

astérisques. Il y existe donc au moins une ligne qui contient $\geqslant k-2$ astérisques, car, en eas contraire, le nombre des astérisques serait

$$\leq (k-3)(2k-3) = 2k^2 - 9k + 9,$$

ce qui est impossible.

24

La conclusion suit de la remarque 1 du NI. Par raison de symétrie, on peut remplacer k par n et n par k.

Instytut Matematyczny Polskiej Akademii Nauk.

Concerning the Homological Structure of the Functional Space S_m^{χ} .

Bv

Karol Borsuk (Warszawa).

1. Functional space. Let X be a compact space and Y a metric space. We denote the set of all continuous mappings of X in Y by Y^X and we define a metric in Y^X by setting

$$\varrho(\varphi,\psi) = \sup_{x \in X} \varrho(\varphi(x)), \psi(x))$$
 for every $\varphi, \psi \in Y^X$.

The functional spaces Y^X offer scope for ample investigation especially when Y is the Euclidean m-dimensional sphere S_m . In particular the problem of what properties of X imply the connectedness of S_m^X is completely resolved for the case dim $X \leq m$, by the celebrated theorem of H. Hopf¹). The relations between the properties of X and the other properties of S_m^X have been less fully investigated. The purpose of this paper is to indicate a simple relation between some homological properties of X and of S_m^X .

2. ε -chains in a metric space. Let M be a metric space. By an ε -simplex of M we understand a finite subset of M with diameter $<\varepsilon$. In the known manner we introduce the notion of an oriented ε -simplex, of an ε -chain with arbitrarily given coefficients and especially of an ε -cycle. If the group of coefficients is the group of rational numbers \Re then the chains will be said to be rational. The boundary of a chain ε will be denoted by $\partial \varepsilon$. Let us point out

¹⁾ H. Hopf, Die Klassen der Abbildungen der n-dimensionalen Polyeder auf die n-dimensionale Sphäre, Comm. Math. Helv. 5 (1933), p. 39-54 (for polytopes), and H. Freudenthal, Bettische Gruppe mod 1 und Hopjsche Gruppe. Compositio Math. 4 (1937), p. 235-238 (for compact spaces). See also W. Hurewicz and H. Wallmann, Dimension Theory, Princeton 1941, p. 147.

that by the boundary of a 0-dimensional simplex (a) we understand the number 1. Consequently a 0-dimensional chain is a cycle if and only if the sum of its coefficients vanishes.

Two ε -cycles γ and γ' of M (with coefficients belonging to an arbitrarily given abelian group $\mathfrak A$) are called η -homologous in M (notation: $\gamma \, \widetilde{\gamma} \, \gamma'$ in M) if there exists an η -chain \varkappa of M (with the coefficients belonging to $\mathfrak A$) such that $\partial \varkappa = \gamma - \gamma'$.

An ε -simplex $(a_0, a_1, ..., a_n)$ is said to be degenerated, if not all vertices $a_0, a_1, ..., a_n$ are different. We assume that the degenerated simplexes can be added or cancelled in a chain without changing it. The boundary of a degenerate simplex vanishes.

3. Cartesian products. Let \prec be an ordering relation defined in the set M, i. e. a relation defined for each pair of different points $x, y \in M$, asymmetric and transitive. Evidently each k-dimensional ε -chain ε of M can be uniquely represented by the sum

(1)
$$\varkappa = \sum_{\nu=1}^{n} a_{\nu}(a_{\nu,0}, a_{\nu,1}, ..., a_{\nu,k}),$$

where $a_{\nu} = 0$ and $a_{\nu,l} \prec a_{\nu,l}$ for every $\nu = 1, 2, ..., n$ and i < j. The representation (1) of \varkappa will be said to be consistent with the order \prec .

Let M and M' be two metric spaces and let $M \times M'$ denote their Cartesian product, i.e. the metric space whose points are ordered pairs $x \times x'$ with $x \in M$ and $x' \in M'$ and such that the metric is defined by the formula

$$\varrho(x \times x', y \times y') = \sqrt{\varrho(x, y)^2 + \varrho(x', y')^2}.$$

Let \prec denote an ordering relation in M and \prec an ordering relation in M'. Let us assign to each pair of non-degenerate simplexes $\Delta = (a_0, a_1, ..., a_k)$ of M and $\Delta' = (a'_0, a'_1, ..., a'_{k'})$ of M' in which the vertices are ordered consistently with the relations \prec and \prec , the chain $\Delta \times \Delta'$ (with integral coefficients) given by the formula:

$$\begin{split} & \Delta \times \Delta' = (a_0, a_1, ..., a_k) \times (a_0', a_1', ..., a_{k'}') = \\ & = \sum \pm (a_{t_0} \times a_{t_0'}', a_{t_1} \times a_{t_1'}', ..., a_{t_{k+k'}} \times a_{t_{k+k'}}'), \end{split}$$

the sum being extended over all non-decreasing sequences of indices $i_0, i_1, \dots, i_{k+k'}$ and $i_0, i_1', \dots, i_{k+k'}$ such that

$$0 \le i_0 + i_0' < i_1 + i_1' < \dots < i_{k+k'} + i_{k+k'}' \le k + k'^2$$
.

