A note on the interpolation of linear operations

by
A.P. CALDERON and A. ZYGMUND (Chicago).

1. This note gives an extension of results previously obtained
by the authors in [1]. A knowledge of the latter paper is not assumed
here, though it could shorten the exposition below.

Let E be a measure space, i. e. a space in which a non-negative
and countably additive measure x is defined for a class of (measu-
rable) sets. It is not assumed that the measure of the whole space
ig finite. Given any measurable function f defined on E and any
number >0, we shall write

HfH,,,‘=(Ef |fmu)”f.

Correspondingly, [|f{l,,, Will denote the essential upper bound
of |f|, that is the least number M such that the set of points where
[f1> M is of p-measure zero. The class of functions for which [/f||, ,
is finite will be denoted by L"*. Sometimes we shall simply write
ifll, and L.

If v>1, L” is a vector space in which the distance
d(fl;f2)=”f1“f2”r

of two points satisfies the usual requirements of distance in me-
tric spaces. If 0 <<r<1, this distance does not satisfy the triangle

inequality. We may then either not require the triangle inequality
or define the distance by the formula

iy, )=l —fa = [ | fy—fa 1" ds.
r

In the latter case, the triangle inequality is restored, and L* is again
a metric space.
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A function f, defined on F, will be called simple, if it only takes
a finite number of values and if it vanishes outside a set of finite
measure (the latter condition is automatically satisfied if E itself
is of finite measure). The set of all simple functions will be denoted
by 8. It is dense in every L™ for 0 <r<Coo. It is immediate that S
is also dense in L™, if the measure of ¥ is finite, though not other-
wise.

In what follows we shall constantly use two facts, namely,
Holder’s inequality

(L.1) [[fgdn <l lgll.  for  1<r<oe, r'=r/(r—1)
E

and the formula ‘
(1.2) Ifll,=sup [fgdn  for  geS, llg],=1, 1<r<eoo.
g

Let F, and E, be two measure spaces with measures u and »
respectively. An operation h=TF will be called of type (r,s) if it is
defined and additive for all feL™*, with h defined on E,, and if
there exists a finite constant M such that

(1.3) 12 lls, < MFll-, .

for all f in I7. The least value of M is the norm of the operation.
If 0<r<oo, and if Tf is defined for all feS and satisfies (1.3},
then Tf can be extended to all fel”, with the preservation of the
M in (1.3), since § is dense in L.

M. Rresz, [2], has given a basic result about the operations
which are simultaneously of two types (r,s). His result, in the
form given in [1], can be stated as follows:

Theorem A. Let B, and B, be two measure spaces with measu-
res u and v respectively. Let h=T{1 be a linear operation defined for
all simple functions f in E,, with h defined on B,. Suppose that T' is

stmultaneously of the types (1/ay, 1/B;) and (L/as, 1/Bs), that is that

N0 < My lyay 1T F s, < Ml
the points (ay,B1) and (ay,B,) belonging to the square

0<a<gl, 0B,

13*
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Then T is also of the type (1/a, 1/B) for all

a=(1—1)o;+tay
0<t<<l
) b=(1— 1), th O=t=y
with

(1.6) 1T s < M3 ML f 1l

In particular, if a0, the operation T can be uniquely extended
to the whole space LY**, preserving (1.8).

One of the aims of this note is to prove the following ex-
tension of this result:

Theorem A,. Theorem A holds if the points (ay,p,) and (ay, Bs)
belong to the strip

(1.7) 0<ax], 0 f<oo.

One may ask what is the interest of this generalization if in
applications we encounter, almost exclusively, operations of type
(r,8), where both » and s are not less than 1.

This is the reason. If the measure of E, is finite, then, as Hol-
der’s inequality shows, every operation of type (r,s) is automati-
cally of type (r,s;) for 0<s,<s, and it is natural to inquire about
the behavior of the norm of the operation as a funetion of the point
{r,s). A more serious justification of Theorem A, is its application
to linear operations defined on the classes H” (see below), where r
is any positive number. The restriction of s in Theorem C below
to values >1 while » itself is assumed to be merely positive, iy un-
natural. Sometimes we really need an interpolation of operations
of type (r,s) when both r and s are positive. Theorem C; below,
which is the main result of this note, gives such an interpolation.

