On a class of asymptotically divergent sequences
of functions?)

by
W. ORLICZ (Poznan).

1. A sequence {f,(x)} of functions defined and measurable in a
set A will be said, as usual, to converge asymptotically in A to f(x)
if for every &>0
| B{|fu@)—f(@)[Ze}|>0 a5 n—soo.
We shall denote this by writing
fa(@) = f(@)
The sequence {fn(w)} is said to be asymptotically bounded in. A if,

for every sequemce {#,} of reals, converging to 0, 9,f,(x) _;s_,o,

A class F of measurable functions defined in A i3 called asymp-
totically bounded in A if every sequence of functions belonging
to F is asymptotically bounded in 4.

or if 4 is an interval fn(w)is—rf(w).

~ The class F is asymptotically bounded in A if and only if, given
any n>0, there exists a K >0 such that for every feF

(W) | B{|f(2) | >K}|<7.

In faet, if the condition (w) is satisfied, and f,eF, 4,—~0,
then for arbitrary >0 and n>0

|E{ lﬂnfn(mH}E} ! <777
7 being sufficiently large; hence

Dufal@) =+ 0.

!} The results of this paper were presented on May 20-th 1947 to the
IV-th Congress of Polish Mathematicians in Cracow.
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Conversely, suppose the condition (w) is not satisfied. Then,
there exist an #>0, a sequence {K,}, and a sequence {Fa(®)} such
that K,—>oo, f,eF and

| B{ifo(2) 2K} =0 for n=12,...
Putting 9,=K,?, we get a sequence {ﬂnfn(m)} which does not

converge asymptotically to 0; this is impossible since 9, 0.

‘We shall denote by s,(t) the functions of Rademacher, i. e.
real funections of period 1 defined as follows:

] 0<t<d,
=,—1 if }<i<1,
l 0 if t=0,%;
g,(t)=¢,(2") for ==2,3,...;
put also
Nalt) =% —4,(0)

The sequence {7, (1)} establishes an one-to-one correspondence
between the real numbers which have an unique diadic expansion
and the class of the sequences composed of infinitely many 0’3 and
infinitely many 1’s. Similarly, the sequence {sn(t)] maps the real
numbers onto the set of the sequences composed of +1’s and —1’s.

By well-known theorems, convergenee almost everywhere of

oo
the series >a,e,(f) is equlvalent to Za < co; convergence almost
=

= n=1
everywhere of the series 2%% t) is equivalent to the convergence
=1
w ©
of the series >'a, and }aZ.
n=1 n=1

2. In the sequel, we shall denote by fi(z) functions defined
and measurable in a set 4, and we shall use the following conditions:

(P,) there ewist fumctions f,(x) such that for n=1,2,...

file) (@) as ioo;

(P) the sequences {f}(2));my,.. are asymptotically bounded in A
for n=1,2,...;
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(Py) the series
@® Fy(@)=23[fi(=)]?
ne=1
converges almost everywhere in A for i=1,2,...;

(P,) the series

@) @,(0)=3 (o)

n=1
converges almost everywhere in A for i=1,2,...
- To point out in which set A there are defined the functions
for which one of the above conditions is fulfilled, we shall say that
this condition is fulfilled in the set A. If A denotes an interval, we
shall say that the condition (P,) ((P,) or (P,)) 4s satisfied.
Put, for ¢=1,2,...,

3) Fmt)=3 e (0filo),
(5 Filwt)=3 mt)f@).

- The functions (3) have sense for almost any ¢ almost everywhere
in 4 if and only if the condition (P,) is satisfied in 4. Similarly,
the functions (3*) are defined for almost any # almost everywhere
in A if the conditions (P,) and (P,) are fulfilled in the set 4. Thege
facts are consequences of the theorem of Fubini and well-known
theorems of Rademacher and Khintehine-Kolmogoroff.

