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PART II. A Study of the Spaces H”.
11. Definitions and basic properties. For any feW we
define ‘
(1 2= . p
(11.1) W, 1f 1= 5, [110re®) pao
ZTT G
Here 0<<r<1 and 0<p.

Definition 11.1. The class H? is defined as the set of all
fe such that M, [f;r] is bounded as a function of 7. For such an
f we define

(11.2) | Fll,= sup M, [ 5 7]

On occasion, when there can be no ambiguity, we may write
(If]l instead of |f|l,. We observe that

(11.3) gﬁp[fiﬂgwq[ﬂ"]y 0<p<y,
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with the striet inequality holding unless |f(2)]| is constant when

|#2|=r (HARDY, LirTLEWOOD, and POLYA, [4], p. 143). Hence H7 iy
a subclass of H? if 0<p<yq.

The integral means (11.1) were studied by G. H. HARDY ([3]),
who showed that they shared certain properties of the maximum
ngodulus. A number of important properties of the classes F” were
dlscovere.d by F. Riesz ([6]). Subsequently there has been a congi-
derable literature about these classes. The letter H is used in honour
of Hardy.

If f and g are in H? then f+ ¢ is also in H?. If 1< p thig follows
from (11.1) by Minkowski’s inequality. For 0< p<1 the result fol-
lows from the inequality (see [4], p. 147)

Ev:nz § R 2z 2n
(11.4) 61 f(re) + g (re®) 1709 < [ f(re™) 170 + [| g (re"") Pd0.
i d
Evidently H? is a linear class.

Theorem 11.1. If 1<yp, the class H” is o Banach space of
type U, with norm defined by (11.2). Also, 4, (HP)=1, k=1,2,4.

?roof. It is clear that H” is a normed linear space. For7 1‘,’110,
coefficients in the power series development of f(z) we have, if
0<r<l, ’

2,

(11.5) T”yn(j)z L !‘j(,reiﬁ)ewinodoy

27 ¢
whence (see 11.3)

Py (DTS 57 1<, [F 57 1< £

The-ref.ore l7all<1, so that axiom P, is satisfied. Axiom P, is
also satisfied; for evidently M, [, 571=r", 80 that wu,¢H” and
[lu,ll=1. Thus (see (2.4)) we have A (HP)=A,(HP)=1.

Fmt any ].‘e‘l[. and any real x we have W, [U,f;7]=M [f;r];
from this relation it is clear that axiom P, is satisfied. We etlx;o h’ave:
(11.6) M, [T,1501=T, [f;70],
from which it follows that fe H? impli

plies. T,feH? and ||T f|| <
Consequently P, is satisfied and A, (H”):lf IS

We now demonstrate the completeness of H?. Suppose that
{f,} is a Cauchy sequence in the space H?. Then, by Theorem 3.1
{f(2)} is a Cauchy sequence for each zed. Let f(2)=lim f (éj,
The sequence {||f,|} is bounded, say ||f,| <A4. Now neves

ﬂlinge Wy [f 37 1=, [ 571,
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Hence M, [f;7]<4, and feHP. If £>0, choose m,(e) so that
”""”"’)’”’0 (8) 1mp1y ”fm _fn” <e. Theﬂ g‘nn D{m“fn ;T] <e. AD.OW].Ilg ”
to become infinite, we have M, [f,,—Ff;7]<e and hence [If,—fll<e
if m>mn, (¢). This completes the proof.

It was proved by Hardy that, if p>0, M,[f;»] is a non-
decreasing function of r and that log 0t,[f;7] is a convex function
of log r. The author of the present paper showed that when 1<p
the theorems of Hardy are instances of Theorem 6.2 (TAvLOR [11]).
All that is needed is to show that, for any fe¥,

(11.7) T, fll,= D, [ 571

This result is clear from (11.6) if we use the fact that I, [f;7]
is a nondecreasing function of 7. But (at least when p>1) (11.7)
can be proved without appealing to Hardy’s theorems. The latter

theorems are then obtained as special cases of Theorem 6.2.

‘We next cite some important theorems of F. Riesz ([6]). Riesz
showed that if feH? then lim f(ré”) exists, with the possible excep-

r—>1
tion of a set of values of 0 of measure zero. We shall denote the

limit by f(e), and eall it the boundary value function associated
with f. Riesz also showed that 7(6°) belongs to the class LP(0,2x),
that

(11.8) lim fﬂjf(a»efﬂ)_f(ef")]pdezo,
r—>1 0
and that
1 2 . Yp
(11.9) i1l = (; [ 1) ow) :
=70

Theorem 11.2. The space HP, where 1<p, satisfies awioms Pq
and P, (and hence Py as well).

Proof. The boundary value function associated with T,f is
f(re®®). Tt follows at once from (11.8) and (11.9) that P, is satisfied
for HP. That P, is satisfied is a consequence of (I1.7).

12. The space H”. We use the symbol H™ for the class
of all fe such that |f(2)| is bounded when zeA. The choice of
notation is natural. For, if fe we have, as is well known (41,
p. 1385 and p. 143)

(12.1) ‘max[f(z)]:h}lﬂﬁp[fw].
pres

lzi=r
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Accordingly we define
(12.2) M., [f;7]=max|f(2)].

. |#]=1r

Thus H™ is the class of all fe A such that M., [f;»] iy bounded
ag a function of . For such an f we define

(12.3) Ifllo=sup M [f;7].
Evidently ’
(12.4) I o= sup If (=)].

