

On a class of asymptotically divergent sequences of functions 1)

by W. ORLICZ (Poznań).

1. A sequence $\{f_n(x)\}$ of functions defined and measurable in a set A will be said, as usual, to converge asymptotically in A to f(x) if for every $\varepsilon > 0$

$$|E\{|f_n(x)-f(x)|\geqslant \varepsilon\}| \to 0$$
 as $n \to \infty$.

We shall denote this by writing

$$f_n(x) \xrightarrow{\mathrm{as}} f(x)$$
 or if A is an interval $f_n(x) \xrightarrow{\mathrm{as}} f(x)$.

The sequence $\{f_n(x)\}$ is said to be asymptotically bounded in A if, for every sequence $\{\vartheta_n\}$ of reals, converging to 0, $\vartheta_n f_n(x) \stackrel{\text{as}}{\xrightarrow{A}} 0$. A class F of measurable functions defined in A is called asymptotically bounded in A if every sequence of functions belonging to F is asymptotically bounded in A.

The class \mathbf{F} is asymptotically bounded in A if and only if, given any $\eta > 0$, there exists a K > 0 such that for every $f \in \mathbf{F}$

$$|E\{|f(x)| \geqslant K\}| < \eta.$$

In fact, if the condition (w) is satisfied, and $f_n \epsilon \mathbf{F}$, $\vartheta_n \rightarrow 0$, then for arbitrary $\varepsilon > 0$ and $\eta > 0$

$$|E\{|\vartheta_n f_n(x)| \geqslant \varepsilon\}| < \eta,$$

n being sufficiently large; hence

$$\vartheta_n f_n(x) \xrightarrow{\text{as}} 0$$
.

Conversely, suppose the condition (w) is not satisfied. Then, there exist an $\eta > 0$, a sequence $\{K_n\}$, and a sequence $\{f_n(x)\}$ such that $K_n \to \infty$, $f_n \in F$ and

$$|E\{|f_n(x)|\geqslant K_n\}|\geqslant \eta$$
 for $n=1,2,\ldots$

Putting $\vartheta_n = K_n^{-1}$, we get a sequence $\{\vartheta_n f_n(x)\}$ which does not converge asymptotically to 0; this is impossible since $\vartheta_n \to 0$.

We shall denote by $\varepsilon_n(t)$ the functions of Rademacher, i. e. real functions of period 1 defined as follows:

$$\varepsilon_{1}(t) = \begin{cases} 1 & \text{if } 0 < t < \frac{1}{2}, \\ -1 & \text{if } \frac{1}{2} < t < 1, \\ 0 & \text{if } t = 0, \frac{1}{2}; \end{cases}$$

$$\varepsilon_{n}(t) = \varepsilon_{1}(2^{n}t) \quad \text{for } n = 2, 3, \dots;$$

put also

$$\eta_n(t) = \frac{1}{2} - \frac{1}{2}\varepsilon_n(t)$$
.

The sequence $\{\eta_n(t)\}$ establishes an one-to-one correspondence between the real numbers which have an unique diadic expansion and the class of the sequences composed of infinitely many 0's and infinitely many 1's. Similarly, the sequence $\{\varepsilon_n(t)\}$ maps the real numbers onto the set of the sequences composed of +1's and -1's.

By well-known theorems, convergence almost everywhere of the series $\sum\limits_{n=1}^{\infty}a_{n}\varepsilon_{n}(t)$ is equivalent to $\sum\limits_{n=1}^{\infty}a_{n}^{2}<\infty$; convergence almost everywhere of the series $\sum\limits_{n=1}^{\infty}a_{n}\eta_{n}(t)$ is equivalent to the convergence of the series $\sum\limits_{n=1}^{\infty}a_{n}$ and $\sum\limits_{n=1}^{\infty}a_{n}^{2}$.

2. In the sequel, we shall denote by $f_n^i(x)$ functions defined and measurable in a set A, and we shall use the following conditions:

 (P_n) there exist functions $f_n(x)$ such that for n=1,2,...

$$f_n^i(x) \xrightarrow{\text{as}} f_n(x)$$
 as $i \to \infty$;

 (P'_a) the sequences $\{f_n^i(x)\}_{i=1,2,...}$ are asymptotically bounded in A for n=1,2,...;

¹⁾ The results of this paper were presented on May 29-th 1947 to the IV-th Congress of Polish Mathematicians in Cracow.

On a class of asymptotically divergent sequences of functions.

(P_b) the series

(1)
$$F_i(x) = \sum_{n=1}^{\infty} [f_n^i(x)]^2$$

converges almost everywhere in A for i=1,2,...;

(Pa) the series

(2)
$$\Phi_i(x) = \sum_{n=1}^{\infty} f_n^i(x)$$

converges almost everywhere in A for i=1,2,...

To point out in which set A there are defined the functions for which one of the above conditions is fulfilled, we shall say that this condition is fulfilled in the set A. If A denotes an interval, we shall say that the condition (P_n) or (P_n) is satisfied.

Put, for i=1,2,...,

(3)
$$F_i(x,t) = \sum_{n=1}^{\infty} \varepsilon_n(t) f_n^i(x),$$

(3*)
$$F_i^{\star}(x,t) = \sum_{n=1}^{\infty} \eta_n(t) f_n^i(x).$$

The functions (3) have sense for almost any t almost everywhere in A if and only if the condition (P_b) is satisfied in A. Similarly, the functions (3^*) are defined for almost any t almost everywhere in A if the conditions (P_b) and (P_c) are fulfilled in the set A. These facts are consequences of the theorem of Fubini and well-known theorems of Rademacher and Khintchine-Kolmogoroff.