Suppose now the condition (P,) to be satisfied in 4; write

@) Fo)=Sfw, (5)

n=1

D)= 1,(x)

n=1
for zeA, and

(6) F@,t)= e, ()], (@), (6%) F*(@,t)=3'n,(1)f,(x).
n=1 n=1
The function F(x,?) has sense for almost any t€{0,1> almost
everywhere in A if and only if F(x)<oco almost everywhere; an
analogous condition for F*(x,t) is that F(z)<oco and that the se-
ries (5) be convergent almost everywhere in 4.
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3. Lemma 1. Suppose that

(a) Dbl<oo  for i=1,2,...,

n=1
and that the sequence

Ti(t) =§lbinen(t)

converges asymptotically in a set EC 0,1 of positive measure;
then there exist b, such that

) lim Y'(b,,—b,)?=0.
>0 n=1

Conversely, (7) implies asymptotical convergence in {0,1) of
el

the sequence {T;(1)} to the function 3'bs,(t).
n=1
Lemma 1. Suppose the condition (a) of lemma 1 is satisfied

and let the series B;=)b,, converge for i=1,2,... If the sequence
n=1

T3 ()= (1) bsn
n=1
converges asymptotically in a set ECK0,1) of positive measure,

then there emist b, such that (7) holds and there ewists the limil
(8) lim B,=B.

i>o0

In particular, if
s [1 & 1 G
o) 720025 (5 St J 000,
then B=>'D,.
n=1
Conwersely, (7) and (8) imply
as [1 1 o
R by busalt) -

Proof. Lemma 1 and a part of lemma 1’ are proved in an
earlier paper of the author?). We shall only complete the proof of

2y W. Orlicz, Sur les fonctions continues non dérivables, Fundamenta Ma-
thematicae 34 (1946), p. 45-60.

19
Studis Mathematica. T. XII.
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lemma 1'. Since
T*(t)= B, —$T4(1),
the asymptotical convergence of the sequence T} (t) in a set of positive

——>2 b8, (1)

m=1

measure implies (7)%) and, by lemma 1, T, implies

(8). Conversely, (7) and (8) imply

s &
T, () = 3 bue,(t),
n=1
and this yields (9) with the first member on the right-hand side re-
placed by B/2.

TLemma 2. Let Q be the Cartesian product of two bounded sels A
and B of positive measure, and let the functions f,(x,y) be measurable
in Q. If for every wed

(10) fi(myy)’:i*f(m’ )

then the sequence f,(m,y) converges asymptotically in the set Q to a
funciion f(w,y) which, for almost every zed, is equal to f(x,y) almost
everywhere in B.

If fi(m,y)—a:ﬂ»f(m,y), then there exists a Ssequence {@k} of indices
such that
as
(107) fik(x;('l)?f(x’?/)
almost everywhere in A.
Proof. We prove first the second part of the lemma. Put

_ [ oy ~T@)
hi(m)—i! 1+ flz,9)— fl@,y)]

By hypothesis

f d”_”mf o:9) —f(’j)ql/nd”d””’m

hence, there exists a sequence {i} of indices for which h, (#)—0
almost everywhere in A, and this implies (10').

) ibidem, p. 52-54.
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To prove the first part, choose two sequences of indices {@k}
and {j,}, and write

ol ‘Bf IF 1fy @9 —F, @,9)]

Since 0<{g,(#)<|B|, and since by hypothesis g,(z)—>0

Vi (wyy)_ff (’E’y)]
o) do= > .

)

drdy —0;

hence f;(z,y) converges asymptotically in @ to a funetion f(m,y)
By the second part of this lemma, for almost every xeA, we have

f(z,y)=F(x,y) almost everywhere in B.

Lemma 3. Let the conditions (P,) and (P,) be satisfied in A
and put

(1) Ga-(m)=zj‘l (@) —fo(@) T,

lFi(w:t)”‘F(mytH
¢ 1+ 1 Fia,t)—F(z,t)]

(12) hy(@)= di.

Then G wg)—0 if and only if h(xy)—0; Gi(m);—w if and only if
as

hi(m)TO.

