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that awg<aqy for »(&)=z(1). By induction we can define an w

; . - _ g
Sequence, (@), With @i <d.u-5y, a well known impossibility
Thus A<w,. ’

It ¥ ag=k;+-o?, then for some g,

£70,

o
S =0,

050,
Let {b§}§<me be any permutation of the elements of {as}. As o, is
regular, we are able to repeat the procedure given in [1] and find
a 0, so that
\‘Y

2 bi=ad
2030,

Thus the value of 3 b: is determined by ealculating the value of

£<o,

u i . P
g‘?‘éubg' }Tor each 6, there are Ry litferent subsets of {as} of power §,(2],
=5 .
and #y° permutations of the elements of each set. Hence

- Ga N
N( X a:) < X 55 :sgg.

_Eqwe Bu":"‘@

Suppose Ro=Rep1. Let ag=0wqqq for §<wg, and ag=1 for &
Then N(Xag)=8,1; and the theorem is proved.

= We.

Theorem 2. If w, is a regular ordinal and fagds s
decreasing transfinite sequence of ordinals, then N .-‘Ja_e.:i.

Proof. Let w, be regular and 1as) non-decreasing. For Dsls o .
& permutation of the elements of {ag), let byy=b,>a, and >surf)’-
pose defined {byg];. 00 Lt 29 he the smallest ordinal 7, 23> 7(&)
&< 0. Sinece o, 18 regular, and since there are 8, elements a,, [12,2 aaj
we can find a by >>apy, with (0} > 4y. Therefore o v

2 <Sb,(_;) <X

A similar procedure yields bs< ag, so that the equality sign
holds. ) )
In conclusion we remark that if 1 is a non-regular
ber, then there exists an increasing sequence
mutation {l¢le; such that Xae < b,

&4 non-

limit num-
{ag}ecs and a per-
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On models of axiomatic syvstems.
By

A. Mostowski (Warszawa).

This paper is devoted to a diseussion of various notions of
models which appear in the recent investigations of formal systems.
The discussion will be applied to the study of the following pro-
blem: Given a formal system S based on an infinite number of
axioms d4,.4,.4;,... is it possible to prove in § the consistency of
the system based on a finite number .4;, 4, ..., 4, of these axioms?

1. Notations and definitions. We shall consider two sys-
tems & and s based on the functional calenlus of the first order?).
‘We shall not describe these systems in detail but give only some
definitions which will be required later.

System s. We assume that the following symbols oceur among
the primitive signs of s:

1. Variables: », iy, 05,...,2,0,2,...

2. Individual constants: fi,...,fa.

3. Funetors (i. e. symbols for funetions from individuals to
individuals): gy,....42. We denote by ¢; the number of arguments
of g; (j=1,....7).

4. Predicates (i. e. symbols for relations): r,...,r,. We de-
note by p; the number of arguments of r; (i=1,...,9).

5. Propositional connectives and quantifiers. We use
the symbol | for the “stroke function” and define other eonnec-
tives in terms of the stroke. Quantifiers are denoted hy symbols
(Haxy) and ().

Among expressions which can be constructed from these signs
we distingunish the following:

6. Terms. Variables and individual constants are terms. If
Ty, Ty; ave terms, then so is gj(l“l....,]",,j), j=1,...,p.

Terms will be denoted by the letters I',I7,I%,...

1) For the functional caleulus of the first order see e. g. Church [1].
Chapter II.
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‘ 7. Blementary formulas are expressions of the form
{17y, ..., Ip) where Iy,.., I, are terms. Elementary formulas il

be denoted by the letters B, I, E,,...

) 8. Prime f.or.mula,s are elementary formulas in which no
variables oceur. Prime formulas will be denoted by the letters
P,P,P,,..

9. N.I atrices. Elementary formulas are matrices. Tf AL and M,
ar'e matrices, then so are M,|M, and (&) 3, for i=1,2,... Matrice:
will be denoted by the letters 3, 3, IL,, ... '

Note that matricgs containing propositional connectives other
than the stroke are easily definable by means of matrices containing

only the stroke symbol. We shall oceasionall i
irpine stro y use the following

MO for I,

Mt for ~M,
;;M,- for Myv..v M.,
I3, for 1r..31,.

=1
- .10. Free and bound variables. Substitution. The dis-
tinetion between. free and bound variables is assumed as known
The formula which results from a formula A by the substitution'
of the terms I7,...,7, for the variables &yy...,2n will be denoted by
Subst A(ay /T, ...,0,/T).

The operation of substitution is always performable when 4 is
a term. If .A Is a matrix, it is sometimes necessary to re-name the
bo@d variables occurring in 4 in order to make sure that the ope-
ration Subst can be performed. We shall always assume that the
necessary changes in the bound variables of 4 have been per-
formed before the operation Subst has been applied 2).
11. @-matrices. These are matrices in whi
) ch -
riables occur. no bownd a
12. Axioms. We assume that the axiom ini
55 ‘ ; s of s are finite in
number and haw.e the form of Q-matrices in which no constants
functors, or predicates oceur besides those which were enumerateci
in 2, 3, and 4. The axioms will be denoted by
e O (%Y, ...,2), i=1,...,6.

%) An exact definition of th. i is gi in (
op. 5608 e operation Subst is given in Church [1}.

icm
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13. The rules of proof admitted in s are the usual ones.
We adjoin to them the rule of explicit definitions and the e-rule %).
We shall add a few words to explain the e-rule. To this end
we define recursively the notions of e-terms and e-matrices.
The terms and matrices defined in 6 and 7 are eterms and
g-matrices. If I Iy,....I; are s-terms, then

Subst T'{@y [ Tyy.ee T Lx)

is an e-term provided that (i) #;,...,&s, are the free variables of T
(ii) the bound variables of I" are not free in Iy,...,I%. If Fy,..., T
are e-terms, then r(Iy,...,Ip,) is an e-matrix (i=1,...,y). If M, and M,
are s-matrices, then so are M| M, and (Ha;) M. If I is an e-matrix,
then (ex) )M is an e-term.

The e-rule states that for every s-mafrix M the matrix

M D Subst I (a; ] (ex;) M)

can be assumed as a theorem of s.