We see at once that if Δ is an ε -simplex and Δ' an ε' -simplex then $\Delta \times \Delta'$ is an $(\varepsilon + \varepsilon')$ -chain.

Let \varkappa be a k-dimensional ε -chain of M with coefficients belonging to an arbitrary abelian group $\mathfrak A$ and let \varkappa' be a k'-dimensional ε' -chain of M' with integral coefficients. Let $\varkappa = \sum_{\nu=1}^{n} \alpha_{\nu} \cdot \Delta_{\nu}$ and $\varkappa' = \sum_{\nu=1}^{n} \alpha_{\nu} \cdot \Delta'_{\nu'}$ be the representations of \varkappa and \varkappa' respectively consistent with the orders \prec and \prec . Putting

$$\varkappa \times \varkappa' = \sum_{\nu=1}^{n} \sum_{\nu'=1}^{n'} \alpha_{\nu} \cdot \alpha'_{\nu'} \cdot \Delta_{\nu} \times \Delta'_{\nu'}$$

we obtain a (k+k')-dimensional $(\varepsilon+\varepsilon')$ -chain of $M\times M'$ with the coefficients belonging to $\mathfrak A$, called the *product* of the chains \varkappa and \varkappa' . It is known 2) that

(2)
$$\partial(\varkappa \times \varkappa') = (-1)^k \cdot \varkappa \times \partial \varkappa' + \partial \varkappa \times \varkappa'.$$

It follows that:

- (3) If γ and γ' are cycles, then $\gamma \times \gamma'$ is a cycle.
- (4) If γ is an ε -cycle η -homologous to zero in M and γ' is an ε' -cycle in M', then $\gamma \times \gamma'$ is an $(\varepsilon + \varepsilon')$ -cycle $(\eta + \varepsilon')$ -homologous to zero in $M \times M'$.
- **4. True chains.** A sequence of chains $\underline{x} = \{x_n\}$ is called a *true* k-dimensional chain of M if there exists a compact subset M_0 of M and a sequence $\{\varepsilon_n\}$ of positive numbers convergent to zero and such that \varkappa_n is a k-dimensional ε_n -chain of M_0 (the coefficients of \varkappa_n belong to an abelian group \mathfrak{A}_n , in general depending on n). If we multiply each of the chains \varkappa_n , constituting a true chain $\underline{\varkappa}$, by an integer m then we obtain a true chain, which we denote by $m \cdot \underline{\varkappa}$.

If $\underline{\varkappa} = \{\varkappa_n\}$ and $\underline{\lambda} = \{\lambda_n\}$ are two k-dimensional true chains of M and for every n = 1, 2, ... the coefficients of \varkappa_n and λ_n belong to the same abelian group \mathfrak{A}_n , then the sequence $\{\varkappa_n + \lambda_n\}$ is a k-dimensional true chain of M called the $sum \ \underline{\varkappa} + \underline{\lambda}$ of the chains $\underline{\varkappa}$ and $\underline{\lambda}$.

The true chain $\underline{\gamma} = \{\gamma_n\}$ of the space M such that every one of the chains γ_n is a \overline{k} -dimensional cycle is called a k-dimensional true cycle of M. If $\underline{\varkappa} = \{\varkappa_n\}$ is a true (k+1)-dimensional chain of M,

²) See H. Freudenthal, Eine Simplizialzerlegung des Cartesischen Produktes zweier Simplexe, Fund. Math. 29 (1937), p. 139.

28

then the sequence $\{\partial z_n\}$ is a true k-dimensional cycle of M, called the boundary $\partial \underline{z}$ of the true chain \underline{z} . A true k-dimensional cycle $\underline{\gamma}$ of M is said to be homologous to zero in M (notation: $\underline{\gamma} \sim 0$ in M) if there exists a true (k+1)-dimensional chain \underline{z} of M such that $\partial \underline{z} = \underline{\gamma}$. We say that a true cycle $\underline{\gamma}$ is weakly homologous to zero in M, if there exists an integer $n_0 \neq 0$ such that the true cycle $n_0 \cdot \underline{\gamma}$ is homologous to zero in M.

A true cycle $\underline{\gamma} = \{\gamma_n\}$ of M such that all coefficients of the cycles γ_n belong to an arbitrarily given abelian group $\mathfrak A$ is said to be convergent in M if the true cycle $\{\gamma_{n+1} - \gamma_n\}$ is homologous to zero in M.

