On a certain point of the kinetic theory of gases
by

E. EGERVARY and P. TURAN (Budapest).
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1. It is known that the kinetic theory of gases assumes gas
as an accumulation of a very large but finite number n (of the
order 10®* pro dm?) of moving particles. Hence, if for the time-
point t=0 we know the coordinates

(1.1) Ty09 Y0 2090 v=1,2,...,m,
and the velocities
(1.2) 5&1:,0’ 3./11,07 z.v,O! v=1,2,...,m,

of the particles, their state is theoretically determined for >0 too.
But an effective determination of the simplest properties of gas
seems to be extremely difficult to achieve in that way. Such a pro-
perty is e. g. the equidistribution of the particles in the space they
are included in. Since it could not be deduced from the fundamen-
tal principles of mechanics, the physicists assumed it as an axiom;
an impression was created that it is impossible to deduce it on
a mechanical basis, and this impossibility was a basis for the pro-
babilistic treatment. It was shown, however, by H. STEINHAUS !)
in the case of a simple model (the particles are included in an immo-
bile cube, they are dimensionless, of equal mass, no attractive or
exterior forces acting, no collisions between particles, the impacts
on the wall according to the law of elastic reflection and a simple

. ') H. Steinhaus, Sur les fonctions indépendantes (VII), Studia Mathe-
311&1310& .10 (1948), p. 1-20. Our attention to this paper was called by the very
mi.zefestmg review (in Hungarian) by A. Rényi entitled A valdsziniiségsed-
m@ta‘s megalapozdsdrél (On the foundation of the caleulus of probability), Mate-
matikai Lapok I.1 (1949), p. 27-65. We are also indebted for his valuable
remarks to him as well ag to Prof. H. Steinhaus.
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arithmetical condition on the quantities (1.2)) that one can deduce
from- the fundamental principles of mechanics at least the weaker
law asserting that the mass-centre of the particles is “near” the
centre of the cube with a probability “nearly” 1. The meaning of
Steinhaus’s result is best expressed in his own words “..notre
exemple peut done servir pour réfuter un préjugé assez répandu,
A savoir que l'ignorance de 1’état initial ait la force magique néces-
saire pour engendrer les formules désirées et qu’on ne peut pas
faire de statistique sinon au dépens de la connaissance des trajec-
toires individuelles”. This gives at the same time an answer to
those who object to his model that the arithmetical condition on
the quantities cannot be verified in reality.

2. In the sequel, in the case of another model, we shall go two
steps further using a method entirely different from Steinhaus’s
approach. First, our method gives equidistribution of the particles
instead of the weaker law of the mass-centre. We obtain this equi-
distribution for a “long” time except time-intervals whose total
length is “small” while according to Steinhaus’s result the mass-
centre is “near” the centre of the cube in every interval 0<t<T
with the exception of time-intervals whose total length is “small
compared with 7, but can be very large in itself. The most que-
stionable point of our model is no doubt the assumption (3.2) on
the initial velocities; the same objections can be made against
it as against Steinhaus’s model. But it should be born. in mind the
aim of all these considerations. It is to show that a rigorous mathe-
matical reasoning can follow nature producing from a disordered
initial configuration within a short time an equidistribution of
the particles in the cube and keeping that for a “long” except
a “short” time. They show in the case of a large number of parti-
cles that the statistic-probabilistical method is not the only one
suitable for a description of physical phenomena. These conside-
rations show clearly that the deterministic concept of nature can
give essentially the same results as the probabilistical one; but the
latter can surmount mathematical difficulties, whereas the former
at present cannot.

3. Now and in the next paragraph we proceed o an exact
description of our model or rather of our two models A and B. The
walls of our immobile cube E including » particles are the planes
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(3.1) =0, r=m, y=0, y=mw, 2=0, z2=m.

The particles in both models are dimensionless, of equal mass,
no attractive or exterior forces acting, the impacts on the walls
follow the laws of elastic impact. The initial configuration of the n
particles given by the numbers (1.1) is arbitrary and the initial
velocities should be given by the values

(8.2) Fo=(n-FoP, ,o=(n-+92Y2, &o=(n+22)Y3, »v=1,2,...,n.
Of course the velocities of the particles are abnormally large;

essentially the same results could have been obtained e. g. by the
assumption

“51,,0 =(n+ ”)2/5, ?}u,o =(n+ 7’)2/5]/57 éw,o =(n-+ 7‘)2/5 1/57 r=1,2,...,m,
which gives quite reasonable values but the method of estimation

would have been less simple and apparent. A third assumption
of the initial velocities

aé,,,c,:nm(l—i-vn”ml”"o), y,,,0=n‘3’5(1-|— mrwl/mo)]/i

(3.3) . . .
zv,O ____,n?,la (1 + vn-—-lOl/lOO) l/37

v=1,2,...,7,

which would do for the purpose too besides giving reasonable

values, meets a further requirement that all the velocities should

be nearly equal; but we omit its discussion for the same reagons.