The question arises whether the assumptions concerning the
form of axioms and rules of proof (cf. 12 and 13) are general enough
to cover the cases of standard formal systems based on a finite
number of axioms. The answer is affirmative. To see this we re-
mark that the e-rule enables us to get rid of quantifiers in the axioms
provided that we introduce a sufficient number of e-ferms?). Since
the explicit definitions are allowed in s, it follows that we can bring
the axioms to the form of Q-matrices provided that we add a suf-
ficient number of gymbols to the symbols enumerated in 2 and 3.
The resulting system then satisfies our assumptions and is equi-
valent to the given ome provided that suitable definitions are intro-
duced into the latter.

Example. Let one of the axioms have the form

(i) () (Ly) M, y)-
We introduce a new functor g(#) and an axiom
(i) M(z, g(2)).

Clearly (i) is deducible from (ii). Conversely (ii) can be ob-
tained from (i) by means of the erule and the explicit definition
g(x) = g5 M(2,y)-

3) The ordinary rules of proof for the functional caleulus are given e.g.

jn Chureh [1], p. 40. For the g-rule see Hilbert-Bernays [5], pp. 9-18.
4) See Hilbert-Bernays [5], pp. 16-17.
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System §. The structure of § will be assumed similar to

those of s. We shall, however, not assume that the number of
axioms of § is finite. Furthermore we shall assume that § con-
tains an arithmetic of integers t0 an extent which allows us to
arithmetize in § the syntax of s and to prove in § the basic theo-
rems of mathematical logic, e. g., the completeness theorem of
Godels). We shall use freely in § the arithmetical notions such
as identity, sum, product ete.
) 14. Arithmetical counterparts of syntactical notions
will be denoted by words printed in spaced italics. For instance
matriz is short for a matrix of § with one free variable which is
satistied exclusively by the Godel numbers of matrices of s. The
acbual construction of such a matrix is not needed; it suffices to
know that it can be constructed.

To simplify the notation we shall often use in § the non-formal
language and write, for example,

‘@ is a maitriz of s

instead of matriz (). Translations of such non-formal formulas to
the official language of § will always be possible §).

The following constants will be used in 8:

15. 3 for the functor of § such that 31732 335 -+~ are the variad-
les of s. In other words 3% is the G&del number of the variable z,
(i=1,2,...).

16. f;,...,fe for the individual constants, gy,...,gg for the
functors, and y;,...,v, for the predicates of s. In other words fr
is the Gédel number of fis 8; that of g;, and v that of Tey 1=1
j=1,...,8, k=1,...,y.

17. Arbitrary terms will be denoted by letters ¢,t;,1,,..., ar-
bitrary elementary formulas by letters e, ey, e,,..., arbitrary prime
formulas by letters D)P1sPy -+, @0d arbitrary matrices by letters
My Wy, M,y ...

18. Let I},...,J‘qj be terms and Uyeees gy their Godel numbers.
The Goédel number of the term gi(Pl,...,]“qj) will be denoted by
fgj(tl,...,f,,j)]. Thus the square brackets symbolize here a funector of §.

yeeny Oy

%) Godel [2].
. %) More details concerning arithmetization are given in (16del [3] and
Hilbert-Bernays [5], § 4.
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The square-brackets notation explained in the foregoing para-
graph will be used consistently in many other similar sitnations.
So e.g. if my; is the Godel number of the matrix M;;, then

& 7 . . SR 3
i ‘S,’m-i,j] is the Godel number of the matrix [] .Z; Mz If m
i=1 j=1 =

=] =1 j
is thh_e Godel number of M, then [m!] is the Godel number of M

(i. e. of ~3) and so on.

19. The following lemma is provable in §: In order that e be
an elementary formula it is necessary and sufficient that e have%
the form [1,(t,...,fp,)] where i<y and tyy-..,Ip; are terms. The integer ¢
and terms iy,...,1, are determined by e. We put

i=1Ind(e), t=Compjle), Jj=1,...,p:.

Functors Ind and Comp arve definable in S.

20. The arithmetical counterpart of the function
Subst will be denoted by the symbol Sb. Thus if a is the Godel
number of an expression 4, and #,...,#, are the Godel numbers of
terms I7,...,I%, then Sba(3,t,...,32/fa) is the Godel number of the
expression Subst 4 (53,17, ...,20/T7). )

21 I I IY,..., Ty, are terms of s, then the expressions

Subst g;{Iy, wees Tt (3 T7)
and
gi(Subst Iy(ax /T),..., Subst ]’qj(;r,,;’l‘))
are identical.
The equation

’Sb{gi(tl: --':1l]j)]{3k..“={:gi(sb tl( ak;”t)s ey Sh qu(Sk /gt’))]
is provable in S. A )
22, The Gédel number of the i-th axiom of s (see 12)
will be denoted by [a;] or by [ai(z,y,...,2)]

23, Arithmetical sentences expressing the consist-
ency of § and of s will he abbreviated as N(S) and N(s).

2. Models of the first kind. Let Ry(x), I?,(wl,...,.'z-,.,i‘) be
y+1 matrices of § with the indicated number of free variables
and let T,-(xl,...,r.,j, y) be 3 matrices of § such that matrices

Tl enes @y y') - Tyliegs oo gy, y ") Dy =y,
(H.’/) 7}(.1»‘1,...,‘1’,1".,][)
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are provable in §. We define in § functors @ (where j=1,2,...,p)
in the following way 7)

Gyl ~--smqj)= (¢y) Ty{y, <oy gy, )

Finally let Fy,...,F. be a constants definable in 8.

The a-f+y+1 tuple consisting of a constants Fy, of § func-
fors @y, and of y41 matrices R, will be called a pseudo-model of
the first kind of s in 8.

In order to define when a pseudo-model is a real model we
shall introduce some auxiliary definitions.

To every term I" of s we let correspond a term 7'p of § in the
following way. If I' is a variable, then Tp=1I. If I'= fi, then
Tp=F;. Finally, if I" has the form g;(Ty,.. J",,j\, then we put
Tp:Gj(Tri,...,quj).

To every elementary formula E=ri(Iy,..,I) of s we let
correspond the matrix E’=R,(Tp1,...,Tppl) of 8. We extend this
definition to all @-matrices of s by putting (My|M,) =Mi|M5. In
particular we put Ad;=a; (i=1,...,9).