All k-dimensional true cycles with rational coefficients convergent in M constitute a group $C^k(M)$ and the k-dimensional true cycles with rational coefficients convergent and homologous to zero in M constitute its subgroup $H^k(M)$. The rank of the factor group $C^k(M)/H^k(M)$ is said to be the k-th Betti number of M. We denote it by $p^k(M)$.

Let M and M' be two metric spaces and let \prec denote an ordering relation in M and \prec an ordering relation in M'. If $\underline{\varkappa} = \{\varkappa_n\}$ is an arbitrary k-dimensional true chain in M and $\underline{\varkappa}' = \{\varkappa_n\}$ a k'-dimensional true chain in M' with integral coefficients then putting

$$\underline{\varkappa} \times \underline{\varkappa}' = \{\varkappa_n \times \varkappa_n'\}$$

we obtain a (k+k')-dimensional true chain in $M \times M'$. With regard to (2) we have

(5)
$$\partial(\underline{\varkappa} \times \underline{\varkappa}') = (-1)^h \cdot \underline{\varkappa} \times \partial\underline{\varkappa}' + \partial\underline{\varkappa} \times \underline{\varkappa}'.$$

It follows that if $\underline{\gamma}$ and $\underline{\gamma}'$ are true cycles then $\underline{\gamma} \times \underline{\gamma}'$ is also a true cycle and if $\underline{\gamma}$ (or $\underline{\gamma}'$) is homologous (or weakly homologous) to zero in \underline{M} then $\underline{\gamma} \times \underline{\gamma}'$ is homologous (or weakly homologous) to zero in $\underline{M} \times \underline{M}'$. And if the true cycles $\underline{\gamma}$ and $\underline{\gamma}'$ are convergent then also the true cycle $\underline{\gamma} \times \underline{\gamma}'$ is convergent.

5. Mappings of true chains. Let f be a mapping of a metric space M in a metric space M'. If we assign to each simplex $\Delta = (a_0, a_1, ..., a_k)$ of M the simplex $\Delta_f = (f(a_0), f(a_1), ..., f(a_k))$ of M' then we obtain a transformation mapping each k-dimensional chain k of M into a k-dimensional chain k' of M'. Evidently this chainmapping commutes with addition and with the operation of boundary δ .

If the mapping f is continuous then we see at once that the corresponding chain mapping assigns to every k-dimensional true chain $\underline{\varkappa} = \{\varkappa_n\}$ of M a k-dimensional true chain $\underline{\varkappa}_f = \{\varkappa_{n,f}\}$ of M' and to every k-dimensional true cycle $\underline{\gamma} = \{\gamma_n\}$ of M a k-dimensional true cycle $\underline{\gamma}_f = \{\gamma_{n,f}\}$ of M' and it commutes with addition and with the operation of boundary ∂ . Moreover if the true cycle $\underline{\gamma}_f = \{\gamma_n\}$ is convergent in M, then the corresponding true cycle $\underline{\gamma}_f = \{\gamma_{n,f}\}$ is convergent in M'.

If f is a homeomorphism mapping M on M' then we obtain in this manner a (1-1)-correspondence between the true cycles of the spaces M and M' conserving the convergence and the relation of homology.

6. Cycles on S_k . The k-dimensional sphere S_k is homeomorphic with the boundary B_k of a (k+1)-dimensional simplex Δ_{k+1} . Consequently instead of the cycles on S_k we shall consider the cycles on B_k . Let P_k denote the complex made up of all k-dimensional faces of Δ_{k+1} . Choosing a positive orientation in P_k , let us denote by $\pi_{k,n}$ the k-dimensional cycle defined as the sum of all k-dimensional positively oriented simplexes of the n-th barycentric subdivision of P_k . It is known that the sequence $\underline{\pi}_k = \{\pi_{k,n}\}$ is a convergent k-dimensional true cycle of the polytope B_k and that, for each k-dimensional true cycle $\underline{\gamma} = \{\gamma_n\}$ of B_k with the coefficients of γ_n belonging to a group \mathfrak{A}_n , there exists a sequence $\{a_n\}$ such that $a_n \in \mathfrak{A}_n$ and that $\underline{\gamma}$ is homologous in B_k to the true cycle $\{a_n, \pi_{k,n}\}$. Evidently the last cycle is homologous to zero in B_k if and only if almost all coefficients a_n vanish.

Since S_k and B_k are homeomorphic, we infer that:

There exists in S_k a convergent k-dimensional true cycle $\underline{\sigma} = \{\sigma_{k,n}\}$ with integral coefficients such that for every k-dimensional true cycle $\underline{\gamma} = \{\gamma_n\}$ of S_k , with the coefficients of γ_n belonging to an abelian group \mathfrak{A}_n , there exists a sequence $\{a_n\}$ with $a_n \in \mathfrak{A}_n$ such that $\underline{\gamma}$ is homologous in S_k to the true cycle $\{a_n \cdot \sigma_{k,n}\}$. The last cycle is homologous to zero in S_k if and only if almost all coefficients a_n vanish.

