such
that f(z)=1, f(4)=0.

?) A normal space P is called perjectly normal if F(P)C Gs(P). -
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