Clearly H* is a subclass of H” for every finite p> 0.
If feH=, then, by the classical theorem of Fatou (BIEBERBACH

[2}70 vol‘. 11, P. 147), the associated boundary value function
(et ):hnglf('re“’) exigts for almost all 6. We have
E

(12.5) 7]l =ess sup | £ () |

For clearly |f(¢®)|<||f|.., by (12.4). On the other hand, T
(11.9), if 0<p< oo, ’ 7

1 %= ) U
Smﬂ[f”"]<(?;wf lf(ew)l”dﬁ) < ess sup | f(6)].

By (12.1), (12.2) and (12.3) we conclude < esssu 10
. - S )]s
thus (12.5) is established. < Pl

Theorem 12.1. With ||f|. as norm the class H™ is a Banach
space of type .. It also satisfies amiom P, (and hence Py), but not
axiom Pg. We have A (H=)=1, k=1,2,4.

Except for a few comments we leave the proof of this theorem
to the Fee}der. Rela},tion (11.7) is valid with p=occ; from this follows
the validity of ax1op1 P, for H*. To see that axiom P, does not
hold, suppose fe H> is such that I Zf—Fll.—>0 ag »—1. Let us pick

a sequence {r,} such that » —1. Then, given 0 we fi
such that, for" any zed, " '8 #> 0 we eandind N

I f(lrnz)—"f ("mz)l <“Trnf—Trmf”< 3

if N(e)<<m,n. Then |f(r R)—f(rn2)[<e i

. n wm?) [<e if |2|<1. Now f(r,2) is
continuous when ]z[.gl. We see that the sequence {f (ro2)} i&n gni—
ﬁorml‘y eonveTgenf; in the closed circle |2|<1. Hence the limit
unction, which is f(2) when [2|< 1, must be continuous in the
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closed circle. Consequently Py must not hold, for there are many
members of A= which cannot be extended so as to be continuous
when |2{<1. The function
z—1
f(2) =exp ——
is an example.

The spaces HP, 1< p< oo, are all separable. This fact can be
geen, for example, from (11.9), which shows that H? is in isometrie
correspondence with a subset of the separable space L?(0,2x). Now,
by (12.5), H= is in isometric correspondence with a subset of the
nonseparable space of essentially bounded functions (for which the
notations M and I~ are commonly used). We shall give a proof
that H> is nonseparable. This is implied by the following theorem:

Theorem 12.2. If 0<c<1, and if {f,} s any sequence of
elements of H™ such that |f,ll=1, there ewists an feH™ such that
Ifl=1 and ||f,—Fll=1—e for each n.

Proof. The sequence M..[f,;r] is nondecreasing as r increases,
and for each n '

m M [f,;r]=1.
71

Choose 7, so that 0<r,<r<1 implies M. fosrl=1—e
Let g,= max {r,,1—1/n?}, and choose the point a, so that |a,{=¢,
and |, (@,)|=M...[f,;¢,]. Thus
(12.6) 1-1m <l <1, falon) | =1—e.
We now define f(z) by the Blaschke product

1——
O

(12.7) f@=]]lol —
k=1 1—a.2

We have fedl and f(a,)=0, k=1,2,... Furthermore [/fl=1,
for it may be shown that |7 (¢?)|=1 for almost all values of 6
(ZvemunD [12], p. 160-161 and p. 163-164; see also F. Riesz [6]).
Finally, ([f,—FI2 [fa (@) —f (@) |=|fula)| =1—e.

The proof is now complete.

13. The space K. We denote by K the class of functions
f(#) defined and continuous when |2|<{1, and analytic when |z|<1.
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It is clear that K is a linear subclass of H™. If fe K, its norm ags an
element of H* is

(18.1) HfIL=Im&Xllf @)1

Theorem 13.1. With the norm (13.1) K is a Banach space of
type W (4. e. awioms Pi-Pg hold in K). We have 4, (K)=1, k=1,2,4.

The proof is simple; we omit iti.

Theorem 13.2. Awiom P, does not hold in K. The spaces K'
and H* are identical. The spaces K' and (H™)' are identical.

This theorem is a particular case of Theorem 9.4, with B,=K,
B=H>. Axiom P, does not hold, for the reason noted in the remark
following the proof of Theorem 9.4.

We shall now give an example to show that B° may be a proper
subset of B if the space B does not satisfy axiom P, (compare Theo-
rem 9.3). For B we choose H*. Consider

(13.2) Fle)=21F,

where 4 and B ate complex constants. We shall show that ' belongs
to (H™) but that if 44-Bs£0 it does not belong to (H=). If fel,
it is readily found thai
B(f, F3r)=A4y, (f)+(A+B)4fJVn(f)1 )

or
(13.3) B(f, F;r)=(A+B)f (r)—Bf(0).

Fhus if feH™,

|Bth i) |<(I44-B[4|B ) [fl.,

from which it follows that Fe(H") and that the norm of F satis-
fies the inequality
(13.4) 1FI'<|A+B[+|B|.

However, F does not belong to (H™)® if 44-B=£0, for if such
were the case, hmf (r) would exist for each feH™. Hence also
hm)‘ (re®®) Would ex1st for every 0 when feH*™. But this iy not

true (BIEBERBACH, [2], vol. IT, p. 147).
By using the fact that K'= (H=)" we can obtain a further esti-
mate for [ F||’ from (13.3). We have seen that axiom P, is satisfied
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in K. Hence, by Theorems 8.3 and 9.3, the functional on K defined
by (4+B)f(1)—Bf(0) (see (13.3)) has norm }|Fn’. Thus

| it =sup [(4+B)f (1)—Bf(0
the supremum being taken over all feK Wlth ma.x 1f@)=1. In

case A and B are both real it is easy to see that the equality holds
n (13.4). For, if we take

fz)= z —l<e<],

1—ecz
we have feK, ||f|..=1, and f(1)
NF| = > S 1(A+B)+GB}——1A+BI+IBI

=1, f(0)==—c, so0 that

As examples, consider the functions

1 1 =2
FI(Z)=-—1, Fz(z)=1—;—;7 Fa(z)=5—1#z-

As elements of the space K’ we have | F,|'=1, k=1,2,3. Bu.t
F,=%(F,+F,). We conclude from this that the space K’ is
not strictly convex, i. e. that a chord of the unib sphere in K’
may lie entirely on the surface of the unit sphere.