Proof. If G;(x,)—0, then the series (4) converges at x,; hence
the integrand in formula (12) is defined at x=u=, almost everywhere
in <0,1). Putting in lemma 1

bmzﬁz("”o): bnzfn(mo)!
we get

as
Fy(xg,1)—F(zy,1);

hence k;(z,)—0. Conversely, if h;(x,)—0, then F,(z,,t) and F(z,,?)
are defined for almost any #, and the same holds for the series (4)
with @=ux,. Thus, the series G;(x,) converge for i=1,2,..., and it
is sufficient to apply lemma 1. The second part of the lemma
follows trivially from the first.

19%*
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We can prove similarly
Lemma 3'. Lat the conditions (Py), (Py) and (P,) be satisfied
in A and put
1
| Fy(w, ) —F* ( 0l
(13) = T8 t
1F [ B (m,t)—F*(a,1)
Then

dt.

(a) G,(m)—0 and B(xe)—>Plx,) if and only if hi (@) —>0;
(b) Gi(m)%s;»() and D,(x )~>(D ) if and only if n; .E)— » Q).
Theorem 1. Let A be a bounded set of positive measure, and

let Q be the Cartesian product of A with the interval (0,1>. If the
condition (Py) is satisfied in A and the sequence

(14) {Fq;(m5t)}

converges asymptotically in Q, then the condition (P,) is fulfilled in A
and :

(15) Gi(m)—}io.

Conversely, if the conditions (P,) and (Py) are satisfied in A
and (15) holds, the sequence (14) converges asymptotically in @ to
F(z,1).

Proof. The asymptotical convergence of the sequence (14)
implies by leama 2 that there is a set A, such that

| 4—A4,]=0,
and

Fy (@) ~Fy(@,0)->0 as kl->oco and wed,,

i, being a sequence of indices; hence by lemma 1

S (@) D (@) P~0 as k>0 and med,.

n=1

Thus, there exist functions f,(x) in 4 such that @; (x)—0 almost

e?rerywhere in A. In the above argument, the sequences {i,} and
{z,} may be‘ replaced by subsequences of any two prescribed se-
quences, and this implies that, f,(#) being previously defined, every
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subsequence of the sequence {G—i(m)} contains a partial sequence
convergent to 0 almost everywhere in 4. Hence (15) holds and
this in its turn implies the condition (P,) in A.

Suppose now the conditions (P,), (P,,) and (15) are satisfied
in 4. By lemma 3 a subsequence F, (z,t) coaverges to F(z,t) for
almost any #€{0,1) almost everywhere in A, and by lemma 2

n

Hence the sequence (14) also converges asymptotically in @ to
F(x,t) since this argument may be repeated for any sequence
extracted from (14).

7, (;r,t)%lf’(.x‘,t).

Theorem 2. The sets 4 and Q having the same meaning as in
theorem 1, suppose the condition (Py) is satisfied in A and the se-
quence (14) is asymptotically bounded in Q. Then the condition (Pg)
is satisfied in A and the sequence

(16) {Fi)}
is asymptotically bounded in A.

Comversely, if the condition (P,) is satisfied in A and the se-
quence (16) is asympiotically bounded in A, then the sequence (14)
is asymptotically bounded in Q.

Proof. Let 9,~0; the proof results from the definition of agsym-
ptotical boundedness and theorem 1 applied to the sequence

B, )=V [0 By 0,00 = 3 a0V B @)

Theorem 3. The sets A and @ having the same meaning as in
theorem 1, suppose the conditions (P,), (Py) and (P,) are satisfied
in A and the sequence

an {F7 e 1)}

-

converges asymptotically in Q o F*(x,t); then (15) holds and
(18) (@) > B(®).