7. Spherical cycles and spherically essential cycles. A k-dimensional true cycle $\underline{\gamma}$ of a metric space M will be said to be spherical if there exists a k-dimensional true cycle $\underline{\gamma}'$ in S_k and a continuous mapping $f \in M^{S_k}$ such that

$$\underline{\gamma} \sim \underline{\gamma}'_f$$
 in M .

A k-dimensional true cycle $\underline{\gamma}$ of M will be called spherically essential in M if there exists a continuous mapping f of M in S_k such that $\underline{\gamma}_f$ is not homologous to zero in S_k . Evidently if $\underline{\gamma}$ is homologous to zero in M then γ is not spherically essential in M.

Theorem 3). Let M be a metric space of dimension $\leq k$. Each k-dimensional true cycle $\underline{\gamma}$ not homologous to zero in M is spherically essential in M.

First we establish a lemma constituting a slight extension of the known lemma by Lebesgue 4).

Lemma. Let $A_1, A_2, ..., A_r$ be compact subsets of a metric space E. For every $\eta > 0$ there exists a $\delta > 0$ such that if B is a subset of E with diameter $\leqslant \delta$ and $i_1, i_2, ..., i_{\alpha}$ is a system of indices $\leqslant r$ such that $B \cdot A_{l_0} + 0$ for r = 1, 2, ..., a, then there exists a point $a \in A_{l_1} \cdot A_{l_2} \cdot ... \cdot A_{l_{\alpha}}$ such that $\varrho(a, B) < \eta$.

Proof. Suppose that for an $\eta > 0$ such a $\delta > 0$ does not exist. Then for a system of indices $i_1, i_2, ..., i_a$ there exists for every natural n a set B_n with the diameter <1/n such that $B_n \cdot A_{i_v} \neq 0$ for v=1,2,...,a and that

(6)
$$\varrho(a,B_n) \geqslant \eta$$
 for every $a \in A_{i_1} \cdot A_{i_2} \cdot \dots \cdot A_{i_n}$.

Let $a_{v,n} \in A_{l_t} \cdot B_n$. Since A_{l_1} is compact we can assume that the points $a_{1,n}$ converge to a point $a_0 \in A_{l_1}$. Then also $a_{v,n} \to a_0$ for every $v=1,2,\ldots,a$ and we infer that $a_0 \in A_{l_1} \cdot A_{l_2} \cdot \ldots \cdot A_{l_m}$. But

$$\varrho(a_0, B_n) \leqslant \varrho(a_0, a_{1,n}) \to 0$$

hence $\varrho(a_0, B_n) < \eta$ for almost all n, contrary to (6).

Proof of the theorem. We first show, by induction, that the theorem is true for compact spaces.

If k=0 then the cycles γ_n constituting the 0-dimensional true cycle $\gamma=\{\gamma_n\}$ are of the form

$$\gamma_n = \alpha_{n,1}(a_{n,1}) + \alpha_{n,2}(a_{n,2}) + ... + \alpha_{n,l_n}(a_{n,l_n})$$

where

$$a_{n,1} + a_{n,2} + ... + a_{n,l_n} = 0.$$

Since $\underline{\gamma}$ is not homologous to zero in M there exists an $\varepsilon > 0$ and an increasing sequence of indices $\{n_v\}$ such that no one of the cycles γ_{n_v} is ε -homologous to zero in M. It follows that the compact space M is the sum of two closed sets X_v and Y_v such that:

(7) If
$$x \in X_{\nu}$$
 and $y \in Y_{\nu}$ then $\varrho(x, y) \geqslant \varepsilon$.

(8) The sum β_{ν} of the coefficients $\alpha_{n_{\nu},j}$ such that $\alpha_{n_{\nu},j} \in X_{\nu}$ does not vanish.

Since M is compact there exists a subsequence $\{X_{\nu_l}\}$ of the sequence $\{X_{\nu}\}$ convergent to a set $X_0 \subset M$. From (7) it follows that:

(9) $X_{\nu_i} = X_0$ for almost all indices i.

Putting

$$Y_0 = M - X_0$$

we have

$$Y_{\nu_i} = Y_0$$
 for almost all indices i.

Hence

(10)
$$M = X_0 + Y_0$$
 and if $x \in X_0$ and $y \in Y_0$ then $\varrho(x,y) \geqslant \varepsilon$.

Let β_n^n denote the sum of all coefficients $a_{n,j}$ such that $a_{n,j} \in X_0$. By (8) and (9)

(11)
$$\beta_{n_{\nu_i}}^0 = \beta_{\nu_i} \neq 0$$
 for almost all indices *i*.