Ingtead of (3.3) we could have dealt with initial velocities

whose distribution imitates the Maxwellian distribution. On the

other hand we could have replaced the values (3.3) by the initial
velocities

.,1';”’0 ——“%2/5(1-}» ,‘)%—101[100)1‘}1 , y‘v 0=’Vb2/5 (1 + ,‘)n~101/100) 792 ,

éy,o =7’b2/5 (1 _l_ WL-IO]/lOU) 19‘3 ,
where v=1,2,...,m,
=1 <n7%, |9 —)/2| <00, |9, —)/3] <n0.

This means that in a full neighbourhood of the distri-
bution (3.3) in the velocity-space we could settle the case for both
models. The interest of this remark lies in the fact that a meagu-
rement of a velocity can only be performed with a certain error;
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hence every hypothesis which works with exact velocities, neces-
serily smuggles irrational elements in, which cannot be controlled
experimentally. It would be easy to give much weaker restrictions
for the initial velocities but this is of no particular interest, not
even of mathematical interest, unlike the question raised indepen-
dently by A. Rényi and H. Steinhaus whether or not the admis-
sible initial velocities are everywhere dense in the 3n-dimen-
sional velocity-space.

4. The provisions have so far referred to both models A and B.
The difference of the two models concerns collisions between par-
ticles. In model A we suppose two particles never collide like in
Steinhaus’s model. In model B however we permit collisions of
at most two particles. The two models are closely connected;
nevertheless there is a fundamental difference remarked by
Steinhaus. Suppose we label the particles in the case of model B
with the numbers 1,2,...,n. If exactly two particles collide, then
owing to their equal masses and the elastic impact they simply
change their directions and velocities. But this means that chang-
ing the labels of these two particles we may say that both particles
simply continue their way as if no collision had happened. The
fundamental difference of the two models consists according to
Steinhaus’s remark in the fact that model B loses to a certain
extent its deterministic character; but it retains a property which
may be called weak determinism. If two particles a, and a, which
have collided before t=t; are called “linked for {=t,” and if we
extend this connection by transitivity 2), the above property can
be formulated as follows: for a fixed particle a, in a fixed time-
point t=t, we can give a point (£,7,l)=P such that for i=t,
either a, or one of those linked with a, for t=t, is in P.

5. Before formulating exactly our theorem we have to define
exactly what we mean by the equidistribution of particles in the
cube E at the time-point {=t,. We may adopt many definitions.
Definitely we say our pariicles are for t==%, equidistributed in E if
for any parallelepiped K in F, defined by

(8.1) a<efy @, <Y < Py 032 B,

%) 1. e. if a, is linked for t=1%, with a,, and @, with a;, then a, should be
called “linked for t=%, with a,” too.
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denoting by N (t,,K) the number of particles in K, and by K* the
volume of K, we have

Ny, K) K

(5.2)

—1/10
n 3 ® )
In the physieal reality the quantity »~'° hag the order of 1072,
i. e. 1% deviation.

Now we can formulate our theorem as folllows:

Theorem. For both models A and B described in sections 3

and 4 the particles are equidistributed in E in the sense(5.2) for the
time-interval

(8.3) 0<t <nll,

except time-intervals, whose total length does not exceed
en~ 0 0gtn,

where ¢ denotes a positive mumerical constant ).

The theorem could have been strengthened by taking into
account “smooth” domains instead of K being a parallelepiped;
the results depend on the degree of approximation of the surface
by a given number of cubes whose faces are parallel to the axes.
We encounter new difficulties if the vessel containing the gas-
particles hag a form different from a cube. '

Let the time-interval (5.3) be e. g. about ten days. Then the
total length of the exceptional time-intervals during that time
amount to a few seconds together.

6. For the proof of the theorem we need an idea of D. K6NIG
and A. Sztics*), who dealt with the case when there is only one
point P with the initial position (w,,¥,,%,) and initial wveloeity
(%,¥9,%,) and the time-points are sought for when Pis in a given
parallelepiped K of B (see (5.1)). A simple and elegant geometrical
reasoning led them to the following result. We denote by B’ the
cube whose faces are the planes

?) We obtained previously somewhat weaker results using some results
of L. Fejér included in Pélya-8zegs, Lehrsitee wnd Aufgaben aus der Ama-
lysis, I, p. 72 and p. 237.