Suppose now the condition (Pa) to be satisfied in A; write

(4)
$$F(x) = \sum_{n=1}^{\infty} f_n^2(x),$$
 (5) $\Phi(x) = \sum_{n=1}^{\infty} f_n(x)$

for $x \in A$, and

$$(6) \qquad F(x,t)\!=\!\sum_{n=1}^{\infty}\!\varepsilon_n(t)f_n(x), \qquad \qquad (6^{\star}) \quad F^{\star}(x,t)\!=\!\sum_{n=1}^{\infty}\!\eta_n(t)f_n(x).$$

The function F(x,t) has sense for almost any $t \in \langle 0,1 \rangle$ almost everywhere in A if and only if $F(x) < \infty$ almost everywhere; an analogous condition for $F^*(x,t)$ is that $F(x) < \infty$ and that the series (5) be convergent almost everywhere in A.

3. Lemma 1. Suppose that

and that the sequence

$$T_i(t) = \sum_{n=1}^{\infty} b_{in} \varepsilon_n(t)$$

converges asymptotically in a set $E \subset \langle 0, 1 \rangle$ of positive measure; then there exist b_n such that

(7)
$$\lim_{i \to \infty} \sum_{n=1}^{\infty} (b_{in} - b_n)^2 = 0.$$

Conversely, (7) implies asymptotical convergence in $\langle 0,1 \rangle$ of the sequence $\{T_i(t)\}$ to the function $\sum_{n=1}^{\infty} b_n \varepsilon_n(t)$.

Lemma 1'. Suppose the condition (a) of lemma 1 is satisfied and let the series $B_i = \sum_{n=0}^{\infty} b_{in}$ converge for i=1,2,... If the sequence

$$T_i^*(t) = \sum_{n=1}^{\infty} \eta_n(t) b_{in}$$

converges asymptotically in a set $E \subset \langle 0,1 \rangle$ of positive measure, then there exist b_n such that (7) holds and there exists the limit

(8)
$$\lim_{i \to \infty} B_i = B.$$

In particular, if

(9)
$$T_{i}^{\star}(t) \stackrel{\text{as}}{\underset{A}{\longrightarrow}} \left(\frac{1}{2} \sum_{n=1}^{\infty} b_{n} - \frac{1}{2} \sum_{n=1}^{\infty} b_{n} \varepsilon_{n}(t)\right),$$

then $B = \sum_{n=1}^{\infty} b_n$.

Conversely, (7) and (8) imply

$$T_i^{\bigstar}(t) \overset{\mathrm{as}}{\longrightarrow} \left(\frac{1}{2}\,B - \frac{1}{2}\,\sum_{n=1}^{\infty} b_n \varepsilon_n(t)\right).$$

Proof. Lemma 1 and a part of lemma 1' are proved in an earlier paper of the author 2). We shall only complete the proof of

²) W. Orlicz, Sur les fonctions continues non dérivables, Fundamenta Mathematicae 34 (1946), p. 45-60.

On a class of asymptotically divergent sequences of functions.

291

lemma 1'. Since

$$T_i^*(t) = \frac{1}{2}B_i - \frac{1}{2}T_i(t),$$

the asymptotical convergence of the sequence $T_i^*(t)$ in a set of positive measure implies (7) 3) and, by lemma 1, $T_i(t) \xrightarrow{\mathrm{as}} \sum_{n=1}^\infty b_n \varepsilon_n(t)$ implies (8). Conversely, (7) and (8) imply

$$T_i(t) \xrightarrow{as} \sum_{n=1}^{\infty} b_n \varepsilon_n(t)$$
,

and this yields (9) with the first member on the right-hand side replaced by B/2.

Lemma 2. Let Q be the Cartesian product of two bounded sets A and B of positive measure, and let the functions $f_i(x,y)$ be measurable in Q. If for every $x \in A$

(10)
$$f_i(x,y) \stackrel{\text{as}}{\longrightarrow} f(x,y),$$

then the sequence $f_i(x,y)$ converges asymptotically in the set Q to a function $\overline{f}(x,y)$ which, for almost every $x \in A$, is equal to f(x,y) almost everywhere in B.

If $f_i(x,y) \xrightarrow{as} f(x,y)$, then there exists a sequence $\{i_k\}$ of indices such that

(10')
$$f_{i_k}(x,y) \xrightarrow{\text{as}} f(x,y)$$

almost everywhere in A.

Proof. We prove first the second part of the lemma. Put

$$h_i(x) = \int_{\mathbb{R}} \frac{|f_i(x,y) - f(x,y)|}{1 + |f_i(x,y) - f(x,y)|} \, dy.$$

By hypothesis

$$\int_{A} h_{i}(x) dx = \int_{Q} \int \frac{|f_{i}(x,y) - f(x,y)|}{1 + |f_{i}(x,y) - f(x,y)|} dx dy \to 0;$$

hence, there exists a sequence $\{i_k\}$ of indices for which $h_{i_k}(x) \to 0$ almost everywhere in A; and this implies (10').

To prove the first part, choose two sequences of indices $\{i_k\}$ and $\{j_k\}$, and write

$$g_k(x) = \int_R \frac{|f_{i_k}(x, y) - f_{j_k}(x, y)|}{1 + |f_{i_k}(x, y) - f_{j_k}(x, y)|} dy.$$

Since $0 \le g_k(x) \le |B|$, and since by hypothesis $g_k(x) \to 0$,

$$\int\limits_{\mathcal{A}} g_k(x) \, dx \! = \! \int\limits_{\mathcal{O}} \! \int \! \frac{|f_{i_k}(x,y) \! - \! f_{j_k}(x,y)|}{1 + |f_{i_k}(x,y) \! - \! f_{j_k}(x,y)|} \, dx \, dy \! \to \! 0 \, ;$$

hence $f_i(x,y)$ converges asymptotically in Q to a function $\bar{f}(x,y)$. By the second part of this lemma, for almost every $x \in A$, we have $f(x,y) = \bar{f}(x,y)$ almost everywhere in B.