Definition. A psendo-model

(1) Fyy...Fe, Gyy--1 G, By, By, B,
is a real model of the first kind of s in 8 if the formulas
Ry(w)- Ro(y)-. o(2) D 11{E1J7 %), 1'=],i’,...,6,

are provable in §.

Models of the first kind are the ones with which one has to
do in the usual proofs of consistency and of independence of axiom-
atic systems$). For comparison with other notions of models to be
defined later, we shall note the following general facts concerning
models of the first kind:

1. The general notion of models of the first kind iy defined
not in § but in the syntax of 8.

2. Every particular pseudo-model is a finite set of matrices
of § and can therefore be defined within S. The problem whether
it is or is not a real model can be formulated and i in particular cases
algo solved in 8.

7) (i) [...z...] denotes the x which satisfies the condition ...z... Cf, Hilbert-
Bernays [5], p. 381.
8) Cf. the independence and consistency proofs in [4], Chapter II.
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3. If s contained an infinite number of axioms (independent
of whether their set is or is not definable in ), then the problem
whether an explicitly given pseudo-model is or is not a real model
of sin § would be expressible in the syntax of & but not in § itself.

The following theorems concerning models of the first kind
are well known but are given here for the sake of comparison with
other notions of models 9):

I. Ij (1) is a real model of the first kind of s in S and if a Q-ma-
triz A(x,y,...,2) is provable in s, then the matriz

Rol2)-Ro(y) ...  Bo(2) D A'(20, 1, -0y2)
s provable in S,

II. Jf (1) is a real model of the first kind of s in S and 8 is con-
sistent, then so is s.

Let us now assume that a veal model of the first kind of &
has been explicitly defined in S.

Theorems I and II are provable in the syntax of S, hence
they are translatable into arithmetic and therefore into S. Denoting
by N(8) and N(s) formulas of S corresponding (via arithmetization)
to the syntactic statement: § (or s) is self-consistent (cf. section 1,
definition 23), we obtain from II:

III. The formula N(S)DN(s) is provable in S.

In spite of this result models of the first kind are of no use
when one is examining the problem whether the formula N(s) itself
is or is not provable in S. Models of the second and third kinds
which we shall discuss in the next sections will allow us to answer
this question in many particular cases.

We note still the following theorem due to Wang [16]:

IV. If the formula XN(s) is provable in S, then a model of the
first kind can be defined explicitly in S.

Indeed, the usual proofs of the completeness theorem of Godel
consist in exhibiting a model of the first kind of a (non-contra-
dictory) first order system in the arithmetic of integers19). Taking
¢ as this system and repeating the argument of Gédel in § (which
is possible by our assumptions concerning 8, ef. p. 136) we obtain
the proof of theorem IV 1)

?) Proofs of these theorems may be found e. g. in my book {7], Chapter XI.

1) Godel [2] or Hilbert-Bernays [5], p. 185.
1) Wang [16], p. 287, gives a more detailed proof of this theorem.
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3. Models of the second kind in the axiomatic theory
of sets ?). We agsume in this section that § is an axiomatic system
of set theory based ¢. g. on Zermelo’s axioms.
The following definitions are to be thought of as belonging to 8.
Let M be an arbitrary set and Z a finite set of positive in-
tegers. An Z-function with the set of arguments Z is defined as
& set ' of ordered pairs (u,v)> such that v e H;M, u runs over all finite
sequences 1%) satisfying the conditions

Dlu)=2z, D¥u)CHM,
and the following condition of single-valuedness holds:
if {u,p’>eF and <u,v’>eF, then

The symbols D(u) and D*(u) denote the domain and the
counter-domain of «, i. e.

e D{u) = (Ty) [<z,y> c u],
& e D*(u) = (Hy) [{y, x> e ul.

If % is a sequence satisfying the condition D(u)=7 and Y is
an arbitrary set of positive integers, then we denote by u|Y the
sequence u restricted to Y, i. e.

iy eu|Y = (i, ydeu)-(i e X).

An SM-relation with the set of arguments Z is defined as a set R
of sequences % such that D(u)=Z% and D*(u)C M.

If Z consists of integers #,7,%,... and % is a sequence with the
domain Z such that {i,a), <j,b>, <k,c>, ... are elements of u, then
instead of weR we write B(a,b,c,...) and say that R holds for the
elements a,b,e¢,... Similarly, if H is an SW-function, then instead of
{u,v> e H we write H(u)=v or H(a,b,ec,...)=n.

Let ¥ be elements of S (i=1,...,a), let G be HM-functions
with the sets of arguments Zy={1,2,..,q5}, j=1,...,8, and let
By be PM-relations with the sets of arguments Zr={1,2,...,p;},
k=1,2,...y. The a3+ y+1 tuple

(2) M, F,..,F,, (,..0C, R,.. R,
will be called a pseudo-model of the second kind of & in S.

=",

2) Results of this and the next seetion are due to Tarski [11] and [12].
and to Wang [15] and [17].

1) Sequences are defined as functions (many-one relations) with domains
contained in the set of positive integers. Cf. Tarski [11]), p. 287.

icm
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‘We shall now explain when a pseudo-model is a real model.
As in section 2 we need some auxiliary definitions.

We shall denote by B(i) the set of free variables which
occur in a term t and by B(m) the set of free variables which
oceur in a matriz m of s.

With these definitions it is not difficult to prove the existence
and uniqueness of a function H(u) and a relation Stsf which are
of fundamental importance in the investigations of the semantic of s.
The exact definitions of the fumction H and the relation Sisf are
given below in lemmas 1 and 2 together with the proofs of their
existence and uniqueness. To facilitate our exposition we explain
informally the intuitive meaning of these concepts.

Let ¢ be a term, m a matriz of s, and let % be a sequence
{Ki,a>, <3, b, <k,c>,...} where i,j,L,... are the free variables of i
or of m. Then H,(u)=H,la,b,c,...) is what is usually called the value
of ¢ for the values a,b,¢,... given respectively to the free variables
of ¢. The relation w« Stsf m holds if and only if the elements a,b,c,...
satisfy the matrix = in the domain S of individuals,

Lemma 1. There exists eractly one function H(t,u)=H(u)
such that

18 ¢t runs over terms of s;

20 Hy(u) considered as a function of u alone is an M-junction
with the set of arguments B(t);

3% if t is @ variable, then H{{{{,x>})=x;

49 if t=f;, then Hy(u)=Fy, i==1,...,a;

30 if t=[g{ts, ...\, then Hf(”):qj(Hfl(ul},..‘:H{qj(”(]j)) where
U= u|B(ty), n=1,....q5, j=1,....p.