The sphere S_0 contains only two points p and q. Putting

$$f(x) = p$$
 for $x \in X_0$,
 $f(x) = q$ for $x \in Y_0$,

we obtain a continuous mapping of M in S_0 . The function f maps the true cycle $\underline{\gamma} = \{\gamma_n\}$ onto the true cycle $\{\beta_n \cdot (p) - \beta_n \cdot (q)\}$ which, by (11), is not homologous to zero in S_0 .

Assume now that k>0 and that the theorem is true (for compact spaces) for dimensions < k. Let $\gamma = \{\gamma_n\}$ be a k-dimensional true cycle not homologous to zero in a compact space M of dimension $\leq k$. Then there exists a positive number ε and an increasing sequence of indices $\{n_v\}$ such that γ_{n_v} is not ε -homologous to 0 in M. Since M is compact and dim $M \leq k$, there exist open sets $V_1, V_2, ..., V_r$ covering M such that for every i=1,2,...,r the diameter of V_i is $< \varepsilon$ and that

$$\dim (\overline{V}_i - V) \leq k - 1.$$

³⁾ Compare P. Alexandroff, Dimensionstheorie. Ein Beitrag zur Geometrie der abgeschlossenen Mengen, Math. Ann. 106 (1932), p. 223, where an analogous theorem is proved by another method under a slightly more restrictive hypothesis.

⁴⁾ Sec, for instance, P. Alexandroff and H. Hopf, Topologie I, Berlin 1935, p. 101.

Putting

$$M_0 = \sum_{i=1}^r (\overline{V}_i - V_i); \quad G_i = V_i - \sum_{j \le i} \overline{V}_j$$

we see at once that M_0 is a closed subset of M such that

$$\dim M_0 < k$$

and $G_1, G_2, ..., G_r$ are disjoint open subsets of M with diameters $< \varepsilon$ and such that

$$M-M_0 = \sum_{l=1}^r G_l$$
 and $M = \sum_{l=1}^r \overline{G}_l$.

Let $\delta_n/2$ denote the maximum diameter of simplexes of γ_n . Then $\delta_n \rightarrow 0$. By the lemma there exists for almost every n a positive number η_n such that

$$\lim_{n=\infty}\eta_n=0$$

and that for every subset B of M with diameter $\leqslant \delta_n$ if $B \cdot \overline{G}_{l_\nu} = 0$ for $\nu = 1, 2, \ldots, a$, then there exists a point $a \in \overline{G}_{l_1} \cdot \overline{G}_{l_2} \cdot \ldots \cdot \overline{G}_{l_a}$ such that $\varrho(a, B) < \eta_n$.

Now we associate with each vertex p of γ_n a point $\omega_n(p) \in M$ in the following manner:

Denote by B(p) the set composed by all points $q \in M$ such that there exists in γ_n a simplex Δ containing p and q among its vertices. Evidently $p \in B(p)$ and the diameter of B(p) is $\leq \delta_n$.

Let $i_1, i_2, ..., i_a$ be the maximal system of indices $\leq r$ such that $B(p) \cdot \overline{G}_{i_p} = 0$ for every r = 1, 2, ..., a. By the lemma there exists a point $a \in \overline{G}_{i_1} \cdot \overline{G}_{i_2} \cdot ... \cdot \overline{G}_{i_a}$ such that $\varrho(a, B_n) \leq \eta_n$. We put $\omega_n(p) = a$.

Evidently the cycle $\omega_n(\gamma_n)$ is $(\eta_n + \delta_n)$ -homologous in M to the cycle γ_n . It follows that the cycles $\omega_n(\gamma_n)$ constitute a true k-dimensional cycle in M and that for almost all ν the cycle $\omega_{n_{\nu}}(\gamma_{n_{\nu}})$ is not ε -homologous to 0 in M.

Moreover let us observe that for almost all n each simplex $\omega_n(\Delta)$ of $\omega_n(\gamma_n)$ having a vertex belonging to G_l lies in \overline{G}_l . In fact, by the construction of the function ω_n , if a vertex $\omega_n(p)$ of $\omega_n(\Delta)$ belongs to G_l then also $p \in G_l$ and for every vertex q of Δ it is $\omega_n(q) \in \overline{G}_l$.