Lemma 3. Let the conditions (P_a) and (P_b) be satisfied in A and put

(11)
$$G_i(x) = \sum_{n=1}^{\infty} [f_n^i(x) - f_n(x)]^2,$$

(12)
$$h_i(x) = \int_0^1 \frac{|F_i(x,t) - F(x,t)|}{1 + |F_i(x,t) - F(x,t)|} dt.$$

Then $G_i(x_0) \to 0$ if and only if $h_i(x_0) \to 0$; $G_i(x) \xrightarrow{\text{as}} 0$ if and only if $h_i(x) \xrightarrow{\text{as}} 0$.

Proof. If $G_i(x_0) \rightarrow 0$, then the series (4) converges at x_0 ; hence the integrand in formula (12) is defined at $x=x_0$ almost everywhere in $\langle 0,1 \rangle$. Putting in lemma 1

$$b_{in} = f_n^i(x_0), \quad b_n = f_n(x_0),$$

we get

$$F_i(x_0,t) \xrightarrow{\mathrm{as}} F(x_0,t)$$
;

hence $h_i(x_0) \to 0$. Conversely, if $h_i(x_0) \to 0$, then $F_i(x_0,t)$ and $F(x_0,t)$ are defined for almost any t, and the same holds for the series (4) with $x=x_0$. Thus, the series $G_i(x_0)$ converge for $i=1,2,\ldots$, and it is sufficient to apply lemma 1. The second part of the lemma follows trivially from the first.

³⁾ ibidem, p. 52-54.

We can prove similarly

Lemma 3'. Let the conditions $(P_a),\;(P_b)$ and (P_c) be satisfied in A and put

(13)
$$h_i^*(x) = \int_0^1 \frac{|F_i^*(x,t) - F^*(x,t)|}{1 + |F_i^*(x,t) - F^*(x,t)|} dt.$$

Then

(a)
$$G_i(x_0) \rightarrow 0$$
 and $\Phi_i(x_0) \rightarrow \Phi(x_0)$ if and only if $h_i^*(x_0) \rightarrow 0$;

(b)
$$G_i(x) \xrightarrow{\text{as}} 0$$
 and $\Phi_i(x) \xrightarrow{\text{as}} \Phi(x)$ if and only if $h_i^*(x) \xrightarrow{\text{as}} 0$.

Theorem 1. Let A be a bounded set of positive measure, and let Q be the Cartesian product of A with the interval $\langle 0,1\rangle$. If the condition (P_p) is satisfied in A and the sequence

$$\{F_i(x,t)\}$$

converges asymptotically in Q, then the condition (P_a) is fulfilled in A and

(15)
$$G_i(x) \xrightarrow{\text{as}} 0.$$

Conversely, if the conditions (P_a) and (P_b) are satisfied in A and (15) holds, the sequence (14) converges asymptotically in Q to F(x,t).

Proof. The asymptotical convergence of the sequence (14) implies by lemma 2 that there is a set A_0 , such that

$$|A-A_0|=0$$
,

and

$$F_{i_{l}}(x,t) - F_{i_{l}}(x,t) \xrightarrow{\text{as}} 0$$
 as $k,l \to \infty$ and $x \in A_{0}$,

 i_k being a sequence of indices; hence by lemma 1

$$\sum_{n=1}^{\infty}[f_n^{(i_l)}(x)-f_n^{(i_l)}(x)]^2{\rightarrow}\,0\qquad\text{as}\quad k\,,l{\rightarrow}\,0\quad\text{and}\quad x{\,\epsilon}A_0\,.$$

Thus, there exist functions $f_n(x)$ in A such that $G_{i_n}(x) \to 0$ almost everywhere in A. In the above argument, the sequences $\{i_k\}$ and $\{i_l\}$ may be replaced by subsequences of any two prescribed sequences, and this implies that, $f_n(x)$ being previously defined, every

subsequence of the sequence $\{G_i(x)\}$ contains a partial sequence convergent to 0 almost everywhere in A. Hence (15) holds and this in its turn implies the condition (P_a) in A.

Suppose now the conditions (P_a) , (P_b) and (15) are satisfied in A. By lemma 3 a subsequence $F_{i_n}(x,t)$ converges to F(x,t) for almost any $t \in \langle 0,1 \rangle$ almost everywhere in A, and by lemma 2

$$F_{i_n}(x,t) \xrightarrow{as} F(x,t)$$
.

Hence the sequence (14) also converges asymptotically in Q to F(x,t) since this argument may be repeated for any sequence extracted from (14).

Theorem 2. The sets A and Q having the same meaning as in theorem 1, suppose the condition (P_b) is satisfied in A and the sequence (14) is asymptotically bounded in Q. Then the condition (P_a) is satisfied in A and the sequence

$$\{F_i(x)\}$$

is asymptotically bounded in A.

Conversely, if the condition (P_a') is satisfied in A and the sequence (16) is asymptotically bounded in A, then the sequence (14) is asymptotically bounded in Q.

Proof. Let $\vartheta_n \to 0$; the proof results from the definition of asymptotical boundedness and theorem 1 applied to the sequence

$$\overline{F}_i(x,t) \!=\! \! \sqrt{\; |\, \vartheta_i|} \, F_i(x,t) \!=\! \sum_{n=1}^\infty \varepsilon_n(t) \sqrt{\; |\, \vartheta_i|} f_n^i(x).$$

Theorem 3. The sets A and Q having the same meaning as in theorem 1, suppose the conditions (P_a) , (P_b) and (P_c) are satisfied in A and the sequence

$$\{F_i^{\star}(x,t)\}$$

converges asymptotically in Q to $F^*(x,t)$; then (15) holds and

(18)
$$\Phi_i(x) \xrightarrow{\text{as}} \Phi(x).$$

Conversely, if the conditions (P_a) , (P_b) and (P_c) are satisfied in A, and (15) and (18) hold, then the sequence (17) converges asymptotically in Q to $F^*(x,t)$.