Conversely, if the conditions (P,), (Py) and (P,) are satisfied
in A, and (13) and (18) hold, then the sequence (17) converges asym-
plotically in Q to F*(x,1).
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Theorem 3'. The sets A and Q having the same meaning as in
theorem 1, let the conditions (P,) and (P,) be satisfied in the set A.
If the sequence (17) is asymptotically bounded in @, then the condition
(P.) is satisfied in A and the sequences (16) and Py(w) are asymp-
totically bounded in A.

Conversely, if the conditions (Py), (Py) and (P,) are satisfied
in A, and the sequences (16) and {@(x)} are asymptotically bounded
in A, then the sequence (17) is asymptotically bounded in Q.

Proof. Theorems 3 and 3’ follow immediatly from theorems 1
and 2, and lemma 3.

If the condition (Pp) is satisfied in 4, we shall denote by T,
or T, the sets of these t¢¢0,1> for which the sequence (14)
converges asymptotically or is asymptotically bounded in a subset
of A of positive measure, respectively; T%,T; will denote the ana-
logous sets for the sequence (17) with a supplementary hypothesis
that the condition (P,) is fulfilled in A.

Theorem 4. A. If the conditions (P,) and (Pp) are satisfied
in A, then

(a) either |T,|=0 or |T,|=1.

In the second case, there is a set H, (A of positive measure such
that the sequence (14) converges asymptotically in H, to the function (6)
for almost amy t.

B. If the conditions (P,) and (P,) are satisfied in A, then

(b) either |T,|=0 or | Ty |=1.
In the second case, there ewists o set H,C A of positive measure such
that the sequence (14) is asymptotically bounded in H, for almost any t.

) .Proof. Denote by U the family of all sets which consist of

a finite number of intervals with rational end points. For any t write

(19) Bt AE{MZe 19 () f£3><w>11<i}-
8

For any AeU write
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these sets are measurable. We shall prove that either
[K0,1> By(4)|= or  [€0,13By(4)|=1.

Let t, be a number of finite diadic expansion, let co—t-Zt‘l/"‘
i=1

be this expansion, and write =i+1t,. By the equality &(i i —a(t)
for I=m,

te Anip(4)

I
)

e
Thae

P
implies

oo (=]

i€ [T 5 4f1(4)

p=0 k=1
Hence feBi(4) if teB3(4). Thus, the characteristic function w(f)
of the set B:(A4) has a dense set of periods; hence, by well-known
theorem, either w(f)=1 or w(f)=0 almost everywhere.

Suppose that the set T, is not of measure 0; then its outer
measure is positive. Then, there exists a set T' LT of positive
outer measure, and a number A>0 such that for teT' the se-
quence (14) converges asymptotically in a set BEC A (depending
on t) of measure not less than 2; further, given any positive in-
teger 7, there exists a set I"'CI” of positive outer measure and
a set 4,C4 (non depending on t) sueh that teT”" implies

1
|4,—B|+|E—4,1<55

It follows immediately that T' CBi(4,), hence | B5(4,)|>0 for
r=1,2,... and this implies
[€0,1> B(4,)|=1.
Put
T,=<0,1 [] [] Bi(4,), H=lmd4,.
s=1 r=1

70
Here |T,|=1 and |H|>1>0, for hm]AA,l}l.

T—)'OO

Let teT,, and choose ¢>0 and n>0 arbitrary, then let sy, 7
be integers such that s,>2fe, ry>6/n and such that

IAZA H1<~

=7,
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Since teB °(4,), there exists a I(r) such that I>1(r) and p,g=k, (1)
imply (19) (when s=s;) in a set E:;wa’(t) for which

1
| Ar_ArE:f;(t) |< F'
Choosing », >, 50 that

A4, —AS 4, < =

="
and writing
rl
ly=max l(r), BM=ZA,E%’0(1),
LSy r=r, n
we get
1 2
A > A —B L
1 2 g g+(r +1)2+ < <2 6,
1
|H—HB,,|< 3

Since teHB" , We obtain, for weHB,, and p,q> max k(I(r)),
=% TOSrgrl
L 1 ¢
] 3 e, P09 (@) << -
n=l 8o } 2

The condition (P,) being satistied in 4, we can choose p,q so large
that, moreover, the inequality
1—1

len(t)[fif”(m)~fﬁ.q)(w)] <

n=

is sa.tifsﬁed in a set C,,CH, for which | H—0Cp, | <n/2.
Finally, note that for the set .