Let us denote by $\varkappa_{n,l}$ the chain made up of all simplexes of $\omega_n(\gamma_n)$ having a vertex belonging to G_l with the same coefficients as in $\omega_n(\gamma_n)$. Then

$$\omega_n(\gamma_n) = \varkappa_{n,0} + \varkappa_{n,1} + \ldots + \varkappa_{n,r}$$

where $\varkappa_{n,0}$ is a chain lying in M_0 and for i=1,2,...,r, $\varkappa_{n,l}$ is a chain lying in \overline{G}_l . Then $\partial \varkappa_{n,l}$ is, for i=1,2,...,r, a (k-1)-dimensional cycle lying in the boundary $D_l \subset M_0$ of the set G_l and $\{\partial \varkappa_{n,l}\}$ is a true (k-1)-dimensional cycle of M_0 . If for every i=1,2,...,r, the true cycle $\{\varkappa_{n,l}\}$ were homologous to zero in D_l , then there would exist a true k-dimensional chain $\{\lambda_{n,l}\}$ of D_l such that $\partial \lambda_{n,l} = \partial \varkappa_{n,l}$ for every n=1,2,...,i=1,2,...,r. Since the diameter of D_l is $<\varepsilon$ the cycle $\lambda_{n,l} - \varkappa_{n,l}$ is ε -homologous to zero in M. It follows that the chain

$$\varkappa_{n_{v},0} + \lambda_{n_{v},1} + \ldots + \lambda_{n_{v},r} = \omega_{n_{v}}(\gamma_{n_{v}}) - (\varkappa_{n_{v},1} - \lambda_{n_{v},1}) - \ldots - (\varkappa_{n_{v},r} - \lambda_{n_{v},r})$$

would be a k-dimensional cycle lying in M_0 and ε -homologous in M to $\omega_{n_\nu}(\gamma_{n_\nu})$. But $\omega_{n_\nu}(\gamma_{n_\nu})$ is not ε -homologous to zero in M. Hence the cycle $\varkappa_{n_\nu,0}+\lambda_{n_\nu,1}+\ldots+\lambda_{n_\nu,r}$ would not be ε -homologous to zero in M_0 and the true k-dimensional cycle $\{\varkappa_{n,0}+\lambda_{n,1}+\ldots+\lambda_{n,r}\}$ of M_0 would not be homologous to zero in M_0 . But this contradicts the assumption dim $M_0\leqslant k-1$.

It follows that there exists an index i_0 such that the true (k-1)-dimensional cycle $\underline{\delta} = \{\partial \varkappa_{n,i_0}\}$ is not homologous to zero in D_{i_0} . By the hypothesis of the induction there exists a continuous function φ mapping D_{i_0} in S_{k-1} and carrying the true cycle $\underline{\delta}$ into a true cycle homologous on S_{k-1} to a true cycle of the form $\{\alpha_n \cdot \sigma_{k-1,n}\}$, where $\alpha_n \neq 0$ for an infinite collection of the indices n. We may assume that S_{k-1} is the "equator" of the sphere S_k dividing it into two halfspheres H_1 and H_2 . Evidently there exists a continuous extension f of φ over M such that $f(G_{i_0}) \subset H_1$ and $f(M-G_{i_0}) \subset H_2$. One readily sees that f maps the true cycle $\{\omega_n(\gamma_n)\}$, hence also the true cycle γ into the cycle homologous in S_k to the true cycle of the form $\{\alpha_n \cdot \sigma_{k,n}\}$. Hence γ is spherically essential in M and the proof of the theorem for compact spaces is complete.

Passing to the case in which M is an arbitrary metric space we find a compact subset N of M containing $\underline{\gamma}$ and a continuous function g mapping N in S_k in such a manner that $\underline{\gamma}_g$ is a true cycle not homologous to zero in S_k . Since dim $M \leq \overline{k}$ there exists \underline{s}) a continuous extension \underline{f} of \underline{g} over \underline{M} with the values lying on S_k . Then \underline{f} carries $\underline{\gamma}$ into the true cycle $\underline{\gamma}_f = \underline{\gamma}_g$ not homologous to zero in S_k . This proves the theorem.

⁵⁾ See, for instance, W. Hurewicz and H. Wallman, l. c., p. 83.

8. Homology and extension of mappings. We $\operatorname{now}\nolimits$ prove the following

Lemma. Let f be a continuous mapping of a compact space X in a metric space Y and let $\gamma = \{\gamma_n\}$ be a true cycle lying in X. The true cycle $y_f = \{\gamma_{nf}\}$ is homologous to zero in Y if and only if there exists a continuous extension f' of f, with the values belonging to Y, over a compact space $X' \supset X$ such that $\gamma \sim 0$ in X'.

Proof. The condition is sufficient because the relation $\gamma \sim 0$ in X' implies the relation $\gamma = \gamma \sim 0$ in Y. Thus it remains to prove its necessity.

First let us observe that if h is a homeomorphic mapping of X onto any compact space X_0 and $y_f \sim 0$ in Y then it suffices to show that there exists a continuous extension φ of the mapping $fh^{-1} \in Y^{X_0}$ with the values belonging to Y, over a compact space $X_0' \supset X_0$ such that the true cycle y_h is homologous to zero in X_0' .