Theorem 3'. The sets A and Q having the same meaning as in theorem 1. let the conditions (P_b) and (P_a) be satisfied in the set A. If the sequence (17) is asymptotically bounded in Q, then the condition (P') is satisfied in A and the sequences (16) and $\Phi_i(x)$ are asymptotically bounded in A.

Conversely, if the conditions (Pb), (Pb) and (Pc) are satisfied in A, and the sequences (16) and $\{\Phi_s(x)\}\$ are asymptotically bounded in A, then the sequence (17) is asymptotically bounded in Q.

Proof. Theorems 3 and 3' follow immediatly from theorems 1 and 2, and lemma 3'.

If the condition (P_b) is satisfied in A, we shall denote by T_a or T_h the sets of these $t \in (0,1)$ for which the sequence (14) converges asymptotically or is asymptotically bounded in a subset of A of positive measure, respectively; T_c^*, T_b^* will denote the analogous sets for the sequence (17) with a supplementary hypothesis that the condition (P_a) is fulfilled in A.

Theorem 4. A. If the conditions (Pa) and (Ph) are satisfied in A, then

(a) either $|T_c|=0$ or $|T_c|=1$.

In the second case, there is a set $H_{\bullet} \subset A$ of positive measure such that the sequence (14) converges asymptotically in H_o to the function (6) for almost any t.

B. If the conditions (P'_a) and (P_b) are satisfied in A, then

(b) either $|T_b| = 0$ or $|T_b| = 1$.

In the second case, there exists a set $H_h \subset A$ of positive measure such that the sequence (14) is asymptotically bounded in H_b for almost any t.

Proof. Denote by U the family of all sets which consist of a finite number of intervals with rational end points. For any t write

$$(19) \hspace{1cm} E_{pq}^{sl}(t) = A E \left\{ \left| \sum_{n=1}^{\infty} \varepsilon_n(t) \left[f_n^{(p)}(x) - f_n^{(q)}(x) \right] \right| \leqslant \frac{1}{s} \right\}.$$

For any $\Delta \epsilon U$ write

$$egin{aligned} A_{kl}^{rs}(arDelta) &= \prod\limits_{p,q=k}^{\infty} E_t^{l} \Big| \left| arDelta - arDelta E_{pq}^{sl}(t)
ight| \leqslant rac{1}{r^2} \Big\}, \ B_r^{s}(arDelta) &= \sum\limits_{m=1}^{\infty} \prod\limits_{l=m}^{\infty} \sum\limits_{k=1}^{\infty} A_{kl}^{rs}(arDelta); \end{aligned}$$

these sets are measurable. We shall prove that either

$$|\langle 0,1\rangle B_r^s(\Delta)|=0$$
 or $|\langle 0,1\rangle B_r^s(\Delta)|=1$.

On a class of asymptotically divergent sequences of functions.

Let t_0 be a number of finite diadic expansion, let $c_0 + \sum_{i=0}^{m} c_i/2^i$ be this expansion, and write $\bar{t}=t+t_0$. By the equality $\varepsilon_l(\bar{t})=\varepsilon(t)$, for $l \gg m$,

$$t \in \prod_{n=0}^{\infty} \sum_{k=1}^{\infty} A_{kn+p}^{rs}(\Delta)$$

implies

$$ar{t}\epsilon\prod_{p=0}^{\infty}\sum_{k=1}^{\infty}A_{k\,l+p}^{rs}(\Delta).$$

Hence $\bar{t} \in B_r^s(\Delta)$ if $t \in B_r^s(\Delta)$. Thus, the characteristic function $\omega(t)$ of the set $B_r^s(\Delta)$ has a dense set of periods; hence, by well-known theorem, either $\omega(t)=1$ or $\omega(t)=0$ almost everywhere.

Suppose that the set T_c is not of measure 0; then its outer measure is positive. Then, there exists a set $T' \subset T_c$ of positive outer measure, and a number $\lambda > 0$ such that for $t \in T'$ the sequence (14) converges asymptotically in a set $E \subseteq A$ (depending on t) of measure not less than λ ; further, given any positive integer r, there exists a set $T'' \subset T'$ of positive outer measure and a set $\Delta_r \subset \Delta$ (non depending on t) such that $t \in T''$ implies

$$|\Delta_r - E| + |E - \Delta_r| \leqslant \frac{1}{2r^2}$$

It follows immediately that $T'' \subset B_r^s(\Delta_r)$, hence $|B_r^s(\Delta_r)| > 0$ for $r=1,2,\ldots$ and this implies

$$|\langle 0,1\rangle B_r^s(\Delta_r)| = 1.$$

Put

$$T_0 = \langle 0, 1 \rangle \prod_{s=1}^{\infty} \prod_{r=1}^{\infty} B_r^s(\Delta_r), \qquad H = \overline{\lim_{r \to \infty}} A \Delta_r.$$

Here $|T_0|=1$ and $|H| \geqslant \lambda > 0$, for $\lim_{r \to \infty} |A \Delta_r| \geqslant \lambda$.

Let $t \in T_0$, and choose $\varepsilon > 0$ and $\eta > 0$ arbitrary, then let s_0, r_0 be integers such that $s_0 > 2/\varepsilon$, $r_0 > 6/\eta$ and such that

$$|A\sum_{r=r}^{\infty} \Delta_r - H| < \frac{\eta}{6}$$

Since $t \in B^{\circ}(A_r)$, there exists a l(r) such that $l \ge l(r)$ and $p,q \ge k_r(l)$ imply (19) (when $s=s_0$) in a set $E_{nq}^{s_0l}(t)$ for which

$$\mid \Delta_r - \Delta_r E_{nq}^{s_0l}(t) \mid \leq \frac{1}{r^2}.$$

Choosing $r_1 > r_0$ so that

$$|A\sum_{r=r_0}^{\infty}\Delta_r - A\sum_{r=r_0}^{r_1}\Delta_r| < \frac{\eta}{6},$$

and writing

$$\begin{array}{ll} l_0 = \max_{r_0 \leqslant r \leqslant r_1} l(r), & B_{pq} = \sum_{r=r_0}^{r_1} \Delta_r E_{pq}^{s_0 l_0}(t), \end{array}$$

we get

$$\begin{split} \left| \ A \sum_{r=r_0}^{\infty} \! \varDelta_r \! - \! B_{pq} \right| \leqslant & \frac{1}{r_0^2} \! + \! \frac{1}{(r_0 \! + \! 1)^2} \! + \! \ldots \! < \! \frac{2}{r_0} < \! 2 \, \frac{\eta}{6}, \\ & |H \! - \! H B_{pq}| < \frac{\eta}{2}. \end{split}$$