Theorem A, (as well ag Theorem B,) will serve as a step in the proof
of Theorem C,.

2. We now pass to the proof of Theorem A,;. This proof uses
the same basic idea as the proof of Theorem A (see [1]), supple-
mented by a simple device necessitated by the fact that the rela-
tion (1.1) and (1.2) fail for 0<r<1.

Leb (a;,B,) and (a,,f,) belong to the strip (1.7). Let >0 be
80 small that

kB <1, kBa<1,
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and let (a,f) be given by (1.5). We observe that kp< 1. Hence
(2.1) 7= 1T Fllym=sup [ |Tf*gdn.
7 B

Here g is simple and {lgllyq_m=1- We may assume that
Ifllye=1, 9>0. Let us fix f and g, write

f=1f1€"
and consider the integral
(2.2) I=[|Tfl*gan.
- E

A .
Denoting by a(z) and f(z) the funetions (1.5), where ¢ is replaced
by 2, we consider the functions

1—kB(z)
G,=g 1

LG
F,=|f| = &,
and the integral
(2.3) O(z)=[ |TF,|*|G,|dv.
E2
This integral reduces to I for z=t (since g=>0).

It is easily seen that G, and T'F, are linear combinations of
functions 4* with A>0 and with coefficients functions defined on
E,. Thus | F,|*|G,| is for every point in ¥, a continuous and sub-
harmonie function in 2, for 0 <<a <1 (z=w-y).

It is also bounded there. For let ¢,,¢,,... and ¢f,c;,... be the
various values taken by the functions f and g respectively, and let
f1s%as--- and x7,%s3,... be the characteristic functions of the sets
where they are taken. Writing c;=|¢;|€*7, we have, for 0 <2 <1,

. =)
Fz=26“‘flcj[ e Ais
|TF,[F=] 3™ |e;] = Ty;1* <eonst- 3| Ty %
| 1—kBls) X
[Gzl——-izc; 1—kp xll<const~2;ql,

(2.4) | (2) | <const- [ 3| Ty, |*zidv = const - 3 [ | Ty; [*dy,

E, By -

where H,; is the subset of E, where y;7=0. Thus Ez,z is of finite
meagure. Taking % so small that k<<1/8, and applying Holder’s
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inequality so as to introduce the integrals [[ZTy;|Y%:, which are
finite by assumption, we see that the right side of (2.4) is finite,
which proves the boundedness of @(z).

Let us consider any 2 with #=0. The real parts of a(z) and
B(z) are a, and ;. An application of Hélder’s inequality to (2.3)
gives

[®(2)] <|iTFg,||’f/p1 [CAPTIRETEES M’f”Fgullc/al“Gz”1/(1——7cﬂ1) .
On account of our assumptions concerning f and g,

Ny =17 15 e, = I o= 1= 1,

1—FB, 1—kB,
nGz”u(l—kﬂi): gl 1_"5”1/(1—1:;91): [lgl 1% =1.
1/(1—kp)

Hence |D(z)|<M% on the line x=0. Similarly [&(2)|<<M¥ for
2z=1. Hence I=0(f)M ML Applying (2.1), we get (1.6).
In the foregoing argument we tacitly used the assumption
that a>0. If ¢=0, then also a;=a,=0.
The assumption of Theorem A; can then be written

[in|]1,ﬂj<M7-ess sup |f] (j=1,2),

and a simple application of Hélder’s inequality (valid for all 8,, £,
non-negative and finite) gives

17 llyp < M* M{esssup|f].