14. The spaces (H?) and Cauchy’s formula. We‘are
going to investigate more closely the nature of the funections
forming the class B’ when B=HP". )

Definition 14.1. Let ¢(z) belong to L(0,2x) (the function
values may be complex). Consider the function defined by

1 2w
(14.1) Ho= 5 1f£flmdm, o] <1.
0

‘We say that f is the Cauchy integral of ¢.
Clearly fe and

1 .
(14.2) mf)=5- f p(z)e ™ dn, n=0,1,2,...

We shall have occasion to deal with L”(0,27); we. shall write
simply I?, and L instead of L' If peL”, we define its norm as

1 ¥ Yp
“‘P”p-_—(gzo_] l(}’(ﬂﬁ)l"dz) , 0<p<<oo.
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It ¢ is measurable dnd essentially bounded, we write pel™

and
llpll.=ess sup |p(2)], << 2.
We adopt the notations
L p
(14.3) P=1"

p'=co if p=I1, p'=1 if p=oo.

1<p<oo,

When B is the space H?, 1< p< oo, we shall find it convenient
to designate the function N(F;r) of Definition 3.1 by N,.(F;7r).
Thus

(14.4) N, (Fsr)=sup |B(f,F;7)]
11 =1
Likewise we write, if Fe(H?)’,
(14.5) N, (F)=1m¥N, (F;r).
¥l

Theorem 14.1. Suppose that Pel’, 1<p<Loo. Lot I be the
Cauchy integral of @. Then Fe(HP) and Ny (F) <[Pl
" Proof. If fe¥ and F is the Cauchy integral of & we have

1 2m
(14.6) B(f,F;r)= 5~ [D@)f(re ™) da

This identity may be established by putting in the power series
development of f(re ) on the right side and integrating term by
term, then use (14.2) as applied to F. From (14.6) we have, by
Hblder’s inequality, if 1< p< oo,

[B(f, F3r) |<I| Dl I, [ £371.
This result also holds if p=1 or co. Thus if f¢H?,
[BE, Fsr <[Pl fll, 5
the theorem now follows at once.

For finite p we have a converse

Theorem 14.2. Suppose Fe(H?), 1< p< oo, Then the're 6wists
o @eL” such that F is the Cauchy integral of & and Ny ()= D]l

Proof. Observe in the first place that H? is equwa,lent to a sub-

space of L? (by(11.9)). Hence any linear functional y defined on
H? also defines a linear functional, of equal norm, on the subspace
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of I? equivalent to H?. Now if Fe(H?) we see, by Theorems 8.3
and 9.3 (since axiom P, holds in H?), that

r(f) MB (F,F57)

defines ye(H?)* with |yl|=N,( F) By the HAHN-BANACH theorem
([1}, p. 5) and the remarks at the beginning of this proof
there exists a functional 2 of norm [y] defined on L” such that
A{p)=y(f) when ¢ (z)= #(6®). As is well known, the functional 4
has a representation

)=

1 =
J‘P(‘”)W(m)dmﬂ pel?,

27 ;

where PeL” and Hll’llp—[]l]] Thus
(14.7) == ff (6%)F

We now define @ (2)=V (2zn—). Then
190y =1Ply=lrl=Ny (F).

ATl that remains is to prove that F is the Cauchy integral of @.
1f & denotes the Cauchy integral of @ we have, by (14.6), (14.7), and
(8.6),

1
%) do= fyf(fc fré®) do=
..13'50
—y(LN=B(, Fs7).

Choosing f=1u, we see that y, (F)=y, (¢) and hence that F=G.

‘We can strengthen Theorem 14.1 when p=co.

Theorem 14.3. Suppose that PeL, and let F be the Cauchy
integral of @. Then Fe(H™)°.

Proof. This is an immediate consequence of (14.6), by ta;k'ilng
feH™ and taking the limit under the sign of integration, which
is legitimate:

1 %
B (f,6;7)= —%J

Lim B (f, F;1) = f@(m (=) dar.

We have been unable to settle the question as to whether every
Fe(H™) is the Cauchy integral of some ®@eL. However, Theorem

14.2 is false when p=oco. For if it were true we could conclude by

.3
Studia Mathematica. T. XII.
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Theorem 14.3 that (H™) is contained in (H™)% contrary to the
example given in §13.

The material in the following theorem is not new. We include
it here for completeness, because it will be needed later. For the
case p=1 see F. and M. Riesz [7].

Theorem 14.4. Suppose peLl”, 1<p<oo. Let
17 ‘
(14.8) e, (q&)*——-ég—zaf(p(w)e"“’mdw, n=0, +£1, £2,...
There exists feH? such that o (x)=f (™) almost everywhere if and
only if
(14.9) e, (p)y=0 for n<< 0.

When conditions (14.9) hold, the unique fe H” such that f(e)=q(x)
is the Cauchy integral of . We have y, (fy=¢, (), n=0.