Since $t\epsilon \prod_{r=r_0}^{r_1} B_r^{s_0}(\varDelta_r)$, we obtain, for $x\epsilon HB_{pq}$ and $p,q\geqslant \max_{r_0\leqslant r\leqslant r_1} k_r(l(r))$,

$$\bigg|\sum_{n=l_0}^\infty \varepsilon_n(t)[f_n^{(p)}(x)-f_n^{(q)}(x)]\bigg|\leqslant \frac{1}{s_0}<\frac{\varepsilon}{2}\cdot$$

The condition (P_a) being satisfied in A, we can choose p,q so large that, moreover, the inequality

$$\bigg|\sum_{n=1}^{l_0-1}\varepsilon_n(t)[f_n^{(p)}(x)-f_n^{(q)}(x)\,]\bigg|<\frac{\varepsilon}{2}$$

is satisfied in a set $C_{pq} \subset H$, for which $|H - C_{pq}| < \eta/2$. Finally, note that for the set

$$A_{nq} = HB_{nq}C_{nq}$$

we have

$$|H-A_{nq}|<\eta$$

and that in this set

$$|F_p(x,t)-F_q(x,t)|<\varepsilon$$

for p,q sufficiently large, and this shows that the sequence (14)

converges asymptotically in H if $t \in T_0$, and by theorem 1 its limit is F(x,t) for almost any t.

The proof in the case B is analogous.

Similarly as the above theorem we can prove

Theorem 4'. A'. If the conditions (P_a) , (P_b) , and (P_c) are satisfied in A, then

(a') either
$$|T_c^*| = 0$$
 or $|T_c^*| = 1$.

In the second case there exists a set $H_c^* \subseteq A$ of positive measure such that the sequence (17) converges asymptotically on H_c^* for almost any t.

B'. If the conditions $(P_a^\prime),~(P_b)$ and (P_c) are satisfied in the set A, then

(b') either $|T_h^*| = 0$ or $|T_h^*| = 1$.

In the second case the sequence (17) is asymptotically bounded in a set $H_b^* \subset A$ of positive measure for almost any t.

3. In this section we shall suppose that the functions $f_n^i(x)$ are defined in an interval (a,b), and we shall denote by $T_c(A)$ and $T_b(A)$ the set of those $t \in (0,1)$ for which the sequence (14) converges asymptotically or is asymptotically bounded in A, respectively; $T_c^*(A)$ and $T_b^*(A)$ will denote analogous sets for the sequence (17).

Lemma 4. In the class \mathfrak{M}_c of sets for which $|T_c(A)|=1$ there exists a maximal set \hat{A} (i. e. such a set that $A \in \mathfrak{M}_c$ implies $|A - \hat{A}| = 0$).

Analogous statements hold for the classes of sets for which $|T_h(A)|=1$, $|T_h^*(A)|=1$ and $|T_h^*(A)|=1$.

Proof. A_0 denoting the empty set, define by induction sets $A_n \in \mathfrak{M}_c$ so that

$$(20) \qquad |A_n - (A_1 + \ldots + A_{n-1})| \geqslant \frac{1}{2} \sup_{A \in \mathcal{P}_n} |A - (A_1 + \ldots + A_{n-1})|,$$

then put

$$\hat{A} = \sum_{n=1}^{\infty} A_n$$
.

It is obvious that, for any $A \in \mathfrak{M}_{c}$,

$$|A-\hat{A}|=0$$
.

Since the sequence (14) converges asymptotically on \hat{A} as t belongs to the set $\prod_{n=1}^{\infty} T_c(A_n)$, hence $\hat{A} \in \mathfrak{M}_c$.

Theorem 5. Under the assumptions of theorem 4 either

$$|T_c(A)| = 0$$
 or $|T_c(A)| = 1$,

and an analogous statement holds for the set $T_b(A)$.

Under the assumptions of theorem 4' analogous alternatives hold for the sets $T_c^*(A)$ and $T_b^*(A)$.

Proof. We shall prove only the case of the set $T_c(A)$. If $|T_c(A)| > 0$, then $|T_c(B)| > 0$ for any set $B \subseteq A$ of positive measure. By Theorem 4 there exists a set $H_c \subseteq B$ of positive measure such that $|T_c(H_c)| = 1$. The maximal set of lemma 4 contains then the set A since its common part with any subset of A of positive measure is of positive measure.

We can also prove theorem 5 by showing (as in the case of theorem 4) that the characteristic function of the set $T_c(A)$ has a dense set of periods.

Let $f_n(x)$ be any sequence of functions measurable in (a,b); we shall term maximal set of asymptotical convergence, and denote by \hat{E}_c , the empty set in the case when the sequence $f_n(x)$ does not converge asymptotically on any set of positive measure; in the contrary case \hat{E}_c will denote such a set that asymptotical convergence of the considered sequence on any set E implies $|E - \hat{E}_c| = 0$.

The maximal set of asymptotical boundedness, written \hat{E}_b , is defined similarly. Obviously $\hat{E}_c \subset \hat{E}_b$. We can prove the existence of the sets \hat{E}_c and \hat{E}_b similarly as in the proof of lemma 4.