Lemma 2. There exists exacily one binary relation Sisf such that

10 the counterdomain of Stsf consisis of matrices of s;

20 for a fixed matrixz m the set E,[u Stsf m] is an SM-relation
with the set of arguments B(m);

3% if m is the elementary formula [xi(ty, oy tp)], then

u Stsf m= R,'(H,I(ul)‘--..Htp_f pe)
L3
where up=ulB(ly) for n=1,....p;, i=1,...,7;

49w Stsf (mymy) = u, non-Stsf my or u, non-Stsf m, where w;=
= u|B{m;) for i=1,2;
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5% if m=[(H3)m,] and the variable 3; is not free in ny,
then e Stsf m== Stsf m,. If however 3; is free in my, then

w Stsf m=there is an element ae M such that
w-+{<{3i,a>} Stsf my.

Note that both lemmas are provable in S.

Definition ). A pseudo-model (2) is a real model of the second
kind of s in § if for every awmiom [a;] of s and for every sequence «
satisfying the conditions D(u)=B([a;]) and D*(u)CHM the following
formula holds '

w Stsf [a;], i=1,...,6.

Using this definition one can prove the following theorems:

V). If (2) is a real model of the second kind of s in S and if m
is @ matriz provable in s, then u Sisf m for an arbitrary sequence
satisfying the conditions D(u)=B(m) and D*(u)C M.

VI). If at least one real model of the second kind of s in S
exists, then N(s).

Theorem V and VI as well as all the previous definitions and
theorems belong to the system §.

‘We now abandon § and pass to its syntax. We can then for-
mulate the following statements concerning models of the second
kind. These statements should be compared with statements 1-3
of section 2, pp. 138-139:

1. The general notion of models of the second kind is defi-
nable within §.

2. Every individual model of the second kind is an element
of the universe of discourse of S.

3. Models of the second kind can also be defined in cases
where the number of axioms of s is infinite and statements 1 and 2
above also remain valid.

From the circumstance that theorem VI has been proved in S
we infer that the following theorem holds:

VII. If the exisience of a real model of the second Lind of s is
provable in S, then so is the formula N(s) expressing the consistency of s.

) Cf. Tarski [12], p. 8.
%) Cf. Tarski [11], p. 317, theorem 5, and p. 358.
8) Cf. Tarski [11], p. 318, theorem 7, and p. 359.

On models of axiomatic systems 143

Hence models of the second kind enable us to obtain absolute
consistency proofs whereas models of the first kind yield merely
relative consistency proofs.

‘We note finally that just as in section 2 we can derive from
the completness theorem of Gidel the following theorem which is
the converse of VII:

VIII. If the sentence N(s) is provable in S, then so is the sen-
tence slating the existence of at least one model of the second kind
of s in S.

4. Impossibility of a finite axiomatization of set-
theory. Let us assume as in section 3 that 8 is an axiomatie sys-
tem of set-theory and let s be a system based on a finite number
of axioms of 8. Since we assume the e-rule both in § and in s, we
can assume that the axioms of s contain no quantifiers and that §
confains all functors occurring in the axioms of s.

From now on until the formulation of theorem IX we again
assume that our discussion takes place in system S.

Let SM be an arbitrary non-void set such that

Fryesfae M,
if mg.,mge M, then (g, ...ymq,) « M, j=1,...,5.

Put Fy=f,,...,Fo=fy and define the SM-functions & (j=1,...,4)
as sets of pairs ’

<{<17 ml>7 Rt <g!7'mqj>}s 91'(7"'17 srey m'q'y)>:

where my,..., g, vary independently in M. Further let Ry (k=1,...,7)
be SM-relations defined by the equivalence

K15, Pry gy 0} € By = (g ..., Mpy)-
The ¢+ g-+y+1 tuple

(3) M, Fy..Foy Gi,...Gs, Ry...R,

constitutes a pseudo-model of the second kind of s in S.

To show that this psendo-model is a real model we remark
that if [a;] is an axiom of s with the free variables B1s+-- 34 ad
if wis any sequence {{3;,%>,...,{3x, s} With y,...,u5 e M, then

(4) w Stsf [ay] = az(uy, ..., uz)
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(cf. “convention W in Tarski [11], p. 308). Since the right side
of (4) is an axiom of S, we obtain u Stsf[a;]. This formula being
provable in 8, we infer that (3) is a real model of s in §.

The construction carried out above is expressible in S; there-
fore on using theorem VII we obtain:

IX. If s is a finitely axviomatizable sub-system of 8, then the
sentence N(s) is provable in S.

Remarks. 1. The assumption made above that S and s both
contain the e-rule is not essential for the validity of theorem IX.
Indeed, let s’ and S’ be systems without the e-rule which become
equivalent to s and § after adjunction of that rule and explicit
definitions. It is evident that N(s’) is not stronger than N(s) and
hence provable in §. Since N(s') is an arithmetical sentence in which
the e-symbol does nob oceur, it follows from the second e-theorem
of Hilbert and Bernays that N(s’) is provable without the e-rule,
i.e.in 8.

2. One might ask why our construction breaks down when s
contains infinitely many axioms, e.g. when s=§8. To answer this
question we recall that equivalences of the form (4) are provable
in § for each a; separately. There are no means by which to ex-
press in § anything which could serve as a logical product of in-
finitely many such equivalences.

The following theorems are easy corollaries of IX:

X. If 8 is. self-consistent, i@t is not finitely aciomatizable?).

Proof. First of all we remark that there exists a finitely
axiomatizable sub-system s, of § which is at least as strong as the
arithmetic of integers based on Peano’s axioms with the axiom of
mathematical induction (conceived as an axiom-schema).

To prove this we remark that this system of arithmetic is
equivalent to the system (Z) of Hilbert-Bernays [5], p. 384. It has
been shown by Novak and Wang [8], p. 90, that upon extending (Z)
by the introduction of a new primitive notion and suitable axioms
we obtain a system which is finitely axiomatizable. The new pri-
mitive notion is that of a predicative class of integers. The resulting
system s, is therefore certainly weaker than § since in § we have
at our dispoesal the general notion of classes which satisfies all the

') This theorem has been first proved by Wang [15]. A critique of this
proof by Rosser [9] appears unfounded; ¢f Wang [17].
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axioms formulated by Novak and Wang in their construction.
Hence s, is a sub-system of §.