4,,~HB 22 Cna
we have

| H—A4,,[<n,
and that in this set

I‘Fp(m!t)_Fq(w’t)l<8
for p,q sufficiently large, and this shows that the sequence (14)
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converges asymptotically in H if teT;, and by theorem 1 its limit
is F(x,t) for almost any .

The proof in the case B is analogous.

Similarly as the above theorem we can prove

Theorem 4'. A'. If the conditions (P,), (Py), and (P,) are
satisfied in A, then

(a) either |Ta|=0 or |T3|=1.
In the second case there exists a set Hy C A of positive measure such
that the sequence (17) converges asymptotically on H, for almost any t.

B'. If the conditions (Pp), (P,) and (P,) are satisfied in the
set A, then

(b') either |Ty|=0 or |Ty|=1.
In the second case the sequence (17) is asymplotically bounded in a set
H; C A of positive measure for almost any 1.

3. In this section we shall suppose that the functions fi(w)
are defined in an interval (a,b), and we shall denote by T,(4) and
T,(4) the set of those te(0,1) for which the sequence (14) converges
asymptotically or is asymptotically bounded in 4, respectively;
T%*(A) and T;(A4) will denote analogous sets for the sequence (17).

Lemma 4. In the class M, of sets for which |T,(A)|=1 there
exists a maximal set A (i. e. such a seb that 4 W, implies | A —A |=0).

Analogous statements hold for the classes of sets for which

ITy(4)|=1, |T;(4)]=1 and |Tj(4)|=1

Proof. A4, denoting the empty set, define by induction sebs

A, e, so that

(20) M=yt )| S A= (At ),
then put
A=34,.
n=1
It is obvious that, for any AeM,,
jA—A|=0

Since the sequence (14) converges asymptotically on A ast belongs to
the set []T.(4,), hence AeM,.
n=1
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Theorem 5. Under the assumptions of theorem 4 either

IT(4)[=0 or  |T(4)|=1,

and an analogous statement holds for the set Ty(A).
Under the assumpiions of theorem 4 analogous alternatives
hold for the sets Ti(A) and TH(4).

Proof. We shall prove only the case of the set 7 (4). If
|T,(4)| >0, then |T (B)|>0 for any set BC 4 of positive measure.
By Theorem 4 there exists a set H,C B of positive measure such
that |T,(H,)|=1. The maximal set of lemma 4 contains then the
set A since its common part with any subset of A of positive mea-
gure is of positive measure.

We can also prove theorem 5 by showing (as in the case of
theorem 4) that the characteristic function of the set T,(4) has a
dense set of periods.

Let f,(x) be any sequence of functions measurable in (a,b);
we shall term mawimal set of asymptotical convergence, and denote
by E,, the empty set in the case when the sequence fo(2) does not
converge asymptotically on any set of positive measure; in the
contrary case B, will denote such a set that asymptotical conver-
génce of the considered sequence on any set E implies |E—E,|=0.

The maxzimal set of asymptotical boundedmess, written B,
is defined similarly, Obviously E'GCEO. We can prove the
existence of the sets Z, and £, similarly as in the proof of
lemma 4.

Theorem 6. A. Suppose the conditions (P,) and (P,) are satis-
fied. Then, there ewists a set T C (0,1) of measure 1 and a measu-
rable set (' (a,b) such that (' is the mawmimal set of asymptotical
convergence for the sequence (14) for any tel. Hence the se-
quence (14) converges esymptotically on C if |0|>0, and diverges
asympiotically on any subset DC (a,b)—C of positive measure for
any teT.