Theorem 6. A. Suppose the conditions (P_a) and (P_b) are satisfied. Then, there exists a set $T \subset (0,1)$ of measure 1 and a measurable set $C \subset (a,b)$ such that C is the maximal set of asymptotical convergence for the sequence (14) for any $t \in T$. Hence the sequence (14) converges asymptotically on C if |C| > 0, and diverges asymptotically on any subset $D \subset (a,b) - C$ of positive measure for any $t \in T$.

B. Suppose the conditions (P_a) and (P_b) are satisfied. There exists a set $T_1 \subset (0,1)$ of measure 1 and a measurable set $B \subset (a,b)$ such that B is the maximal set of asymptotical boundedness for the sequence (14) for any $t \in T_1$. Hence, the sequence (14) is asymptotically bounded on B if |B| > 0, and asymptotically unbounded on any subset of positive measure of (a,b)-B for any $t \in T_1$.

Proof. If, given a set A of positive measure, $|T_c(A)|=0$, we put C=0; in the contrary case, there exists by theorem 5 a set A such that $|T^c(A)|=1$, and we denote by C the maximal set \hat{A} the existence of which is asserted by lemma 4. Suppose first that

$$|D| = |(a,b) - C| > 0$$
.

We will prove that the set T_c corresponding to the set D is of measure 0.

For, if $|T_c| > 0$, applying theorem 4 (part A) we see that there is a set H_c such that $|H_c| > 0$ and $|T_c(H_c)| = 1$, hence $H_c \subset \hat{A}$ if $|\hat{A}| > 0$, contrarily to the definition of the set \hat{A} . In the case $|\hat{A}| = 0$ we get also a contradiction since $\hat{A} = C = 0$. We put now

$$T = egin{cases} T_c(\widehat{A})[(0,1) - T_c] & ext{if} & b - a > |\widehat{A}| > 0, \ (0,1) - T_c & ext{if} & |\widehat{A}| = 0, \ T_c(\widehat{A}) & ext{if} & |\widehat{A}| = b - a. \end{cases}$$

Analogously we can prove

Theorem 6'. A. Suppose the conditions (P_a) , (P_b) and (P_o) are satisfied. There exists a set $T^*\subset (0,1)$ of measure 1 and a set $C^*\subset (a,b)$ such that C^* is the maximal set of asymptotical convergence for the sequence (17) for any $t\in T^*$.

B. Suppose the conditions (P_a') , (P_b) and (P_c) are satisfied. There exists a set $T_a^* \subset (0,1)$ of measure 1 and a set $B^* \subset (a,b)$ such that B^* is the maximal set of asymptotical boundedness of the sequence (17) for any $t \in T_1^*$.

Theorem 7. A. Suppose the conditions (P_a) , (P_b) are satisfied and denote by G_c the maximal set of asymptotical convergence of the sequence (11). If C is the set of theorem 6, part A, then, except a set of measure 0,

$$C \subset G_c$$
.

B. Suppose the conditions (P'_a) , (P_b) are satisfied and denote by F_b the maximal set of asymptotical boundedness of the sequence (16). If B is the set of theorem 6, part B, then, except a set of measure 0,

$$B \subset F_b$$
.

C. Suppose the conditions (P_a) , (P_b) are satisfied and let F denote the set of the points $x \in (a,b)$ of convergence of the series (4), then, except a set of measure 0,

$$F_b \subset F$$
.

Proof. Parts A and B follow immediately by lemma 2 and theorems 1 and 2. To prove C, suppose that $|F_b| > 0$. By the condition (w) of section 1, given any $\eta > 0$, there exists a K and a set $A_n^* \subset F_b$ such that

$$|A_n^i| > |F_b| - \eta$$
 and $|F_i(x)| \leq K$ for $x \in A_n^i$ $(i=1,2,\ldots)$.

Put

$$B_{\eta} = \overline{\lim_{i \to \infty}} A_{\eta}^{i};$$

then $|B_n| \ge |F_b| - \eta$, and $x \in B_n$ implies

$$F(x) = \sum_{n=1}^{\infty} f_n^2(x) \leqslant K;$$

hence in the set $\sum_{n=1}^{\infty} B_{1/n}$ of measure equal to $|F_b|$, we have $F(x) < \infty$; hence $|F_b - F| = 0$.

4. In this section we shall deal with some applications of theorems 6 and 7.

Theorem 8. Let the functions $g_n(x)$ be measurable in (a,b) and put

$$A = E\left\{\sum_{n=1}^{\infty} g_n^2(x) < \infty\right\}.$$

There exists a set $T \subset \langle 0,1 \rangle$ of measure 1 such that for $t \in T$

(a) the series

(21)
$$\sum_{n=1}^{\infty} \varepsilon_n(t) g_n(x)$$

converges almost everywhere in A;

(b) if |A| < b-a, the series (21) is not asymptotically bounded on every subset $E \subset D = (a,b) - A$ of positive measure and

$$\overline{\lim}_{m\to\infty} \int_{E} \left| \sum_{n=1}^{m} \varepsilon_{n}(t) g_{n}(x) \right|^{a} dx = \infty,$$

a being an arbitrary positive number.