Proof. We write

1—1?
(14.10 P(r,m)=-—"- e
) (rya) 1~:2reos:r+7"2’
(14.11) O o)= — T
. 1—re™
It is easily wverified that
1
(14.12) P(r,m):C’(T,w)—G(—:m).
e
Also, if 0<<r<<1 (as we always suppose),
(14.13) O, w):%J1 g
(14.14) ol ) = 5y gine
. ST == ; e,

. Now suppose geL” and let (14.9) hold. Let f be the Cauchy
integral of @. Then, with the aid of (14.13) we find
rulf)=¢,(®), n=0.
We see by (14.14) that

2n

[ opr,z—6)p(@)do=0,

o
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and hence, by (14.12),
1% ] %
fre)= - [ Clra—0)g (@) dr= o [ P(r,e—0)g(2)da.
27 g 27

In other words, when (14.9) holds, the Cauchy integral of ¢
is the same as the Poisson integral. From well known properties
of the Poisson integral (BIEBERBACH [2], vol. II, p. 151-152) it
follows that, for almost all values of 6,

f(e?)= lim f (re®)=g (0).-

Furthermore, feH?. We give the proof when 1<p<Too. The
cases p=1,00 are simpler, and we leave them to the reader. We
have

lf(?‘ew)l<61; ] |P (r,2—6)[""| P (r,2—6) ["*| ¢ (@) |dz-
T g

By Hélder’s inequality,

) 1 2z yp'( 1 2 1p
|f(7‘6w)i<(§;uj !P(r,m—f’)ldx\) (é;zoj \P(r,W—B)IW(l’)l”dm) .
Now P (r,x—0)>0 and
1 2:7
(14.15) 57}‘,} Pr,x—0)do=1,
hence

e P< o f P(r,c—6)]p () Pd.

Integrating with respect to 6, inverting the order of integra-
tion on the right, and using (14.13) we obtain M, [f;7]1<lell,-
Thus feH?. The uniqueness of feH, such that f(&)=¢(z) follows
from (11.9) and the fact that [Ifll,=0 implies f=0. )

To complete the proof, assume feH? and write o (®)=1(e").
Then

ff(z)z"'ldz=0, n=1,2,...

zi=r

These conditions are equivalent to

27
[ 1(ré) en=aw=0, n=1,2,...
Q
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We can make 71 under the integral sign. This is justified
by (11.8) if 1<p<oco, and by Lebesgue’s theorem of bounded
convergence if p=co. Thus

25
e, (@)= [ (™) e dn=0, n=1,2,...
0

This completes the proof.

We call attention to the fact that if feH then fis the Cauchy
integral of f(¢™®). This result is contained in Theorem 14.4.

15. The space K’ and Cauchy’s formula.

Definition 15.1. Let ®(x) be a complex-valued function of
bounded variation on (0,2x). We denote the class of such functions
by BV. The total variation of @ on (0,2z) is denoted by V().
Consider the function defined by the Stieltjes integral

1 ¥ o @)

15.1 = - .
( ) T 27 1—ge’ l#<1

We say that F is the Cauchy-Stieltjes integral of @.

Theorem 15.1. Suppose PeBV, and let F be defined by
(16.1). Then FeK' and 2n|F| < V(P), where |F| is the norm of
I as a member of K'. Conversely, if FeK', there exists a member @
of BV such that (15.1) holds and 2| F| = V(®).

The proof is very similar to those of Theorems 14.1 and 14.2.
In the second part of the proof we use the known representation
of linear functionals on the space C of functions p(z) continuous
for 0@ < 2« and the fact that K is equivalent to a subspace of C.
We leave details to the reader.

It would be possible to generalize Theorems 14.2 and 15.1 by
abstraction. We refrain from doing this because we are not aware
of any extensive class of interesting special instances which can
be subsumed under such an abstraction.

16. Further properties of N,(F;7). The subject of our
study in this section was defined in (14.4). Note that N,(I) is de-
fined for Fe (H?').

Theorem 16.1. If 1<p<g<Loo and fedl then

(16.1) N, () SN (f37).
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Furthermore, (H?)' is contained in (H?)'.

Proof. We have ¢'<p’. Thus, by (11.3), H¥C H? and
Ity <Iiflly if feH”. By Theorem 7.4 we conclude that
(16.2) (HY C (pr)'
and that N, (F)<N, (F) it Fe(H*). The inequality (16.1) now
follows by taking F=T,f, feU, since N, (f;r)=N,(T,f) (see (7.1}).
The last assertion of the theorem follows from (16.2), with p and ¢
replacing ¢’ and p'.

Theorem 16.2. If 1<<p<<oo and F e we have

(16.3) N, (F;r)<W, [F;7].
Consequently
(16.4) HPC(H?) and HYC(HP).

The equality holds in (16.3) if p=2. Therefore the spaces H* and
(H?)' are identical.

Proof. In (10.1) take feH?, FeU. Then (by Holder’s ine-
quality 'if 1< p<<oo)

| B{f, F37) |< D, [f; 01, LF 57/0] S Flly M, [F 57/0], 7<<e<1.
The left side of the inequality is independent of go. We may there-
fore make p— 1. In this way we see that

| B, F3r) | <[l D LF57].

The result (16.3) now follows. The class inclusions (16.4) fol-
low at once.
To deal with the case p=2 we use the formula

oo 12
(16.5) sz[F;ﬂz{Zom(F) 1’2)-2"} , Fedl
=
With F and r given, define
fe)=2p (F) 17"

Then it is easily seen that feH? and that {fl,=MM.[F;r]. Also,
from its definition,

B(, F37) :%0 |7a (B 272,
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Thus, if F#£0,
B F . g
a7 5= BT .
I1£1l2
In combination with the result (16.3) this gives
Ny (F;r)y=M,[F;r].
The proof is now complete.
Theorem . 16.3. If FeU and 2<p <oo we have
o Up
(ZN Yu(F) V""”“) SN, (F57).

n=0

Therefore, if Fe(HP),

o2 ijp
(16.6) (ZJ 7a(F) |”> SNy (F).