B. Suppose the conditions (P,) and (P,) are satisfied. There
exrists a set T, (0,1) of measure 1 and a measurable set BC (a,b)
such that B i3 the mawimal set of asymptotical boundedness for the
sequence (14) for any teT). Hence, the sequence (14) is asymptotically
bounded on B if |B|>0, and asympltotically unbounded on any subset
of positive measure of (a,b)—B for any tel,.
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Proof. If, given a set 4 of positive measure, [T, (4)]=0, we
put C=0; in the contrary case, there exists by theorem 5 a set 4
such that |T¢(4)]=1, and we denote by C the maximal set A the
existence of which is asserted by lemma 4. Suppose first that

|D|=1(a,b)—C|>0.

We will prove that the set T, corresponding to the set D is of mea-
sure 0.

For, if |T,|>0, applying theorem 4 (part A) we see that
there is a set H, such that |H,|>0 and |T,(H,)|=1, hence
H,C A4 it |4|>0, contrarily to the definition of the set A. In
the case | 4]=0 we get also a contradiction since 4 =0=0. We put
now

TA)0,)—T] it b—a>|4]>0,

T=1{(0,1)-T, if |4
A

|=0,
T(4) it |A|=b—a.

I

Analogously we can prove

Theorem 6. A. Suppose the conditions (P,), (Py) and (P,) are
satisfied. There exists a set T*C(0,1) of measure 1 and a set
C*C (a,b) such that C* is the maxvimal set of asymptotical conver-
gence for the sequence (17) for amy tel™.

B. Suppose the conditions (Py), (Py) and (P,) are satisfied. There
exists a set T3 C (0,1) of measure 1 and a set B*C (a,b) such that
B* is the maximal set of asymplotical boundedness of the sequence
(17) for any teT;.

Theorem 7. A. Suppose the conditions (Pp), (Py) are satisfied
and denote by G, the maximal set of asymplotical convergence of the
sequence (11). 1f C is the set of theorem 6, part A, then, except a seb
of measure 0,

Cdq,.

B. Suppose the conditions (P,), (Py) are satisfied and denote by
F, the maximal set of asymptotical boundedness of the sequence (16).
If B is the set of theorem 6, part B, then, except a set of measure 0,

BCH,.
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C. Suppose the conditions (P,), (Py,) are satisfied and let F de-
note the set of the points we(a,b) of convergence of the series (4), then,
except a set of measure 0,

r,CP.

Proof. Parts A and B follow immediately by lemma 2 and
theorems 1 and 2. To prove C, suppose that [F,|>0. By the con-
dipion (w) of section 1, given any 5> 0, there exists a K and a set
A} CFy, such that

[AY > Fy|—y and |Fya)|<K for medi (i=1,2,...).
Put
B,=lm A%;

100

then |B,|>|F,|—7, and zeB, implies
Flo)=)fi(@s)<K
n==1

0
hence in the set 3 Bj, of measure equal to |F,|, we have F(x) <oo;
n=1
hence |F,—F|=0.
4. In this section we shall deal with some applications of theo-
rems 6 and 7.

Theorem 8. Let the functions g,(x) be measurable in (a,b)
and, put

A=B|3 gi(v) <oo}.

‘ There exists a set TC.<0,1> of measure 1 such that for tel
(a) the series
2
(21) 2 enlt) g (@)
n=1
converges almost everywhere in A;
(d) if |A|<b—a, the series (21) is mot asymplotically bounded
on every subset BHC D=(a,b)—A of positive measure and

i [ 28 () g ()

dw:oo,
m—)mE =1

a being an arbitrary positive number.
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Proof. There exists a set T, {0,1%, such that |T;|=1 and
such that for teT, the series (21) converges almost everywhere
in 4. If |A]<b—a, choose a decreasing sequence A, convergent
to 0 so that

Z 292 (0)=

for almost any «eD, and such that for every a>0

.24 Apyq) <00

then put

1 () = | Aago(z) for m=1,2,...,%,
" lo for n>i,
fu@)=20,(x) for n=1,2,...