Proof. There exists a set $T_1 \subset (0,1)$, such that $|T_1|=1$ and such that for $t \in T_1$ the series (21) converges almost everywhere in A. If |A| < b-a, choose a decreasing sequence λ_n convergent to 0 so that

$$\sum_{n=1}^{\infty} \lambda_n^2 g_n^2(x) = \infty$$

for almost any $x \in D$, and such that for every a > 0

$$\sum_{n=1}^{\infty} (\lambda_n - \lambda_{n+1})^{\alpha} < \infty;$$

then put

$$\begin{split} f_n^i(x) = & \begin{cases} \lambda_n g_n(x) & \text{for} \quad n = 1, 2, \dots, i, \\ 0 & \text{for} \quad n > i, \end{cases} \\ f_n(x) = & \lambda_n g_n(x) & \text{for} \quad n = 1, 2, \dots \end{split}$$

By theorem 6, part B, and theorem 7, part C, there exists a set $T_2 \subset \langle 0,1 \rangle$ such that $|T_2|=1$ and the series

(22)
$$\sum_{n=1}^{\infty} \lambda_n \varepsilon_n(t) g_n(x)$$

is not asymptotically bounded on any subset of D of positive measure if $t \in T_2$. If $0 < \alpha < 1$, $E \subset D$, then

$$(23) \int_{E} \left| \sum_{n=p}^{q} \varepsilon_{n}(t) \lambda_{n} g_{n}(x) \right|^{a} dx \leq \sum_{n=p}^{q-1} (\lambda_{n} - \lambda_{n+1})^{a} \int_{E} \left| \sum_{i=1}^{n} \varepsilon_{i}(t) g_{i}(x) \right|^{a} dx + \lambda_{q}^{a} \int_{E} \left| \sum_{i=1}^{q} \varepsilon_{i}(t) g_{i}(x) \right|^{a} dx + \lambda_{p}^{a} \int_{E} \left| \sum_{i=1}^{p-1} \varepsilon_{i}(t) g_{i}(x) \right|^{a} dx.$$

Now, $t \in T$, implies

$$\overline{\lim_{m\to\infty}}\int\limits_{E}\Big|\sum_{n=1}^{m}\varepsilon_{n}(t)g_{n}(x)\Big|^{a}dx=\infty,$$

for, in the contrary case, the inequality (23) would imply

$$\lim_{p,q\to\infty} \int\limits_{E} \left| \sum_{n=p}^{q} \varepsilon_{n}(t) \, \lambda_{n} g_{n}(x) \, \right|^{a} dx = 0 \, .$$

There would follow the asymptotical convergence of the series (22) on E, which is contradictory. Now it is sufficient to put $T=T_1\cdot T_2$.

icm[©]

Remark. We can prove analogously:

For every row-finite linear method of summability there exists a set $T \subset \langle 0,1 \rangle$ of measure 1 such that the statement (a) of theorem 8 holds; moreover (b) remains true if we replace the n-th partial sum of the series (21) by the n-th transform of this series, and the asymptotical unboundedness of the series (21) by the asymptotical unboundedness of these transforms.

In the following two examples |A|=0, hence |D|=b-a.

(à) Let $\{\varphi_n(x)\}$ be an orthonormal system, complete in L^2 ; choose $e_n \to 0$ so that

$$\sum_{n=1}^{\infty} c_n^2 \varphi_n^2(x) = \infty^4$$

almost everywhere in (a,b) and put

$$g_n(x) = c_n \varphi_n(x)$$
.

(β) Choose an arbitrary function of period l such that

$$0 < \int_0^l g^2(x) dx < \infty,$$

then choose an increasing divergent sequence of numbers β_n and a sequence a_n such that

$$\sum_{n=1}^{\infty} a_n^2 = \infty;$$

write

$$g_n(x) = \alpha_n g(\beta_n x).$$

In the following example |A| < b-a, hence |D| > 0.

 (α') $\varphi_n(x)$ being any orthonormal system composed of equibounded functions, choose α_n as in (β) and write

$$g_n(x) = a_n \varphi_n(x)$$
.

Lemma 5. Let the function f(x) be measurable in (a,b) and suppose that for any x in a measurable set E

$$\overline{\lim}_{h\to 0}$$
 ap $\left|\frac{f(x+h)-f(x)}{h}\right|<\infty$.

Then:

(a) for every $\eta > 0$ the function f(x) is of bounded variation on a set $P \subseteq E$ such that $|E-P| < \eta$.

(b) the set of functions

$$\frac{f(x+h)-f(x)}{b} \quad \text{for} \quad 0 < x \leq b-h,$$

is asymptotically bounded on E.

Proof. The statement (a) is known; for completeness' sake we give its proof using a method due to Saks ⁵). Let |E| > 0, $\eta > 0$; then choose a set $E^* \subset E$ so that

$$|E^*| \geqslant |E| - \frac{\eta}{2}$$

and on which the function f(x) is bounded. By an argument of Saks there exists a set $P \subset E^*$ such that

$$|P|\geqslant |E^{ullet}|-rac{\eta}{2}$$

and

$$|f(x_2)-f(x_1)| \leq 4n|x_2-x_1|,$$

as $x_1, x_2 \in P$, $0 \le x_2 - x_1 < 1/n$, n being a positive integer. Put

$$K = \sup_{x \in E^*} |f(x)|;$$

then, for $x_1, x_2 \in P$, $C_n = 4(K+1)n$,

$$|f(x_2) - f(x_1)| \leq C_n |x_2 - x_1|, \qquad |P| > |E| - \eta;$$

hence it follows (a).

⁴⁾ The completeness of the system implies the existence of such a sequence; see W.Orlicz, Zur Theorie der Orthogonalreihen, Bulletin de l'Académie Polonaise des Sciences et des Lettres (1927), p. 81-115.

⁵) S. Saks, Theory of the Integral, Monografie Matematyczne, Warszawa-Lwów 1935, p. 239-240.

To prove (b), denote by P_h the set of elements x+h with $x \in P$. Choosing $\delta > 0$ sufficiently small, we get for all $|h| < \delta$

$$|PP_h| > |P| - \eta$$
.

Put $A_{\lambda} = PP_{\lambda}$, then

$$|A_h| > |E| - 2\eta$$

and $x \in A_h$ implies $x \in P$, $x + h \in P$; thus by (24)

$$\left|\frac{f(x+h)-f(x)}{h}\right|\leqslant C_{\eta}.$$

This implies in E the condition (w) of section 1 for the family of functions

$$[f(x+h)-f(x)]h^{-1}$$
.