Proof. We suppose Fe¥l, and fix ». We may assume F 0.

Let us write y, (F)=>b, for convenience. We define
a, =D, 7™ """ sgnb,,
where sgn s=u/|z| if €0, and sgn0=0. Then define

fe)=3 a2

‘We have n=0
(16.7) Zlan\"’= Z\b,,?’"|”<oo.
n=0 n=0
Hence fe. Next,
(16.8) B, F3r)=Y a,b," =3 b, .
n=0 n=0

Now, since 1<p'<?2, it follows from the Hausdorff-Young
theorem (ZyYGMUND [12], p. 190) that there exists a @eL? such that

(16.9) ep)=a,, 730,  0,(@)=0, n<0,
and

~e n'
(16.10) wnﬁ(zowanv”) .

n==

In view of (16.9), we see by Theorem 14.4 that f iy the Cauchy
integral of ¢ and that feH®, with [/f|[,=l¢l,. Thus, by (16.7),
(16.8), and (16.10),

BGHI (& V™[ & i
__]_"_f_”_’_-.,'> (2 lbn,;,.n{p) =( Z [b, |7 1'7”’) .
J n=0

n=0

icm

Banach spaces of functions analytic in the unit circle, 1I. 39

Since
|B(f,F;7)|
Nl

the proof is complete.

The limiting case p=co of Theorem 16.3 is true, but trivial.

We wish to emphasize that Theorem 16.3 is to be regarded as
a strengthening of the Hausdorff-Young theorem as applied to
what are sometimes called ,,Fourier power-series”. For, when
p+#2, we may have N, (F;r)<I,[F;r], and the Hausdorff-Young
theorem gives merely

( 3 1ral®) l""’”’)up< m,, [F;r].
n=0

<N, (F37),

Theorem 16.4. Suppose F is a non-constani element of U
and 1<p<oo. Then N, (Fir) is a strictly increasing function of r.
Proof. We have N, (F;r)=N, (T, F), by (7.1). Now N, (us)=1;
hence, by Theorem 6.2 (4), it is enough to prove
(16.11) 1y ()| <N, (F57), 0<r<1.
If p>=2 we have
N, (B51) 2 No(Fyn) =M, [F37]> 1y ()1,
by (16.1), Theorem 16.2, and (16.5) (since F(z) is not a constant).
If 1<p<?2 the result (16.11) follows from (16.6) with p re-
placing p'.
Theorem 16.4 does mot hold if p=1. To show this we shall
prove that if F'(2)=0b,+ b2, then
(16.12) Ny(F;r)=max[|by|z+1b, [ (1—29)].
ool
Thus in particular N (F;r)=|b,| when 0<<r<1, if 2(b|<|byl-
To prove (16.12) we start from the fact that
B{f, F37)=boo () + b1y ()7
and hence
N(Fyr)= sup [beye A+buya(Hrl.

1111
Now if fifl..<1 (i.e. feH™ and |f(2)i<1 if |2{< 1) we have ne-
cessarily (BiErERBACH, [2], vol. II, p. 138-143)

ro(HI<1,  InDIS<T=lro(I™
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Thus, setting z=y,(f), we see that
N (Fr) < ) SHP [1bol@+]by |7 (1—a?)].
<a<l

Now, suppose z is any given number in the interval (0,1). De-
fine

@y=2 5gN by, ay= (1—2°) sgnb,.

Then

@obota1byr=|bolw+|by |7 (1—27).
Algo, |ay] Ko<l and |ay]|<1—a?><<1—|a,[% Now there exists an
feH™ such that ||f|..<1 and y,(f)=a, n=0,1 (BIEBERBACH [2],
vol. II, p. 140). For this f we have

[ B(f, Fy7) |=|bo|w4]Dy |7 (1—a?) <N, (F5r).

Since @ was arbitrary, (16.12) is established.

17. The relation between (H?) and H?. In this section
we shall show that, when 1<p<oo, the classes (H?)' and H?' are
the same. They are not the same Banach space, however, for as
a rule || F|, >N, (F) if FeH?, When p=1 or oo the situation is
quite different: H* is a proper subclass of (H)', and H is a proper
subclass of (H™)'.

n?

The subject mattered here is intimately bound up with the

theorem of M. Riesz concerning the means of the moduli of con-
jugate harmonic functions. Indeed, the assertion that the classes
(HP)" and H?' coincide is equivalent to Riesz’s theorem.

Definition 17.1. Let %, denote the set of all féA such that
the imaginary part of f(2) vanishes when 2=0.

‘We now consider a number of propositions (possible theorems).
Each of the propositions is an assertion that for a given p, 1< p< oo,
something is true. Our first interest in these propositions will not
be in attempts to prove them, but in the establishment of impli-
cations between them. We denote the propositions by such symbols

P,(p), B (p), and so forth.

Proposition P, (p). IfpeL” and f 48 dts Cauchy integral,
then feHP.

Proposition Py (p). If Fe(H?Y, then also FeH?.

Proposition Py(p). There ewists a positive constant C, (p), de-

pending only on p, such that for any r, (0Kr<<l) and any Fe9,,
we have
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(17.1) W, [F57 1< Oa (p) Wy [ue57],
where wu(z) is the real part of F(z).

Proposition R(p). There exists a positive constant u(p), de-
pending only on p, such that for any r and any FeW, we have

(m.z) M, (o371 p () My, (571,
where u(z) and v(2) are the real and imaginary parts, respectively,
of F(2).