The existence of s, heing proved, we proceed as follows.

According to a theorem of Godel 18) the sentence N(s) is pro-
vable in no self-consistent system s which contains (Z). Hence if §
is self-consistent and s is an axiomatizable sub-system of § which
contains so, then N(s) is not provable in s. Since N{s) is provable
in § according to IX, we infer that systems s and S are not equi-
valent.

Theorem X is thus proved.

XI. If 8 is self-consistent, it is w-incomplete?).

Proof. Let 8’ be a system equivalent to 8 but without the
srule and with a fixed set of primitive functors and predicates
(i. e. explicit definitions are not allowed in 8°). Let ay,dy,... be
axioms of &’. We can assume that no a, contains free variables.
Put m(i)=[a,-ay-...-a;Da;-~ay], i=1,2,..., and let O(x) be the matrix

m(x) is unprocable in the first order functional caleulus.

It is easy to see that this matrix can be written in purely
arithmetical terms and is therefore a matrix of §.

According to IX, sentences O(1),6(2),... are all provable in &
whereas the general statement (#)©(z) is equivalent to N(S) and
hence unprovable in § unless S is inconsistent.

XII2). If 8 is self-consisient, then there emist cowsistent
o-inconsistent sels of arithmetical sentences.

Indeed, sentences ~X(S),0(1),0(2),6(3)... form such a set.

but

5. Models of the second kind in the axiomatic theory
of real numbers. Almost all we have said in sections 3 and 4 can
be repeated wuen S is an axiomatic theory of real numbers. When
speaking of the arithmetic of real numbers, we have in mind 8ys-
tems in which the class of integers as well as the development of
any real number into decimal (or other) fractions is definable and
can be proved to exist.

%) Gadel [3], theorem XI, p. 196. ]

1#) For the notion of w-completeness see Tarski [13]. The result obtained
in theorem XI is of course not new.

20) Of course this result is not new either. See Godel [3]. p. 190 and Tar-
ski [13], p. 108.
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Note that the arithmetic of real numbers in its usual formu-
lation is based on an infinite number of axioms because the axiom
of continuity cannot be expressed otherwise as a schema. .

The notions of functions and relations do not occur explicitly
among the primitive notions of arithmetic. Some particular cases
of these notions, however, are definable in arithmetic and these
particular cases are general enough to enable us to carry ovel? the
proofs given in sections 4 and 5 from set-theory to arithmetic.

The procedure is as follows.

First, we define one-to-one correspondences between ilntegers
and finite sequences of % integers, k=1,2,... If an integer n is n‘lade
to correspond with a k-tuple (ng,...,ns) and pg is the k-th prime,
then we shall identify the integer p2 with the k-tuple (ny,...,7).
In this way we obtain an arithmetical substitute for the notion
of a finite sequence of integers.

It is well known that we can effectively establish a one-to-one
éorrespondenee between real numbers and sets of integers. In other
words we can find a matrix @(x,n) such that the following formulas

are provable in S: . )
D(z,n)Dn 18 an integer,
¥'=a" = (n)[P@ n)=D(z",n)]

A real number 2 will be called a k-fermed relation if
(n)[P(@,n)D(Hm)n=p=]. Integers n,,...,n are said fo be in rela-
tion @ if the integer n corresponding to the sequence (ny,...,nx) sa~
tisfies the condition @(z,pZ). In this case we write ®(y,...,1).

A real number # iz called a function with k& arguments if it
satisfies the following conditions:

¢ 18 a binary relation,
(g, 1) D (Fnn) (ny = pi),
(m) (Eng) a(pt, no),

{1y, n3) - BNy, N2 ) DNy =113.

The value of the function x for the arguments ny,...,n is de-
fined as (un,)@(p™,n,) where m is the integer corresponding to the
sequence iy, ..., .

Having defined the notions of functions and relations, we can
reconstruct without difficulty all the definitions and proofs which
‘were given in sections 3 and 4. In this way we arrive at the fol~
lowing results:
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XIIL. If the system S of the arithmetic of real numbers is self-
consistent and s is a finitely ariomatizable sub-system of S, then the
sentence N(s) is provable in S.

XIV. The arithmetic of real numbers is not Jinitely axiomatizable.

6. Models of the third kind. The method described in
sections 3-5 does not apply in the case in which S is the system
of the arithmetic of positive integers based on Peano’s postulates.
The failure of the method is caused by the fact that no model of
the second kind is definable in the arithmetic of positive integers
for a system s in which the existence of infinitely many individuals
is provable.

Models of the third kind which we shall discuss presently will
enable us to prove theorems similar to IX-XIT for the case in
which § is the system of the arithmetic of integers. These models
were first defined by Hilbert and Bernays who stated their defi-
nitions in a non-formal language 2). We shall present here an
arithmetical counterpart of the Hilbert-Bernays definition in order
to discuss the possibility of its use in a formal system S.

‘We shall make the same assumptions concerning the systems §
and s as in seetion 1. The system S will however be slightly en-
larged by the adjunction of the symbols A and V, denoting the
Boolean zero and the Boolean unit. Boolean addition and multi-
plication will be denoted by -+ and - and, when many summandsg
or factors are present, by the X- and IT-symbols. Boolean eom-
plementation will be denoted by an upper index 1. For symmetry
we put A=A and y'=1;.

A term I' of s will be called a constant ferm if no variable oc-
curs in it. It is easy to construet in arithmetic (and henee in )
a functor 7' with one free variable such that the following formulas
are provable in S:

if y is an integer, then T(y) is a constant term;

if © is @ constant term, then 2=T(y) for some y.

‘We shall now construct in § a funetion 8(x,m) which ennmer-
ates all matrices that can be obtained from a Q-matriz m by
all possible substitutions of constant terms for the free va-
riables of m.

We introduce first the auxiliary funectors g, 8, and p.

4} See Hilhert-Bernays [5], pp. 33-36.
1o*
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Let 6 be a functor of § with two free variables such that the

formula

= 20L,D)~1, 36221, .pg(k,x)——l.
is provable in §. In other words the definition of ¢(y,x) is obtained
by expressing in § the following definition:

o(y,2)=1- (the emponent of the y-th prime in the development
of @ info the product of primes).