3. Theorem B. Let ¥ and By, E,,...,E, be measure spaces
with measures v and po,pts,...,u, respectively. Let h=T1[f,fay- . yfn]
be a muliilinear (i.e. linear in each 1;) operation defined for simple
functions f; on B; (j=1,2,...,n). The functions b are defined on E.
Suppose that T is simultaneously of the types

(1/a(11)’ 1/“?31)! e :1/‘1511)7 1/8Y)  and (1/‘7'(12): I/a(22), sy 1/“5.2), l/ﬂ(z)) ’

that is that

(3.1) IIT[fl,fz,---,fn1111/5<k)<Mka1lll/ugk’-~-anl|1/a<k> (b=1,2),
where ’

(3.2) 0L, 0<a®<LT  (k=1,2; i=1,2,...,n).
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Then T is also of the type (1/ay,1/0y,...,1/a,,1]8) for

G=(1—t)d+a®,  p=1—0)fVLD  (0<i<1),

and satisfies the inequality

(3.3) 1T 15 oy Fallys < MT* M F il -+ I ll1jay -

If, in addition, all the o; are positive, T can be exiended by con-
tinuity to LIIG‘XLI,%X...XL”%, preserving (3.3).

This theorem was proved in [1]. Here we shall prove the follo-
wing generalization.:

Theorem B,. Theorem B holds if the points (af, ...,
o, B satisfy, instead of (3.2), the condition
(8.5) 01, 0 M <o (k=1,2).

The proof is obtained by a modification of the proof of Theo-
rem B (see [1]), the same modification which extended Theorem A
to Theorem A,. We may be brief here. Let us assume that the num-
bers o;,ay,...,a, are all positive, and let ¥ be a positive num-
ber, so small that both k™) and kf* are <1. Let us fix simple
functions fy,fs,...,f, with ”ff”l/a7~=1 for j=1,2,...,m, and a non-
negative simple function g satisfying [glly—xn=1 We fix ¢ in
(3.3), write ;= |f;{¢™ and consider the integral

1—kp(2)
(3.6)  BE)=[IT[If 5D, .., [fy o ne 0] g T4 d,
B

which for z=1 reduces to
I=[1T0fyfase s Fad Fg .
E

Since g and f; are simple functions, the integrand in (3.6) is,
for each point in ¥, a continuous subharmonic function of 2. Hence
®(z) is a subharmonic function of 2, continuous and bounded in
every vertical strip of finite width of the z-plane (the proof is the
same as in the case of Theorem A,). For =0 Holder's inequality
gives

1—xp) )
[0 (=)<l gT_F Nyjr—rgy ML L2515 fertees e T ] gatnd

Ve &
SRS AR IS
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Similarly, |O(z)| < M% for o=1. Hence I=®(1)< M*PME. Since
the upper bound of I for all simple g's with ||¢[ly—ws=1 gives
NTTfyy-ees Tl ¥y, the inequality (3.4) follows when Hf,l[l,a],=l for
all j, and so also for all simple f;.

Let us now suppose that some of the a;, but not all of them,
are zero. The case a;=0, ay50,...,0,7%0 is entirely typical
Then also a{V'=d{?=0. For fixed f,,T[f;,fs,.--,/,] 18 & multilinear
operation in f,,...,f,, and the assumption (3.1) can be written

(3.7) Tl fareeos b lupo < Myl et Mallya®  (6=1,2),

where M;=M,esssup|f;|. By the case already dealt with, the
left side of (3.7) does not exceed

MM o llgge, - Wy, = M M5 Fr lyge, 1 gy 0 F e -

The cagse a,= a,=...=a,=10 is disposed of similarly as for n=1.

It remains to show that if all the o; are positive and if (3.4)
is valid for simple f;, then T can be extended by continuity to
Lo T, X LHen

Suppose first that 0<{f<{1. Then

AN A S LS B A O SR S [T
<UTLAO IR, o f P = TR, o £9 T s
(3.8) e PR S S Bl S AR Y SO | TN

+”T[ﬁ2): (22)’"'7f£;1)]_T[j(12)1f(22)7'--7:,5»2)]“1/,97
which shows, on account of (3.4), that the left side of (3. 8) is small
it all {7 —FPly, (j=1,2,...,n) are small and all ||f{" o, and

1P e are O(1). If B>>1, we consider instead of (3.8) a similar

inequality with norms ||...j|1/[9 replaced by ||...||m.