Consequently we may assume that X is a subset of the Hilbert cube Q_{ω}^{-6}). By our hypothesis there exists a compact set $Y_0 \subset Y$ such that $f(X) \subset Y_0$ and the true cycle γ_f is homologous to zero in Y_0 . Let X_0 be the subset of the compact space $Q_{\omega} \times Y_0$ composed of all points of the form $x \times f(x)$ with $x \in X$. Putting

$$h(x) = x \times f(x)$$
 for every $x \in X$

we obtain a homeomorphic mapping of X onto X_0 . From the remark just made, we infer that it suffices to show that there exists a continuous extension g of fh^{-1} over a compact space $X_0^{\epsilon} \supset X_0$ such that the values of g belong to Y and that $\gamma_h \sim 0$ in X_0^{ϵ} .

Let us put

$$X_0' = \underset{p}{F} [p = tx \times f(x), x \in X \text{ and } 0 \le t \le 1] + (0) \times Y_0.$$

Evidently X'_0 is a compact space and $X_0 \subset X'_0$. Putting

$$g(t \cdot x \times f(x)) = f(x)$$
 for $x \in X$ and $0 \le t \le 1$,
 $g(0 \times y) = y$ for $y \in Y_0$

we obtain a continuous function g mapping X'_0 into Y. The value of g at the point $h(x) = x \times f(x)$ is equal to f(x). Hence g is an extension of $f h^{-1}$.

It remains only to show that the true cycle y_h is homologous to zero in X_0 . To do it let us observe that putting

$$\varphi_{\lambda}(x \times f(x)) = \lambda \cdot x \times f(x)$$
 for $x \in X$ and $0 \le \lambda \le 1$

we obtain a continuous family of the functions $\{\varphi_{\lambda}\}$ deforming homotopically the set X_0 in the space X'_0 . By this homotopic deformation the true cycle $\underline{\gamma}_h = \underline{\gamma}_{hg_1}$ is carried into the true cycle $\underline{\gamma}_{hg_0}$ being the image of the true cycle $\underline{\gamma}_f$ by the homeomorphic mapping $y \to 0 \times y$ of the set Y_0 on the set $(0) \times Y_0$. But the true cycle $\underline{\gamma}_f$ is homologous to zero in Y_0 , hence $\underline{\gamma}_{hg_0}$ is homologous to zero in $(0) \times Y_0 \subset X'_0$. Thus we have

$$\underline{\gamma}_h \sim \underline{\gamma}_{h\varphi_0}$$
 in X_0^* and $\underline{\gamma}_{h\varphi_0} \sim 0$ in X_0^*

and finally $\underline{\gamma}_h \sim 0$ in X_0' . This proves our lemma.

9. Cycles in the functional space. We now come to the main result of this paper.

Theorem. If a compact space X contains a k-dimensional spherically essential true cycle $\underline{\gamma} = \{\gamma_n\}$, with arbitrary coefficients, then the functional space S_m^X ($m \geq k$) contains a convergent (m-k)-dimensional true spherical cycle $\underline{\gamma}^*$ with integral coefficients not homologous to zero in S_m^X .

In the case for which almost all of the groups \mathfrak{A}_n , to which the coefficients of γ_n belong, contain no elements of finite order, the true cycle γ^* is not weakly homologous to zero in S_n^X .

Proof. By Nrs 6 and 7 there exists a mapping $\varphi \in S_k^X$ such that the true cycle $\underline{\gamma}_{\varphi}$ is homologous in S_k to a true cycle of the form $\{\alpha_n \cdot \sigma_{k,n}\}$ where $\alpha_n \in \mathfrak{A}_n$ and $\alpha_n \neq 0$ for an infinite set of indices n. Putting

$$f(x \times y) = \varphi(x) \times y$$
 for $x \times y \in X \times S_{m-k}$,

we obtain a continuous mapping f of the product $X \times S_{m-k}$ onto the m-dimensional orientable manifold $S_k \times S_{m-k}$ such that the true m-dimensional cycle $\{\gamma_n \times \sigma_{m-k,n}\}$ is carried by f into an m-dimensional true cycle homologous in $S_k \times S_{m-k}$ to the true cycle $\{\alpha_n \cdot \sigma_{k,n} \times \sigma_{m-k,n}\}$.

^{*)} By the Hilbert cube Q_{ω} we understand the set of points $\{x_n\}$ in Hilbert space whose n-th coordinate x_n satisfies the inequality $0 \leqslant x_n \leqslant 1/n$. If $x = \{x_n\} \in Q_{\omega}$ and $0 \leqslant t \leqslant 1$ then $t \cdot x$ denotes the points $\{t \cdot x_n\} \in Q_{\omega}$. In particular we denote by 0 the point $\{x_n\}$ such that $x_n = 0$ for every n = 1, 2, ... Consequently $0 \cdot x = 0$ for every $x \in Q_{\omega}$. By the known theorem of P. Urysohn each metric separable space is homeomorphic to a subset of Q_{ω} .