By theorem 6, part B, and theorem 7, part C, there exists
a set T, <0,1) such that [T,|=1 and the series

Lo
(22) 2 A (£)9n(2)
n=1
is not asymptotically bounded on any subset of D of positive mea-
gure if teT,. If 0<a<l, ECD, then

g—1 n o
Jl S et Angala) | < n,__z_’pczn—am)“f | Zedvato)| o

@) .
—H;EHZ’IaL dT—H“” ys ) 9; fr)\

Now, teT, implies

lim f\Za

m—yoo K n=1

for, in the contrary case, the inequality (23) would imply

ludm o0,

m [ 3 e,02,0,0)| d=0.

p,g—>0 B 'n=p
There Wouid follow the asymptotical convergence of the se-
ries (22) on F, which is contradictory. Now it is sufficient to
put T=T,-T,.
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Remark. We can prove analogously:

For every row-finite lincar method of summability there exists
a set TC{0,1) of measure 1 such that the statement (a) of theorem
8 holds; moreover (b) remains true if we replace the n-th partial sum
of the series (21) by the n-th transform of this series, and the asympto-
tical unboundedness of the series (21) by the asymptotical unbounded-
ness of these transforms.

In the following two examples | A|=0, hence |D|=bh—a.

(¢) Let {:pn(w)} be an orthonormal system, complete in L?;
choose ¢,—0 so that

2 agnle)=c0t)
almost everywhere in (a,b) and put

o (@)=0, 0, ().
(B) Choose an arbitrary function of period I such that
1

0< [ @)de <oo,

0

then choose an increasing divergent sequence of numbers 8, and a
sequence a, such that

2 th=00;
n=1
write
In(®)=0,9(B,,2).

In the following example |4 |<b—a, hence |D|> 0.

(«') (=) being any orthonormal system composed of equi-
bounded functions, choose o, as in (8) and write

gn(m)zaﬂ,‘i’n(m) .

4) The completepess of the system implies the existence of such a me-
quence; see W Orlicz, Zur Theorie der Orthogonalreihen, Bulletin de 1'Aca-
démie Polonaise des Sciences et des Lettres (1927), p. 81-115.
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Lemma 5. Let the function f(x) be measurable in (a,b) and sup-
pose that for any z in a measurable set E

0| h !

Then :

(a) for every 7> 0 the function f(x) is of bounded variation on
a set PCE such that |E—P|<n,

(b) the set of functions

ﬂiﬂf}ifﬁ jor O<x<b—h,

is asymptotically bounded on E.

Proof. The statement (a) is known; for completeness’ sake
we give its proof using a method due to Saxs?). Let | E|>0, #>0;
then choose a set BE*CE so that

1
| B> Bl— 5

and on which the function f(z) is bounded. By an argument of
Saks there exists a set PC E* such that

n
Pz |— 0
and
[flaes) —f (o) | <dn |2 —a ],

as #;,x,6P, 0@, —ay<l/n, n being a positive integer. Put

E=sup [f(#}];

zeE*

then, for z,,z,eP, C,=4(K+1)n,
(24) [f(e) —F() | <Ol e —a |,

hence it follows {(a).

| P> E|—n;

5) 8. Saks, Theory of the Integral, Monografie Matematyczne, Warszawa-
Lwéw 1935, p. 239-240.
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To prove (b), denote by P, the set of elements @+ with zeP.
Choosing 6> 0 sufficiently small, we get for all [h|<6

[PPy|>|P|~7.
Put 4,=PP,, then
' [Ay|> B =2,
and wed, implies xeP, x-heP; thus by (24)
flw-+h)—f(z)

h

This implies in B the condition (w) of section 1 for the family of
functions

<0,

[Hw+h)—f(2)h ™
Lemma 6. Suppose the function f(x) s measurable in (a,b)
and has a finite approximate derivative in a measurable set B, and put

Afe,h) fan()

>s}~

Then for every e>0

lim [A(e,h)|=0.