Lemma 6. Suppose the function f(x) is measurable in (a,b) and has a finite approximate derivative in a measurable set E, and put

$$A(\varepsilon,h) = E_{x} \left\{ \left| \frac{f(x+h) - f(x)}{h} - f_{ap}(x) \right| \geqslant \varepsilon \right\}.$$

Then for every $\varepsilon > 0$

$$\lim_{h\to 0} |A(\varepsilon,h)| = 0.$$

Proof. In the case when E is an interval, this has been proved by Khintchine 6). The more general case can be treated similarly. Let |E|>0; by lemma 5, for any $\eta>0$, there exists a closed set $P\subset E$ on which f(x) is of bounded variation and such that $|P|>|E|-\eta$; continuing linearly f(x) on (a,b)-P we get a function g(x) of bounded variation. Since g(x)=f(x) in P, we get $g'(x)=f_{ap}(x)$ almost everywhere in E, the inequality

$$\left|\frac{g(x+h)-g(x)}{h}-f_{\rm ap}'(x)\right|<\varepsilon$$

holds in a set $B_h \subset E$, and we see that for small values of h

$$|B_h| > |E| - \eta$$
.

Now, P_h and A_h having the same meaning as in the proof of lemma 5,

$$|A_h| > |E| - \eta$$
, $f(x+h) = g(x+h)$, $f(x) = g(x)$ as $x \in A_h$,

$$|E-A_{h}B_{h}|<2\eta$$
, $A(\varepsilon,h)\subset E-A_{h}B_{h}$

and

$$\lim_{h\to 0} |A(\varepsilon,h)| = 0.$$

Theorem 9. Suppose the functions $f_n(x)$ to be continuous in (a,b) and the series

$$\sum_{n=1}^{\infty} |f_n(x)|$$

to converge uniformly in (a,b). Moreover, let the functions $f_n(x)$ be differentiable almost everywhere in (a,b), and let $h_i \rightarrow 0$. Denote by A the maximal set of asymptotical convergence of the sequence

$$\sum_{n=1}^{\infty} \left[\frac{f_n(x+h_i) - f_n(x)}{h_i} - f'_n(x) \right]^2,$$

by B the maximal set of boundedness of the sequence

$$\sum_{n=1}^{\infty} \left[\frac{f_n(x+h_i) - f_n(x)}{h_i} \right]^2;$$

finally, write

$$F(x,t) = \sum_{n=1}^{\infty} \varepsilon_n(t) f_n(x),$$

$$F^*(x,t) = \sum_{n=1}^{\infty} \eta_n(t) f_n(x).$$

If |A| < b-a, there exists a set $T \subset \langle 0,1 \rangle$ such that |T| = 1 and for any $t \in T$ the functions F(x,t) are not approximately differentiable almost everywhere in D = (a,b) - A.

If |B| < b-a, there exists a set $T_1 \subset \langle 0,1 \rangle$ such that $|T_1| = 1$ and for any $t \in T_1$

(25)
$$\overline{\lim_{h\to 0}} \left| \frac{F(x+h,t) - F(x,t)}{h} \right| = \infty$$

almost everywhere in U=(a,b)-B.

Studia Mathemathica. T. XII.

An analogous statement holds for the function $F^*(x,t)$.

Proof. It is sufficient to put

$$f_n^i(x) = \frac{f_n(x+h_i) - f_n(x)}{h_i},$$

and to apply theorems 6, 6', and 7 and lemmas 5, 6.

20

^e) A. Khintchine, Recherches sur la structure des fonctions mesurables, Fundamenta Mathematicae 9 (1927), p. 212-279.

of theorem 9 and that

On a class of asymptotically divergent sequences of functions.

307

Theorem 10. Suppose the functions $f_n(x)$ fulfill the hypothesis

$$\sum_{n=1}^{\infty} [f'_n(x)]^2 = \infty$$

almost everywhere in (a,b); then (25) holds for almost any t almost everywhere in (a,b).

An analogous statement is true for the function $F^*(x,t)$.

Proof. By theorem 7, part C, the set B of theorem 9 is of measure 0; we apply theorem 9.

Theorem 11. Let $\varphi(x)$ be an absolutely continuous function of period l such that $0 < \int\limits_0^l \varphi'^2(x) dx < \infty$. Let $a_n > 0$, $\beta_n \to \infty$, $\sum\limits_{n=1}^\infty \alpha_n < \infty$ and put

$$\varPhi(x,t) = \sum_{n=1}^\infty \varepsilon_n(t) \, a_n \varphi(\beta_n x), \qquad \varPhi^{\bigstar}(x,t) = \sum_{n=1}^\infty \eta_n(t) \, a_n \varphi(\beta_n x) \, .$$

If $\sum_{n=1}^{\infty} (\alpha_n \beta_n)^2 = \infty$, then $\Phi(x,t)$ and $\Phi^*(x,t)$ are for almost any t not approximately differentiable almost everywhere.

If $\sum_{n=1}^{\infty} (a_n \beta_n)^2 < \infty$, then $\Phi(x,t)$ is differentiable (in the ordinary sense) for almost any t almost everywhere.

The same is true for $\Phi^*(x,t)$ under a supplementary hypothesis that the function

$$\sum_{n=1}^{\infty} \alpha_n \varphi(\beta_n x)$$

is differentiable almost everywhere.

Proof. For the case

$$\sum_{n=1}^{\infty} (a_n \beta_n)^2 < \infty$$

this was proved in an earlier paper 7) of the author. If

$$\sum_{n=1}^{\infty} (\alpha_n \beta_n)^2 = \infty,$$

 $f_n(x) = a_n \varphi(\beta_n x)$

 $f_n(\omega) = a_n \psi(t)$

Then

put

$$\sum_{n=1}^{\infty} f_n^2(x) = \infty$$

almost everywhere in (a,b) and it is sufficient to apply theorem 10.

(Reçu par la Rédaction le 15. 5. 1951).

⁷⁾ l. c. 2), p. 56-57.