4‘. We are now going to discuss operations defined for the
funetions of a clags H, r> 0, that is for functions

F(zy=e¢y+ ¢z cp2+ ...
regular in the unit circle |2|< 1 and such that the expression

1 2% o r
e | 1F )
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remains bounded as g—>1. The limit of this expression for p—1

then exists and will be denoted by [|#],. It is very well known

that :
1jr

1 ¥
HFHr={9—nf IF(ew)l'dB} )
“ihg

where F(¢%) denotes the non-tangential boundary values of F(2).
An operation
h=T[F]
will be called of fype (r,s) if it is defined for all FeH’, satisfies
T\ T+ A Fo1= A4, T[F,]+ A T[F,] for all constants 1,,4,, and if
there is an M independent of F and such that
(4.1) (Rl < MIF],.
Here & is supposed to belong to some fixed I and [|h]l;=(%l;,-
If T[F] is initially defined only for all polynomials
plR)=dy+dz+... +d 2,
and satisfies (4.1), T can be uniquely extended to all F in H',

with the preservation of the M in (4.1), since the set of all po-
lynomials p(2) is dense in every H".

The following theorem was established in [1] (see also [3]
and [4]):

Theorem C. Let (ay,5,) and {a,,f,) be two points of the strip
(4.2) 0<a<oo, B E

Let T be a linear operation defined for all polynomials p, whose values
are measurable functions in a measurable space B, with measure v,
and such that

(4.3) WL Nyp < Millp iy 1TP s, < MallP llyge, -
Then for every point (a,B) of the segment
a=a(1—t)+ast, B=p(1—1)+f1
we have the inequality
(4.4) ”TP||115<KM%_t-Miz”PHuu

K denoting a constant depending on ay,a; only.
In particular, T can be extended to the whole space HY® with
the preservation of (4.4).

(0<t<1),
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This result will now be generalized as follows:

Theorem C;*). Theorem C holds if the strip (4.2) is replaced
by the quadrant

0<a<oo, 0<p< 0.
Let us suppose that
;< 0y,

and let us fix a positive integer n so large that a,/n<1. Hence
also afn<<1.

For any system of n simple complex-valued functions g,
G3y-++,0, defined on the interval (0,27) we set

(4.5) T*[glagzr-':gn]zT[F1F2"'Fn]7
where
27
1 (ef4z X
(4.6) Fi(z)zé;fmgj(t)dt (j=1,2,...,n).
0

Recalling the very well known fact that, for every geL” with
1<r<oo, the function

27

1 [ettz

4.7 Fe)=— | —
wn) =4 [ e

0
satisfies the inequality

(4.8) NEN.<4,lgll,,

we see that each F; belongs to H", no matter how large is ». Hence
also P, Fs...F, belongs to every H", and in particular to both H%
and HY%. On account of (4.3), the operation 7' is extensible both
in HY% and HY%, without increase of the norm. The extensions
are the same for functions common to both clagses, since these

extensions are almost everywhere ordinary limits of the same
sequence T'p;. Thus

ITCP\ s By < M Fy Py By (b=1,2).