Unless an explicit limitation is placed on p we shall under-
stand in what follows that p is any fixed index in the range 1< p <oo.

Theorem 17.1. If P.(p) is true there exisis a positive constant
O1(p) such that

(17.3) 1< Culp) el
if peIP and f is the Cauchy integral of .

Proof. If P,(p) is true, the correspondence between ¢ and f
defines a distributive operator on L” to HP. We have to prove that
this operator is bounded. Since L and H” are complete, it suffices to
prove that the operator is closed (BANACH [1], p. 41). Let us there-
fore suppose that ¢,, peLP, geH?. Let f, and f be the Cauchy inte-
grals of g, and ¢ respectively, and suppose that [@,—el,—>0,
lif,— gll, > 0. We have to show that f:g Now

i _iz” p@ . (@)
f@—g@)= [ 1= 1[ =S MORTIOR

so that
7@ f'm e N ]

qu Pally | =gl

I—]z] " 1—iz]

Here we use Theorem 3.1, recalling that 4,(H?)=1. It is now clear
that f=g, and the proof is complete.

Theorem 17.2. If P,(p) is true there ewists a positive constant
Cy(p) such that
(17.4) M, [F3r1< 0y (p) Ny (1),

when Fed and 0<<r <1,
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Proof. In Theorem 3.5 let us take B,=(H"Y, B,=H". By
this theorem we conclude, it P,(p) is true, that |G|, <Co{(p) N (&)
for each Ge(H?), where Cy(p) is a constant depending only on p.
If Fed then G=1T,F¢ (H?)". Hence (17.4) holds by (7.1) and (11.7).

We shall assume that the constants Cy(p), k=1,2,3, and u(p)
are chosen as small as possible.

Theorem 17.3. If any ome of the four propositions Py(p),
Py(p"), Pa(p), Po(p') is true, then all four are true, and

O1(py=C,(p')=Cy(p)=C,(p')-

We arrange the proof in two lemmas, as follows.

Lemma 17.1. If Py(p) is true, then Py(p) is also true, and
C, (p) <01 (p).

Lemma 17.2. If P,(p)
G ()< Cs(p)-

It is clear that Theorem 17.3 is an immediate consequence of
these lemmas.

For the proof of Lemma 17.1 we need the following result.

Lemma 17.3. Suppose weLl™ and 1<p<oo. Suppose there
exists o positive constant A such that

is true, them Py (p’') is also true, and

anw dw|<Auzpnp

for each peL™. Then ||ly|,<A.

Proof. If p=oo it suffices to take

¢ (z)=sgny().

If 1<<p <<oo, the lemma is & form of converse of Hélder’s ine-
quality, though we have not stated it in its strongest form. For
the proof in this case it is sufficient to choose

p(@)=vw|(@) " sgny ().
(See LirrrEwooD [5], p. 21, or [4], p. 142). If p=1, and if we
assume that the set E, where |yp(x)|>A4, has positive measure,

we define (p(m)zsgn;)(;;) if xeB, @(r)=0 elsewhere. Then from the
hypothesis we easily conclude that

[1p(@)|do< Am(B),
B

which is a contradiction.
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Proof of Lemma 17.1. Suppose that Fe(H?)'. Consider
any pel?, and let f be its Cauchy integral. Then
1
9:‘50
where the ¢,(p) are defined by (14.8). But the Cauchy integral of
@ is

99( ) F(re=") dz= an P)vau(F)T

z) :2 Cﬂ((p) z"'
n=0
Therefore

(s,

1

) .)l"z f‘P(.l‘) F()-g—l'a:) dr=DB(f,F;r).
="

We now use the hypothesis that P,(p) is true. We have, from

(17.5) and (17.3),

‘ ! ij F(re=)a ‘ <l Ny (IS Culp)ilpll, Ny ()
From Lemma 17.3 we conclude that I, [F;r]<Cy(p) N (F), and
hence that Lemma 17.1 is true.

Proof of Lemma 17.2. Suppose that @¢L”, and let F be
its Cauchy integral. Then Fe(H?) and N, (F)<| Pl by Theorem
14.1. Therefore FeH” and iiFl\p,gCg(p)Np,(F)<O2(p)]]q§!!p,, by
P,(p) and Theorem 17.2. This completes the proof.

Theorem 17.4. If any one of the four propositions P.(p),

Pi(p"), Ps(p), Ps(p’) is true, then all four are true.

This theorem is a consequence of the two following lemmas.
Lemma 17.4. If Py(p) is true, then Py(p) 1s true, and

01(P><2{Oa(27)+1}-
Lemma 17.5. If Py(p) is true, then Py(p’) is true and
Cy(p")<20:(p) +1.

It seems unlikely that the inequalities in these lemmas are the
best possible. For the proofs of lemmas 17.4 and 17.5 we need two
further lemmas.

Lemma 17.6. Suppose ¢() is a real valued function of class L”.

Let f be the Cauchy integral of @, and let u(2) ) be the real part of 1(2)
Then M, Lusr]<iel,.
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Proof. It is emsﬂy‘:\found from (14.10) and (14.11) that
(17.6) Real {O(r,0)} =3+31P(r,2).

Hence, in the present smuatlon,
25

o 1 17
(17.7) u(w;“’):Ez f @{z) do+ ngP(r,w—-O)q)(m)dm.
0 [1]

The desired conclusion now fellows by an argument essentially
like that used in the proof of Theorem 14.4.