For any ferm t we put

St @, 1) = 8bi(3,/T(a(1,))),
Sy, y+1)= 86 8(t,2,9) (311 /T(0(y+1,2)))-

This is clearly an inductive definition of the type which can
be represented in 8 by a single functor. Hence S(t,#,y) is a func-
tor of S.

Let u(t) be the functor of S defined as the largest integer y
such that 3, occurs in f. We put

‘ 8(t,@)=8(t, 2, 1))
and call S(t,z) the z-th substitution of t. S({,x) is clearly a func-
tor of §.

It can be proved in § that

(z,t) {S(t,») is a constant term}.
If e=[n(ty,...,tp)] 15 an elementary jformulae, then we put
S(e,x)={r:(S(ty,2),...,8(tp;, )]

and call S(e¢,x) the x-th substitution of e. The following statement
is provable in 8:

(@,e){S(e,») is a prime formula}
(cf. section 1, definition 8).

‘We define now the @-th substitution of an arbitrary Q-matriz m.
The definition proceeds by induction. If m=e, then S(e,x) has been
defined above. If m=[ny|m,], then we put S(m,»)=[S(my, z)|S(m,,2)].
By a standard procedure we transform this induetive definition
into an explicit one whin can be expressed in S.

‘We shall call a pseudo-model of the third kind or briefly a va-
luation, a functor @ or § with one free variable such that the fol-
lowing formula is provable in S:

if p i3 @ prime formula, then D(p)=V or O(p)=A.

icm
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Let @ be an arbitrary valuation. We consider a functor
Valg(m,z) of § with two free variables satisfying the following con-
ditions: a) the first argument of Tals runs over Q-matrices and
the second over arbitrary positive integers; b) the following state-
ments (5) and (6) are provable in S:

(3) Falg(e,x)=D(S(ec,z)),
(6) Valg{[mym,],»)={V alg(my,»)-Valp{m,,z)}*

(the upper index 1 denotes here the Boolean complementation).

It is easy to construct effectively a functor Vals which satis-
fies the above conditions. All we have to do is to remark that con-
ditions (5) and (6) ean be considered as an inductive definition of
Vals and that inductive definitions of this kind can be transformed
into ordinary definitions which are expressible in §.

Definition. A psendo-model @ is called a real smodel of the
third kind of s in S if the following formulas are provable in §:

(e{Valaila],x) =1}, i=1,..,0.

Models of the third kind are in some respects similar to models
of the first kind. Indeed, it follows from the definition that

1. The general notion of models of the third kind is defined
not in § but in its syntax (sinee @ was defined as a functor of 8);

2. Every particular pseudo-model of the third kind can be
defined within § (since each particular @ can be written down by
means of symbols allowed in S). The problem whether this pseudo-
model is or is not a real model of s can be formulated and in par-
ticular cases solved in 8.

On the other hand

3. The notion of models of the third kind retains its meaning
also for cases in which ¢ contains an infinite number of axioms.

Indeed, @ is a real model if the formula

(m)[(m is an aziom of 8)D (x)}{Vda(mz)=\}]

is provable in 8. This definition is meaningful not only when the
axioms of s are finite in number but more generally when their
set is definable in S.

In this respect there is an analogy between models of the
third and second kinds.

We shall now investigate the problem whether models of the
third kind ecan be used to obtain absolute proofs of consistency.
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Following Hilbert-Bernays2) we shall call a Q-matriz m
verifiable if (2)Valg(m,x)=\ . The following theorem can then be
proved:

XYV. The formula

(m){(m is a Q-matriz provable in s)D(m is verifiable)}
is provable in S. )

The proof of this theorem has been given by Hilbert-Bel-
nays [5], pp. 33-36. We note that this proof is straightforward for
the case in which m can be obtained from the awzioms by the ele-
mentary caleulus with free variables ). Hence the essential step in
the proof of XV consists in proving in § the implication:

_(m s provable in s)D (m can be obtained from the awioms
of s by means of the elementary coleulus with free variables).

This implication is established by Hilbert and Bernays with
the help of the first s-theorem.

Another proof of XV has been given by %i0$24). His proof is
not finitary but can be translated in S along with the Hilbert-
Bernays proof.

As a corollary from XV we obtain

XVI®). The following implication is provable in S: if @ is
a real model of s in S, then N(s).

It follows from XVI that models of the third kind can be
used when an absolute proof of consistency is desired.

7. Impossibility of a finite axiomatization of arith-
metie ). We assume in this section that § is the system of arith-
methic of positive integers based on Peano’s postulates and that s
is a finitely axiomatizable sub-system of §. We can assume that
axioms of s have been brought to the normal form
o et
IF 2 ESEN @), Jug=0 or Aer=1,

Pral s s,

a;=

where
By s(i)=rapen (Lot D

hpagsn)-

%) Hilbert-Bernays [5], p. 36.

=) Hilbert-Bernays [5], p. 380.

#) Lo$ [6], p. 36, theorern 34.

2%) Hilbert-Bernays [5], p. 36, call XVI the “VWi-theorem”.

#8) The impossibility of a finite axiomatization of the arithmetic of positive
Integers was first shown by Ryll-Nardzewski in [10]. Theorem XVIII of the
present paper is however slightly stronger than the result of Ryll-Nardzewski.
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Further we can assume that constants, funectors, and pre-
dicates of s occur also in S.
We shall denote by e,:(7) the Godel number of B,g(i).

Lemma 3. If @ is an arbitrary voluation, then the following
formula is provable in S:

t("i) - e s
) (Valg(es(7), )"

o)
Valg([a),@)= ]

(exponents 7 as well as the symbols IT and Z have here the Boolean
meaning).
Proof. Immediate from (5) and (6).

Lemma 4. Under the assumptions of lemma 3 the following
equivalence 1s provable in S:
{Vals(la])=V}=
(Hr< oD EO(ES v(r, 1)) - (Vala(eng(),0) =V Ausigg).