*) The p'mof given here of Theorem C, is (assuming the validity of Theo-
rem B,) essentially the same as the proof, given in [1], of Theorem C'. We repeat
the proof of Theorem C, here to make the present note self-contained.
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Using Holder’s inequality and (4.8) we have
N oo B llige =1y - 1 F gy

< (An/ak)n”gl ”n/ak‘ A ”gn “nlak'
Hence, from the definition of T'¥,

(4.9)  1T*[01:G01- > 0n] sy < Mol 193 e - 190l g
An application of Theorem B, gives

(4.10) 1T (91,955 s Gn]llye, S (Angid, az)"(Mi_‘Mz’)"F 19 -

Formula (4.5) defines 7% when g,,gs,...,9, are simple. The
formulae (4.9) show that T* can be extended to L™%x ...xIL%%
(k=1,2) and that the extension satisfies (4.10). But if g,.eL""’k,
then the F; in (4.6) belongs to H™%, Hence F,F,...F, belongs to
H'Y%, which means that T[F,F,...F,] is defined. We shall show
that (4.5) holds for the extended T. _

For if the g; belong to L%, and if g7 are simple functions
such that [g7*—g; e, >0 a8 m—oo, then

‘]T*[QT’-- -’g;‘]—T*[gu""gn]!h]ﬂk_)'o’

by the argument used at the end of Section 3. On the other hand,
it ¥ i derived from ¢i* by means of the formula (4.6), we have

”F;n—Fi ”n]alc_>0, “F;'n”ﬂlakgAnluk”g;‘n”n]ak=0(l) 3

so that, as in (3.8) (or in its analogue for §,>1) but using (4.3) in
the proof,
NLLFY... FR1—T[Fy. .. Fylllys >0,

which proves (4.5) in the case considered.
We are now going to prove that for a fixed polynomial p we
have (4.4).
Let B(z) be the Blaschke product of p(z), that is the product of
the factors
z—a;

1—ag
extended over all the zeros a; of p(¢) situated in |2]|<<1. Thus
p(e)=6"B(2)G(z),
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where y is a real constant and @(z) a polynomial without zeros in
|2|]<1 and satisfying the condition Im@(0)=0. Without loss of
generality we may assume that y=0. Hence

(411) p=F,F,...F,, where F;=BG F,=F;=...=F,=G""
All the functions F; are bounded, and so also of the class H™,
Assuming as we may, that ImGY*(0), we see that each F, is repre-
sentable by the formula (4.6), where the g; are of the class L™«
and real-valued. Hence

Tp:T[Fle-'-Fn]=T*[gugza-"7gn]-
The functions g; also belong to "% (because a>>a; or simply because
they belong to every L7, r>0). But the formula (4.5), which was
initially established for g; simple, shows that the operation can be
extended to IL™*xI™*x...xI"*, with the preservation of the
inequality (4.10). Combining (4.5) with (4.11) we get

IITPIquHT*[guyz,u 3 9n]lluye

( l—t n/a )n l—tMtn{f!g \"Iadt}

The lagt product I here does not exceed

2n aln 27 ajn
]J{ Jime rea =[] { 1616 ea " @y
i N

which gives (4.4) with
K=(2m)"% §", where d=max(4

njay ) 'n,/az)'
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Sur Popérateur de translation
par

J. G.-MIKUSINSKI et C. RYLL-NARDZEWSKI (Wroclaw).

1. L’opérateur de translation e** peut &tre défini, pour >0,
par 'égalité?)

—=s{h(4,1)},

| 0 pour 0<i<A,

h(A,t)=
(2,%) ll pour O0<A<t.

Le développement formel de ¢™** en série de puissances a la
forme
sl s?
(1) —“_1—»— +or
Nous démontrerons, au § 2, que cetie série est divergente pour tout 140;
elle ne peut donc pas servir comme définition de l'opérateur &,
Nous verrons cependant, au § 3, que la suite

s}' b 12
1+
n
converge pour n—>oo, quel que soit A positif, et a pour limite 6%
il existe donc, dans ce dernier cas, une analogie avec la fonction ex-
ponentielle classique.
2. Supposons que la série (1) converge pour certain 1,7 0. Alors

il exigte une fonetion ¢qeC non identiquement nulle et telle que
tous les termes de la suite

8“‘2"
an——-q[l——+ A (=1 ]

1) Voir J. G.-Mikusifiski, Sur les fondements du caleul opératoire,
Studia Mathematica 11 (1949), p. 58-59.
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