Lemma 17.7. Suppose pel and FeN,. Let | be the Cauchy
integral of ¢, and let u(2) be the real part of F(z). Then, if 0<r<1,
0<o<1, we have

2) P(roe—%) ds
(17.8) Jq) (ree™) do

27
=—1n. ff(ge“’) e dw—(~ fzp Ja)dx) ( - fu 76") dw)
0

Proof. The left member of (17.8) is
Z 0 () ¥ (F) 7™

Since 2u(z)=F(z)+F(z) and

1
()):E;z Df u (re'®) da,
the right member of (17.8) is easily seen to be

Zo’n )7 g™+ vo(f) 70 (F)—6o(@) u(0).

But y, (fl=c,(p) if n=0, and yo(F)=u(o), since F e, There-
fore (17.8) is correct.

Proof of Lemma 17.4. Let ¢eL” be given, and write
@=g,-+ip,, where p; and @, are real. Let f, be the Cauchy integral
of ¢, k=1,2, and let f=f,41f,, Then

W, 5 7)<, U151+ M, T 7],
and H%H,,Qlwllm k=1,2.

lf fr(@)="1; (2)+1v,(2), where u, and v, are real, let us put

=f, (2)—iv,(0). Then g,eA,. Now

M, (i3 1< M, L9757 )+ 10, (0)
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and [0, (0)|<[fi (0} | =lco(p) I<limell,.  Also M [ srI<lpell,, DY
Lemma 17.6. Finally, if P4(p) is true, we have

wtp[gk;rl<CS(p)ﬁRp[uh;T]'
Thl_ls, on combining the foregoing inequalities, we have
M, [ 57 1< {0 () + 1 il -
Therefore
W, [;71< 2 {Cs(p)+ 1} e -
Lemma 17.4 now follows.

Proof of Lemma 17.5. Suppose Fed,. Take any geL” and
let f be its Cauchy integral. From (17.8) we have

17
]21
By P;(p) and (17.3) we have

)F(Tge_“)dwﬂ <2M, [50] My L5714 pll M L5 7]

‘ f o m)Fvee—”)dm!<{201<p)+1}n¢upwt s,

From Lemma 17.3 we conelude
D, [Fire]< (20, (p) +11 D [w57].
We may now make g—1 on the left side of the inequality. The
proof is then complete.
It is clear that the propositions Py(p) and R(p) are equivalent,
and that
w@I<O(p);  Calm<p(p)+1.

We merely need Minkowski’s inequality and the fact that [»[< | F|.

Thus far we have not established the truth of any of the pro-
positions, only the relations between them. Now R(p) is known
to be true if 1< p<oc. This is M. Rimsz’s theorem ([9]). Hence
we have

Theorem 17.5. The propositions Pi(p) and P,(p) are irue
when 1<<p<oo.

It is worth observing that the proof of Theorem 17.5 can be
made by using only a portion of the proof of M. Riesz's theorem.
Tt is convenient to introduce the further propositions P7(p) and
R+(p). These propositions have the same form as P,(p) and R(p),
except that we assert inequalities of the form of (17.1) and (17.2)
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under the restriction Fe¥;, where UAf denotes the set of all
F e, such that the real part of Fis positive when ze4. We denote
the corresponding constants by Cif (p) and u*(p). It is clear that
the truth of R+(p) implies that of Pi(p), with CF (p)<ut(p)+1.

Lemma 17.8. The truth of Pi(p) implies that of Py(p), and
C.(p) <405 (p)+1).

Proof. In the notation of the .proof of Lemma 17.4 we write
Pu@) =0y, (@) — 1, (v), Where g, (¥)=p,(2) if p(2)>0, and @, (2)=0
otherwise. It is clear from (17.7) that the w,; corresponding to ¢,
is positive unless ¢, (#) vanishes almost everywhere. The rest of the
proof is like that of Lemma 17.4.

We can now make the following scheme of implications:

Pi(p")—» R(p'),

BH(p)— Pyt (p) > Py( [ Ps(p) > R(p),

L Pyp).
From this scheme we see that, once R+(p) is known to be true if
1<p<2, all the propositions are established for 1<p<oco. For the
crucial proof of E*(p), 1<p<2, we can appeal to the bibliography
(M. Riesz [9], STEIN [10], ZYGMUND [12], p. 147-149).

All of the propositions are false when p=1 or oo. The falsity
of E(p) under these circumstances is well known (ZyeMUND [12],
p. 150).

The following simple example demonstrates the falsity of
P, (o0) directly. The function

P> [ 2a2) > Patr) >

_ 142

T1—2

isin (H™), as know from the last part of §13. It is not in H,
however. For

B(z)

F(éy=ictn /2,

so that F(e”) is not in L. It is also easy to give a direct example
showing the falsity of P,(co): '

We now draw together some consequences of Theorem 17.5.

Theorem 17.6. Suppose 1<p<<co. The classes (H?) and H?'
are the same. As Banach spaces (H?)' and HY are isomorphic. They
are equivalent only when p=2. Every linear functional ye(HM* g
representable in the form
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1 2n
(17.9) rN=5= [ 1) F(e=)az,
2% ;

where FeH™. The element F uniquely determines and is uniquely
determined by v, and Iyll=N, (F).

Proof. The first assertion follows from Theorem 16.2 and the
truth of Py(p). From (16.3) and (17.4) we have

(17.10) N (F)<|| Flly<Ca(p) N(F),  FeH".

This shows that (H?) and HP' are isomorphic spaces. Formula
(17.9) and the assertions in connection with it follow from Theo-
rem 10.1 with the aid of (11.8). It remains only to prove that we can
have || F[,>N_(F) if p=2. This is the same as saying Co(p)>1
if p£2. This question will be settled in our discussion of the con-
stant 0y(p), which follows.