Proof. Immediate from lemma 3.
Let ¢ run over constant terms of s. We consider a functor &
of § such that the following equations be provable in §:

) @(fﬂ::f,-, i=1.....4,
(8) O gjltsy s Tg)]) = gl Oltr), -, OEy));  F=11000

It is easy to construct explicitly a funetor satisfying these
conditions. Indeed, (7) and (8) contain an inductive definition which
can be transformed into an explicit one and the definiens of the
explicit definition thus obtained is the required ©.

The intuitive meaning of the functor & can be explained as
follows: Consider an arbitrary constant term I' of s; of course it
denotes an integer. Let ¢ be the Gbdel number of I'. Then O(¢) is
the integer denoted by I

We put O(T(x))=4»9(x). Note that 4 is a term of S with one
free variable.

#(x) is of course the integer denoted by the @-th constant term
(in the enumeration of conmstant terms given by the function T).

Lemma 5. Let T be a term of s, t its Godel number and h the
largest integer such that xp occurs in I. Then the following equation
is provable in S:

(9) O(S(t, )= Subst ]‘(a‘l;‘#(&(l 2 8)), .oy p (o (R, ).
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Proof. If I'=mz, then ¢=3;, S(t,a)=T(c (o(f,2)) and hence
O(8(t,x))=">3(o(¢,4)). On the other hand the right side of (9) is
¥ o(%,x)). Henee the lemma is true in this cage.
If I'=f;, then ¢=f; and the left and right sides of (9) can
easily be shown to be equal to f,.

Let us assume that the Iemma is proved for terms I7, Iy a

with the Gddel numbers t,.. Let I" be the term g;(I} J‘,,j)

the Goédel number of I'is t_[g, tl, fgp)]. It follows from lemma 21
in section 1 and from (8) that equamons

AS(f,-’B):“[gj( (tl,y ) (“q: ))]1
(10) O(8(4,2)) =g;(O(8(t,2)), ..,0(S (1, 0))
are provable in 8. On the other hand if we put
IR = Subst Iy, /9(o(1,m)), .., 24 /0(o( a(h,z))),
we obtain from lemma 21 in section 1 the equation
(11) Subst I'(2y/H(0(1,)), ...,0n {#{(0(h,5))) = g;(T'{, s TSD)
provable in §. Since by the induetive assumption equations
O(S(ts,w)) =T
are provable in §, we obtain the desired result by eomparing for-
mulas (10) and (11)
Lemma 5 is thus proved. Observe that this lemma is not

a theorem of § but a theorem-schema. The statement of this lemma
must be proved separately for every I'

Definition. If I is & term and M a @-matrix of s and if &
ig the largest integer such that @ occurs in I" or in M, then we put
T® = Subst I'(,/9(0(1,8)),...,84/8(a(h,) ),
M(x)=SubstM(mI/ﬁ(a(l,w)),...,w,,/ﬁ(a(h,w))),

Note that I'® is a term of § with one free variable 2. Simil-
arly M® is a matrix of S with one free variable .
© ()
Lemma 6. If M= Z; gH E'¢ where the E,; are elementary
y=1 =1 >
formulas and the 1,z are equal to 0 or 1, then
@ (y)

H ﬁw(l) ps
=1 Z=1

a@

TL”

The proof is obvious.
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We shall now define a valuation @ of which we shall show
later that it is a real model of s in S.
{@(p)=s} =
.Zé'{(lﬂd (p)=J)-(r;(©(Compy (p)),...,0(Compy(p)))-(s=V)
=1
0(Compp,(p))-(s= A )}
(Ci. section 1, def. 19, p. 137, for the definition of the funections

Ind and Comp).
It is evident that @ is a functor of S. The formula

Dp}=V o D(p)=A

is provable in §. Indeed, it can be proved in S that if p is a prime
formula, then Comp;(p)is a constant term and hence @(Comp;(p))
is a perfectly defined term of S.

v ~1;(@(Compy (p)),..

Lemma 7. Let rf(I'y,....Tp) be an elementary formula and
e=[1ity,....1,)] its Godel number. The following equivalences are then

provable in S for i=0,1:
D(S(e,x)j=\ =213(I'W, .. J';?).

Proof. By definition S(e,z)=[r{S(¢,2),..,
follows that equations

Silp,,#))] whenee it

Ind (S(e,z))=1,
Compi(S(e,m)):S(fl,a:),
Oomp,,‘,(;\(e r)) pi,.r)
are provable in §. Now observe that the formula
Sle,x) is a prime formula

is provable in 8. Upon using the definition of @ we obtain there-
fore the formula provable in S

¢(S(e;m))= V = (Q(b(tla‘r)) 0(‘5( Piy‘l)))‘

Since equations 9(S(t,,az))=]‘,(" are provable in § (ef. lemma 5),
we get the desired result directly from the last formula.

Observe that lemma 7 is not a single theorem but a theorem-
schema of §.
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XVII. @ as defined on p. 153 is a real model of s in S.

Proof. Let e,¢(7) occurring in the statement of lemma 3 be
the Godel number of the elementary matrix

By (1) =Tt (Dot s Do ipng, s)

and let #.¢:, De the Godel number of Ilg;,. According to lemma 7
we can prove in § the formula

TV ala(en,e(i), )=y i = 20t (T2, ..

(x)
a@ED s Toipaz0)-

Using lemma 4 we infer that the formula
T’alg;([a,],o:).—: V=

(<o) D (EE(E (v, D) 18 (T, .

.) -
:Pv(;‘&i,pn(u,g,r))]}
is provable in S. Now we have

7 uti (P.f:t),m,

(x) () /-
A@ED) R bpawn) = (BS3 (i)t

and hence the equivalence

Valg([a.],)

—v=11 & i

is provable in S. By lemma 6 the r
be replaced by

right side of the equivalence can
o) (i)
S (E
v=1 51
i e. by . It follows that the formula

TVaig ([a,],2)=V = a®

Z £, (‘c)
(1)

is provable in 8. Since of? is a substitution of an axiom of s, it is
provable in §. Hence the equation
Vals([al, @)=V

is provable in § and theorem XVII is proved.

From theorems XVI and XVII we obtain

XVIIL If s is a finitely ariomatizable sub-system of S, then
the formula N(s) is provable in S.

XIX *). 8 is not finitely axiomatizable.

*) This theorem is due t6 Ryll-Nardzewski who obtained it in [10] by
a different method.
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To prove this theorem we need the following

Lemma 8. There exists a finitely axiomatizable sub-system s, of S
such that if s is a finitely axiomatizable sub-sysiem of S which con-
tains sy, then the sentence N(s) is not provable in s.