Homological Structure of the Functional Space

37

36

Now let us consider a continuous mapping ψ of the m-dimensional orientable manifold $S_k \times S_{m-k}$ onto the sphere S_m carrying the true m-dimensional convergent cycle $\{\sigma_{k,n} \times \sigma_{m-k,n}\}$ with integral coefficients into a convergent true cycle homologous in S_m to the cycle $\{\sigma_{m,n}\}$. We readily see that ψf maps the product $X \times S_{m-k}$ into S_m in such a manner that it carries the true cycle $\{\gamma_n \times \sigma_{m-k,n}\}$ into a true cycle homologous in S_m to the true cycle $\{\alpha_n, \sigma_{m,n}\}$. If we assign to each point $y \in S_{m-k}$ the mapping $g_n \in S_m^X$ defined by the formula

$$g_{\mathbf{y}}(\mathbf{x}) = \psi f(\mathbf{x} \times \mathbf{y})$$

then we obtain a continuous mapping g of the sphere S_{m-k} into the space S_m^X . The mapping q carries the convergent true (m-k)-dimensional cycle $\{\sigma_{m-k,n}\}$ into a convergent true (m-k)-dimensional spherical cycle γ^* lying in S_m^X and having integral coefficients.

Were γ^* homologous to zero in S_m^X then, by the lemma of Nr 8, there would exist a compact space $Q \supset S_{m-k}$ such that the true eyele $\{\sigma_{m-k,n}\}$ is homologous to zero in Q, and a continuous extension g' of g over Q, with the values belonging to S_m^X . The mapping g', being an extension of g, carries the true cycle $\{\sigma_{m-k,n}\}$ into γ^* and it assigns to each point $y \in Q$ a mapping $g'(y) = q_y \in S_m^X$. Putting

$$\vartheta(x \times y) = \varphi_{\mathbf{u}}(x)$$
 for $x \times y \in X \times Q$

we obtain a continuous function ϑ mapping $X \times Q$ into S_m . The mapping θ coincides in the set $X \times S_{m-k} \subset X \times Q$ with the mapping w and consequently it maps the m-dimensional true cycle $\{\gamma_n \times \sigma_{m-k,n}\}$ onto a true cycle homologous to $\{a_n \cdot a_{m,n}\}$ in S_m .

But the relation

$$\{\sigma_{m-k,n}\} \sim 0$$
 in Q

implies

$$\{\gamma_n \times \sigma_{m-k,n}\} \sim 0$$
 in $X \times Q$.

It follows that ϑ maps $\{\gamma_n \times \sigma_{m-k,n}\}$ into a true cycle homologous to zero in S_m . Hence

$$\{\alpha_n \cdot \sigma_{m,n}\} \sim 0 \text{ in } S_m$$

and finally $a_n=0$ for almost all indices n, contrary to our assumption.

Let us assume now that almost all of the groups \mathfrak{A}_n contain no elements of finite order. If γ^* were weakly homologous to zero in S_m^X then there would exist an integer $n_0 = 0$ such that

$$n_0 \cdot \gamma^* \sim 0$$
 in S_m^X .

Repeating the reasoning just applied we infer that there would exist a compact set $Q \supset S_{m-k}$ such that

$$\{n_0 \cdot \sigma_{m-k,n}\} \sim 0$$
 in Q

and a continuous function ϑ mapping $X \times Q$ into S_m in such a manner that it carries the m-dimensional true cycle $\{\gamma_n \times n_0 \cdot \sigma_{m-k,n}\}$ into a true cycle homologous to $\{n_0 \cdot \alpha_n \cdot \sigma_{m,n}\}$ in S_m . It follows that

$$\{n_0 \cdot a_n \cdot \sigma_{m,n}\} \sim 0$$
 in S_m

and consequently $n_0 \cdot a_n = 0$, hence also $a_n = 0$ for almost all indices n. But this contradicts our assumption.

Combining the last theorem with the theorem of Nr 7 we obtain the following

Corollary. If X is a compact space such that dim $X \leq k$ and $p^{k}(X) > 0$ then $p^{m-k}(S_{m}^{X}) > 0$ for m = k, k+1,...

Problem 1. Let X be a compact space of dimension $\leq k$ and such that every true k-dimensional cycle of X is homologous to zero in X. Is it true that $p^{m-k}(S_m^X) = 0$ for m = k, k+1,...?

Problem 2. Let X be a compactum of dimension $\leq k$. Do the homological properties of the space $S_m^{\mathbf{X}}$ (for m=k, k+1,...) depend only on the homological properties of X?

Problem 3. Is the space $S_2^{S_1}$ unicoherent?

Państwowy Instytut Matematyczny.