Theorem 17.7. The constant Cy(p) (=C.(p)) has the following
properties:

(a) log Cy(1/a) is a comvex function of a, 0<a<<1;

(b) Cy2)=1, Cy(p)>1 if p+£2;

(e) 0= Lm C,(p)/p<oo.

pyee
Proof. Part (a) is a special case of a convexity theorem of
M. Rimsz ([8], Theorem V), for by Theorem 17.1 we may regard
the passage from g eL” to f(¢™), where f is the Cauchy integral of ¢,
as a bounded linear operation mapping Z? into itself, of norm C,(p).
The first part of (b) follows from Theorem 16.2. For the second
part, consider the function

p(2)=1-+he™ L hte",
The Cauchy integral of ¢ is
f(z)=1+ ha.

We take h to be a small constant. A somewhat tedious ealcu-
lation shows that

[ i@ —lp@r armF P 22y o s,

oo
2m

the terms denoted by O(hf) depending on p, of course. Hence, if
p#2, we see that | fll,>|l¢ll, when % is sufficiently small and of
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appropriate sign. Thus Cy(p)>1. For this example I am indebted
to Professor J. E. LITTLEWOOD. . ‘

Now we shall consider the proof of (¢). It is well known (STEIN
[10]) thatb

03(29)<(P')1/’° if 1<p<2.

Hence ) ]
Cap)<(pP<p # 2<p.

Since 04(p)=0,(p") (Theorem 17.3), it follows by Lemma 17.4 that
(17.11) Ci(p)<2(p+1) if 2L p.
To get an estimate in the other direction, take
J x  O<w<m,
(p(m)zl-—n <o <2m.

The Cauchy integral of p is found to be

1+2
fle)=—ilog -~

Thus we find
Ly i 1 an tn 6/2 |\Pdo
l 0y |p — ctn "do.
Qnoflf(e ) d0>2nof |°gl / H

The integral on the right can be reduced to the form

1 (log 1 )" .
© 2 Y 1w, 2

Ef dw > f(log~) dr=—1I(p4+1).
T ; L x T

1422
- 171 2 \17*
Ci(p)= HtPH:> {nf(p-l—l)l .
With the aid of Stirling’s formula we can show, for example, that
(17.12) Ol(p)>p—f—~-, P>2.

Assertion (e) follows from (17.11) and (17.12)

18. Further discussion of P,(p). We have the following
analogue of the converse of Holder’s inequality (compare with
Lemma 17.3).
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Theorem 18.1. We assume l<p<oco. Suppose that- Feq,
and that there ewists a positive constant A such that

2a
o [Hen Pl <Ay, o<r<t,
7§ I
for each feH?. Then FeHP, and 1 F],< Calp)A
This follows at once from the fact that the integral on the
left in the inequality is equal to B(f,F;7). We then use the defini-
tion of N,.(F;r), the fact that P,(p) is true, and (17.4).
Because of the fact that P,(p) is false when p=1 or co we get
the following results, which at first sight are rather surprising.
Theorem 18.2. Suppose p=1 or oo, and accordingly p'=co
or 1, respectively. Then in either case, given positive constants & and A,
there exists an F¢HP' such that || Fll,—4 and
1 27
E= f(e) F(e™) I<8!|fil,,
for each feHP.

We give the proof for the case p=1. That for p=oc is similar,
and we omit it. We first (by 16.4) observe that H> is a subclass
of (H)'. If FeH™ we have

= ff(e“)ﬁ’(e‘“)dw}
N (P)=gup — % .
== il
This is because

17
5 ] HEIF

defines a linear functional y(f) on H”, of norm |y||=N_(F) (See
Theorem 10.1).

Now suppose that Theorem 18.2 is false when p=1. Then there
exist positive numbers ¢, A, such that, corresponding to any
FeH™ with || F|..=A4,, there is an feH such that

i

(7 dw=lim B(f, F;r)
r—1

1 .
oo J HEV P e > eollf [

“
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and hence N (F)>= g. If now F is any nonzero element of H™,
let t=||F}.,. Then
A A
ftrl o m, [

=4,

Therefore
A A
D)z, or <N
0

Now take any Ge(H)'. Then, taking F=T,G, we have FeH™,
[Pl =M. [G57], V.. (F)SN.(F), and so

A
M [G3r]< N (G).
o

This implies G ¢H=, which is a contradiction, by the falsity of Py(1).
The proof is now complete.
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Sur le produit de composition

par

J. G.-MIKUSINSKI (Wroctaw) et Cz. RYLL-NARDZEWSKI (Wroctaw).

Le but de cet article est de systématiser et de compléter cer-
tains théorémes sur le produit de composition

ab =f51(t—r)b(r) d.
o

1. Théorémes fondamentaux.

Théoréme 1. 87 les fonctions a et b sont définies presque par-
tout et sommables dans Vintervalle [0,T], il en est de méme de lewr
produst de composition et Pon a

ab=ba
dans tout point de [0,T] ok la valeur de ab (ou de ba) est determinée.

Théoréme 2. Si les fonctions a,b et ¢ sont définies presque
partout et sommables dans [0,T], on a

(ab)c=a(be)

dans tout point de [0,T] o la valeur de (ab)e [ou de a(be)] est dé-
terminée 1).

T faut remarquer que, dans les deux théorémes, 1'égalité des
fonctions est & entendre au sens stricte, ce qui est plus fort que
I’égalité & mesure nulle pres ).

1) Pour la démonstration des théordmes 1 et 2, voir par exemple
J.G.-Mikusinski, I’anneau algébrique et ses applications dans Vanalyse
fonetionnelle I, Annales Universitatis Mariae Curie-Sklodowska, Lublin 1947,
p. 9-11.
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