We shall content ourselves with a sketch of the proof.

‘We shall take for granted the arithmetization of the system S
along the lines indicated by Godel [3]. The arithmetical counter-
parts of the metamathematical notions will be denoted by symbols
used by Godel although strictly speaking the symbols should be
modified beeause the system arithmetized by Go&del is dlfferent
from §.

Let F be a primitive recursive function such that F(m,n,p)=0
if and only if n, p are sentences of § and m is a proof of the
implication pImp n in the functional caleulus of the first order.

Let F’ be defined as follows

\

. | 1¢
(12) Fimn,p)=F (m, Shoa (Z(;)L)),p).

Let f be the Godel number of the equation F'(m,n,p)=4U.
Hilbert and Bernays [5], pp. 310-323, have shown that the
following implication is provable in S:

" _ . ap pf 17 19 23
(13) Frm,n,p) =02 (L) 2BSh (Z(m) dim) Z{p)).

Analysing their proof we find that 1° the # whose existence
is stated in (13) is a primitive recursive function @ of m, n, p; 2° the
axioms of § which occur in the proof with the Godel number Q(m,2,p)
are finite in number and independent of m, n, and p. If we denote
by d,.....dz these axioms and by azr the Godel number of their
conjunction, we obtain instead of (13) the following implication
provable in S:

(14) F'(mn,p)=0DF|Q(m,n,p), Sb f’( 1v 19 23 ) iur) =0
M P)=UIL S0P S0 7 im) Z(n) Zip) ) .

Hilbert and Bernays have further shown (cf. [6], pp. 307-308)
that the implication

(13) () F(2,17 Gen 1,p)=02 () (&) "2, S w(&%),;;):g

is provable in S.
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Now let 5o be a sub-system of § hased on the axioms Ay
and on those axioms of § which are necessary to prove impl%esp
tions (14) and (15) as well as the recursion-equations for the fune-
tions F, Sh, Imp, Neg, Z, and Q. '

‘We shall show that s, has the property stated in the lemma.

_ Indeed, let s be a finitely axiomatizable sub-system of § con-
taining s, and denote by A the Godel number of the conjunction
of the axioms of s. It follows that (14) and (15) (when expressed
in the symbols of s) are theorems of s.

From (14) we infer that the following implication is prov-
able in s:

(16)  F'(m,n,p)= (DF(Q(m,n,p), Sh f’(z%;b) Zl(g) Z%S))’ A.zr) =0.
We put

=501 (5 (im)s =17 GenNegp, s=svy(10)

It is easy to see that

5=17 Gen Neg Sh § (z](g))

Repeating the argument of Gédel [3], pp. 187-189, we can
prove that 6 is unprovable in s, provided that s is consistent
i. e. that ,
(17) N(s) D () F(2,8,4x) %= 0.

This proof can be repeated word by word in the system s owing
to the circumstance that (15), (16), and recursion-equations for the
functions F, @, Sb, Imp, Neg, and Z are available in s. Hence if we
denote by w the Gddel number of the sentence N (s) and observe
that the Goddel number of the sentence (2)F(x,6,42)==0 is §, we
obtain as an arithmetical counterpart of (17) in s the equavt-i(’m

(18) F(h,0 Imp 8, 42) =0,

where % is the Godel number of the proof of (17) in s.

It follows from (18) that if N(s) were provable in s (i.e. if w
were provable in s), then & would be provable in s and hence
by (17) s would be inconsistent.

Lemma 8 is thus proved.

. Theorem XIX results from lemma 8 by the same argument
which was used in the proof of theorem X.
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The following result ean also be obtained from XVIIL. Fol-
lowing Tarski and Szmielew ) we shall call a system s inter-
pretable in S if there exists a model of the first kind of s in §. We
have then

XX ). For every finitely axiomaiizable sub-system s, of the arith-
ametic of integers S there is a finitely aviomatizable sub-system s of S
such that s is not interpretable in s;.

Proof. Define s as a system obtained from s, by the adjune-
tion of the sentence N(s,) to the axioms of s;. According to XVIIL
8 is a finitely axiomatizable subsystem of S. If s were interpretable
in s,, then the implication N(s,)DN(s) would be provable in s, and
hence the sentence N(s) would be provable in s. But this is im-
possible since N(s) is provable in ¢ only if s i3 ineonsistent (ef.
lemma 8, p. 155).

To complete our discussion we remark that the results estab-
lished in section 7 hold not only when S is the system of the arith-
metic of positive integers but more generally for all systems § which
contain arithmetic and have the property that inductive definitions
of the form (7) and (8) are expressible by single matrices of the
system S.
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On Labil and Stabil Points.
By

K. Borsuk and J. W. Jaworowski (Warszawa).

1. The concept of the (homotopieally) labil point is due to
H. Hopf and BE. Pannwitz?1). Its definition can be formulated
as follows:

Definition 1. A point & of a space M is homotopically labil
whenever for every neighbourhood U of o there exists a continuous
mapping f(,f) which is defined in the Cartesian product M XTI
of M and of the interval I:0<{<{1 and which satisfies the following
conditions:

(1) flrt) e M for every (x,i) e M I,

(2) fle,y=z for every se i,

(3) fry=5 for every (a,1)e{M—-U)xI,
(1) j(o,tye U for every (r,t)e U xI,

(3) fle,1)==a for every xe .

A point @ e I will De called homotopically stabil 2} if it is not
homotopically labil.

Remark. If a is a homotopically labil point of a space
M and b a point of another space N and if there exists a homeo-
morphic mapping h of a neighbourhood U, of @in If onto a neigh-
hourhood ¥, of b in N such that h(a)=b, then b is a homotopically

1) H. Hopf and E. Pannwitz, {tber stetige Deformationen von Kompleren
in sich, Math. Ann. 108 (1933), pp. 433-465. See also P. Alexandroff and
H. Hopf, Topologie I, Berlin 1935, p. 523. In the present paper we slightly modify
the terminology. Namely we shall refer to the pdints called by H. Hopf and
E. Pannwitz labil, as homotopically lubil. The term «Jabil”’ will be used here in
the other sense.

?) H. Hopf and E. Pannwitz use the term “locally stabil point™.
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