k>0

Proof. In the case when FE is an interval, this has been proved
by KurnroHiNg ¢). The more general case can be treated similarly.
Let | E|>0; by lemma 5, for any »> 0, there exists & closed set PCE
on which f(#) is of bounded variation and such that |P|>|E|—n;
continuing linearly f(x) on (a,b)—P we get a function g(z) of boun-
ded variation. Since g(z)=f(z) in P, we get ¢ ()=, (z) almost
everywhere in E, the inequality
|g(e+ ) —g(@)

o o) <o

holds in a set B,C E, and we see that for small values of h
[By|=>1B|—mn. .
Now, P, and 4, having the same meaning as in the proof of lemma 5,

451> | Bl—7n,  fe+h)=ga+h), fl@)=gla) as wed,,

) A. Khintchine, Recherches sur la structure des fonctions mesurables,
Fundamenta Mathematicae 9 (1927), p. 212-279.
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h being sufficiently small; hence

[B—A4,B|<2n,  A(e,h) CE—A4,B,,
and
lim| A (e, k)| =0.
>0

Theorem 9. Suppose the functions f,(x) to be continuous in
(w,b) and the series

g 1,(2)]

to converge wniformly in (a,b). Moreover, let the funciions f,(x) be
differentiable almost everywhere in (a,b), and let h,—>0. Denote by A
the maximal set of asymptotical convergence of the sequence

o By — Py
2 {M—ﬁ(m)] ,

h,
n=1 i
by B the mazimal set of boundedness of the sequence

| Fal@ 1) —Fa(@)]?
2 l“— h; ] !

n=1 K
finally, write

Plo,t)= zjlen(nfn(m),

0

F(@,t)= 2, na(0)fn(2)-

. n=1
If |A|<b—a, there cwists a set TCL0,1y such that |T|=1
and for any teT the functions F(x,1) are not approvimately differen-
tiable almost everywhere in D=/(a,b)—A4.

If |Bl|<b—a, there ewists a set T, C<0,1> such that |T:|=1
and for any teT, .
h,t)—F(x,t
(25) fim ap F(z+ }I)L ( ’).—_oo

>0

almost everywhere in U=(a,b)—B. ) )
An analogous statement holds for the function F~(z,%).

Proof. It is sufficient to pub

2+hy) —1,.(®)

i) R T,
hi

and to apply theorems 6, 6’, and 7 and lemmas 5, 6.

Studis Mathemathica. T. XIL. 20
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Theorem 10. Suppose the functions f,(x) fulfill the hypothesis

put :
of theorem 9 and that 1. (@) =a,0(B,2)-
3 [f,(@)]2=c0 Then .
n=1
2 fae)=
almost everywhere in (a,b); then (25) holds for almost any i almost n=1
everywhere in (a,b). almost everywhere in (a,b) and it is sufficient to apply theorem 10.

An analogous statement is true for the function F*(w,t).

Proof. By theorem 7, part C, the set B of theorem 9 is of
ve g g 9.
meagure 05 we apply theorem (Regu par la Rédaction le 15. 5. 1951).
Theorem 11. Let (p( } be an absolutely continuous f'zmctio'n of
period 1 such that 0<fl;7’2 r)dr <oco. Let a,>0, B,~>oo, 2 a,<<co

and put

= Setaptan), 0@ 0= 3 n0)ap(b.o)

If Z(QMﬂn t—oo, then ®(x,t) and O*(z,t) are for almost any t
not appromma,tely differentiable almost everywhere.

If 3 (a,8,)2<occ, then ®(x,t) is differentiable ('m the ordinary
11-—1
sense) for almost any t almost everywhere.

The same is true for ®*(z,t) under a supplementary hypothesis
that the fumetion

o

2, 49 (B, )

n=1
is differentiable almost everywhere.

Proof. For the case
s
2 (a,f,)2 <00
n=1
this was proved in an earlier paper’) of the author. If

Z(nﬂ)‘—ooj

n=1

YL e, p. 56—57. 20*
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