Y) D. Konig et A. Sziics, Sur le mouvement d'un point abandonné &

Vintériewr d'un cube, Rendiconti del Circolo Matematico di Palermo 36 (1913).
p. 79-83.
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(6.1) =0, =2n, y=0, y=2%, 2=0,2=2~x.
Two parallelepipeds XK' and K’ with edge-length < 2= defined by
G<e<f;, G<y<p, G<a<p,
respectively
Ga<r<p, GLY<H,

are called congruent modE’, if

<2 < Py,

(6.2) o;=qajmod2rx, f;=p;mod2r, y;=y;mod2x, j=I1,2,3,

in the usual sense of mod2x. Having the parallelepiped K’ in B’
we denote by Q(K’"') the aggregate of all parallelepipeds congruent
with K’ mod E'. Konig and Sziies reflected the above mentioned
K in E in the planes

r=r, Yy=r, L=,
then to the edges
(y ==, 2=mn),

(z==, y=mn), (z=m, 2=m),

and finally to the point (x,7,=); thus they got eight distinct cubes
in E', denoted by K, (=K), K,,...,K,;. Then they showed that
the point P moving in X is at the time-point i=t' in K if and only
if the point § defined by

(6.3) o=, + By, ¥ =4+t =2 +4t,

8
lies in the set 3 Q(K;). This is the idea of Konig and Sziics we need.
=1

This gives immediately in the case of model A, and with the re-
asoning of the section 4 in the case of model B, that the number
of particles staying in K at the time-point t=t' is equal to the
number of those points P, defined by

B, =Tyt (2P, 9= Y0t (Y2,
6.4 _
©4) 2,= z,,,0+(')’b+1/)2t']/3, v=1,2,...,m,

8
which lie in 3’ Q(XK)).
=1
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7. Hence the whole question is reduced to the question how
the points P, are distributed mod E’. As H. WEYL first discovered ?),

for deciding this question for infinite sequences sums of the form
n

ei(ulmj 9, Uty zg-)
j=1
play an essential role. VAN DER CorpUT and KokKsMA ¢) announced
a strengthening of this theorem for finite sequences with a sketch
of proof for the one-dimensional case; for the general case their
proof has never been outlined.

In 1948 we set about the same question”) for the one-dimen-
sional ecase; our method has been at once extended to the k-dimen-
sional case independently by KoxsMAS®) and by P. SzUsz®) in his
thesis. We formulate their result for the three-dimensional case as

Lemma. Having the points P,=P,(%,,9,,2,), v=1,2,...,n,
a parallelepiped K’ in E', and denotmg by F(n,K') the number of
the P,’s in Q(K'), we have

K‘M
Fln,K')— 'Vb‘<

(2m)®
( n
51
m-1
m m m 1 .
+ . iy, 25+ v, U5ty 25)
"lg—:«nv2=2—7mw3§—m(1+lv1\)(l+|wzl)(1+|v3|) g"/ T f),

Py 1 oy |+ Loy 150

where m is an arbitrary integer >1; ¢, — and later on ¢y,03,... —
are positive numerical constants.

5) H. Weyl, Uber die Gleichverieilung von Zaklen mod 1, Mathematische
Annalen 77 (1916), p. 313-352.

¢) See J. F. Koksma, Diophantische Approximationen, Berlin 1936; IX,
Satz 4, 101. Koksma states on p. 7 that their proof for the general case was
“quite complicated”.

) '_) P. Erdss and P. Turdn, On a problem in the theory of uniform di-
stribution, Kon. Ned. Akad. v. Wetensch. Amsterdam Proc. 51 (1948), p. 1146-
1154, 1262-1269.

8) J. F. Koksma, Some Theorems on Diophantine Inequalities, Scrip-
tum 5 of the Math. Centre, Amsterdam 1950.

°) For an extract of this see his paper Az egyenletes eloselds egy problémd-
jdrél (On a Problem of Uniform Distribution) Hungarian with German summary).
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8. We apply this lemma to the set of points (6.4) and with
one of the Kys of the section 6 instead of K'. Introducing the
notation

(8.1) 2 {021,017, 5,0+, 71,0 OHaHRE 0,V 24, 1/3))_:1,)(1,1, Vg, %s)
j=1
we get — choosing m independently of 7 —

K;
}F(%:Kz)-—(—%;

W(”n"’z:”a)l )

(m+1 V=M YT Vg -—m
TS A
Summing for 1=1,2,...,8 we get owing to the remark made at the
end of the section 6 and to the definition of N(t#',K) (see the
lines after (5.1))

*

K
1N(t’,K)——F n

8.2)

m

“/’("’1’7’2:"’3)1 )
<8”1( +2 D) 172D At 17D (T 17D)

l’ =—mil f'——ml’ == M
Iy oLyl 20

If T=T(n) (we determme it exactly later), the integration with
respect to ¢ from 0 to 7' — when ¢’ is replaced by ¢ — gives
from (8.2)

T £
(8.3) [ N(t,K)»—-I_;a—n i
0
8 T
< cl(mH
1
+v§mu§m§mu+w) EEEPAIYCRRTA) f"”(”“”””"”dt)

o 1wyl + 1 140
9. In order to estimate the integrals in (8.3) we need a lower
estimation for
v+ ”zl/é‘*‘ "’a]/é I
where »;,7, and »; are all absolutely less or equal to m. We have

Studia Mathematica. T. XII, 12
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the identity
(vit72 l/§+ Vs l/é) (n+ v, 1/5—1’3]/5) (91—, 1/5-{“ V3 'l/g) (
=(v}4 211%—31}%)2—81/?1';.

The expression on the right-hand side is a rational integer; we as-
sert that its value is £0. Supposing

(9.1) (24202 — 301)2—8yisi=0,
we should have in the case »;v,5%0

-yl 292 342
Vo= Mt 2 5 = rational,
29,9,
an evident eontmdictiqn. If »,9,=0, then (9.1) would give either
2i=23»2 or »!=3»%, both of whose are impossible for integer »'s.

Hence

Iyt V24 25 V3| Iy -+ 9V 2— 95V 3 3%y V2495 V3| X
‘ X =rV/2—rV3[>1,
1. e.

92)  IntnVetnyE— >t
v : A+V2+V3Pms ~ 100 m?

This is the required estimation.

10. Now we proceed to the estimation of the integrals
T
Of [(0n,7,5) | d.
Cauchy’s inequality gives
T 9 T
( f 19002009 |88) ST [ 903,329 Pt =n
0

4T E Ha0,,0725, 0,03 ,0)+#4(% 05,00} ¢
1<in7,<n ’
4y, T

% f gLt VEbr VAN, i) gy

V1—Vs I/E—'Vsl/é)
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Thus
T 2
(fl’l’(”u"’z:"’a ldt)

0

(10.1) <%T2+2T Z f E‘Lt(‘l’ +v, l/2+v V3)lUn+g )?-—(n+7=)2] ai
1<, < <n

4T Z 1
[t 9V 24 95V/3] 1l cn (0 4-11) — (0o 12)?

For the sum we have obviously

<nT?+

2n 2, 1 2@% 2n 1
I log2n

<22

jy=mn+1 2jz

< ¢y logm,

which gives from (10.1) and (9.2)

T 2
(f IW('V17"'27"’8)Idt) <nT24- ¢ Tm? logn,
0
or

r —
(10.2) J1901,72,20) | 86<TVn-+-ca)/ Tm* Logn.
0

Substituting this into (8.3) and taking into account that the upper
bound in (10.2) is independent of the »’s, we obtain

N, K)—g—n dt<cs( a1 +T]/fnlog3fn+log m]/Tm“log'n)_

(10.3) f
0
If R denotes the set of time-points in (0,7) for which

K*
N(t,K)— ?’I’b 2’"/9/10,

and | R| its measure, then we have for the integral in (10.3) the lower

estimation
| R|n®,
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— nT — -
|R|<esm 9/10(—m——|—T}/'nlog"m—[—logi*m]/T'mﬂ logn|.
Choosing
T=nl,  m=[n®2],
we obtain

—1/10 4 4
|B| <egn logtn, 4 On generalized power-series
q. e. d.

by

J. G.-MIKUSINSKI (Wroctaw).

(Begu par la Rédaction le 26. 2. 1951). 1. In this paper we shall consider the generalized power-series

of the form
1 705’7504‘719351‘*‘7293&"“--»7
where the coefficients y, are real and the exponents §, are nonneg-

ative and monotonically inereasing to infinity as n—>oo.
Our chief purpose is to determine a class of series of the form

1—o, 8P4 0,07 —ag 2P+ ... (a,>0),

which converge for each nommegative # to a continuous funetion
which decreases from 1 to 0 monotonically in the inferval 0<{z<<oco.

An example of such a series is
1 1 1
1——'1—!50-]-5—!%2—'5’!%3—{—...

2. Tirst we establish some elementary properties of the series (1).
Lemms 1. If
. logmn
(2) lim &% —o,

n-+oo ﬂ"

then the series
(3) oot afr ...
converges for 0<<a<<l.
Proof. The series may be written in the form
2o s - Qlalog s gRalogz
where k,=p,/logn (n=2,3,...). By hypothesis k,—~--oco and
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