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agtérisques. 11 y existe done au moins une ligne qui contient >k—2
agtérisques, car, en cas contraire, le nombre dey astérisques serait
L(k—3) (25 —3)==2k2—0k-}- 9,

ce qui est impossible. ‘
La conclusion suit de la remarque 1 du NI.
Par raison de symétrie, on peut remplacer & par 9 et n par k.

Instytut Matematycsny Polskiej Akademii Nauk.

Concerning the Homological Structure of the
Functional Space SZ.

By

Karol Borsuk (Warszawa).

1. Funectional space. Let X be a compact space and Y
2 metric space. We denote the set of all continuons mappings of X
in ¥ by Y¥ and we define a metric in ¥¥ by setting

olg,p)=8up o(p(x)),p(w)) for every ¢,upe TX
xeX

The functional spaces ¥X offer scope for ample investigation
eépeeially when Y is the Euclidean m-dimensional sphere S,. In
particular the problem of what properties of X imply the con-
nectedness of Sy is completely resolved for the case dim X <m,
by the celebrated theorem of H. Hopfl). The relations between
the properties of X and the other properties of SX have been less
fully investigated. The purpose of this paper is to indicate a simple:
relation between some homological properties of X and of Sx.

2. ¢-chains in a metric space. Let M be a metric space.
By an s-simplez of M we understand a finite subset of M with
diameter <<e, In the known manner we introduce the notion of
an oriented e-simplex, of an e-chain with arbitrarily given coefficients
and especially of an e-cycle. If the group of coefficients is the group
of rational numbers R then the chains will be said to be rational.
The boundary of a chain » will be denoted by dx. Let us point out

'}y H. Hopf, Die Klassen der Abbildungen der m-dimensionalen P lyed
auf die n-dimensionale Sphére, Comm. Math, Helv. § (1933), p. 39-54 (for poly-
topes), and H. Freudenthal, Bettische Gruppe mod 1 und Hopjfsche Gruppe,
Compositio Math. 4 (1937), p. 235-238 (for compact spaces). See also W. Hu-
rewicz and H. Wallmann, Dimension Theory, Princeton 1941, p. 147.
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that by the boundary of a 0-dimensional simplex (¢) we understand
the number 1. Consequently a O-dimengional chain is a cyele if
and only if the sum of its coefficients vanishes.

Two e-cycles y and p" of M (with coefficients Delonging to
an arbitrarily given abelian group ) are called n-homologous in M
(notation: y 59" in M) if there exists an z-chain » of M (with the
coefficients belonging tio %) such that dx=y—y’.

An e-simplex (ag,ay,...,a,) i8 said to be degenerated, it not all
vertices ag,@y,...,a, are different. We assume that the degenerated
simplexes can be added or cancelled in a chain without changing it.
The boundary of a degenerate simplex vanishes.

3. Cartesian products. Let < he an ordering relation
defined in the set M, i. e. a relation detined for each pair of different
points @,y e M, asymmetric and transitive. Bvidently each k-di-
mengsional e-chain % of M can be uniquely represented by the sum

n
(1) %=21(lv(0h;,o,ay,1,...,Ct,;,k),

[=

where a,==0 and ayi<a,; for every »=1,2,..,n and i<j. The
representation (1) of » will be said to be consistent with the order <.

Let M and M’ be two metric spaces and let M x M’ denote
their Cartesian product, i. e. the metric space whose points are
ordered pairs X o' with xe M and 2’ ¢ M’ and such that the metric
is defined by the formula

el xa', yxy') =V olm,yP+ o,y ')

Let < denote an ordering relation in M and < an ordering
relation in M'. Let us assign to each pair of non-degenerate simplexes
A=(ag,a,...,a5) of M and A'=(ap,ai,...,a) of M’ in which the
vertices are ordered consistently with the relations <2 and 2, the
chain 4 x4’ (with integral coefficients) given by the formula:

AXA = (0,04, ..., 0x) X (a0, 04,..., t)) =

p— ! ’
=2+ (ayXag, ay Xty ooy Uy XAl ),

the sum being extended over all non-decreasing sequences of indices
A . v ,
B9y Tay -y bhpie B0 90,1 ,...,Thyw Such that

0+ o<ty +01< . e ipa o & 2).

%) See H. Froudenthal, Bine Simplizialzerlegung des Cartesischen Pro-
duktes zweier Simplexe, Fund. Math. 29 (1937), p. 139,

icm
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‘We see at once that if 4 is an e-simplex and 4’ an &'-simplex
then 4 X A" is an (e ¢&')-chain.

Let x be a k-dimensional e-chain of M with coefficients belonging
to an arbitrary abelian group U and let »’ be a k'-dimensional

n
g-chain of M’ with integral coefficients. Let x = Zla,,~A,, and
=

n'

%' = aw+ A be the representations of » and x' respectively con-

v/=1

sistent with the orders < and -J. Putting

%X%I—":-Z"' 5,' -ty Ao X A
v=1 v'=1
we obtain a (k--%')-dimensional (e+e')-chain of M x M’ with the
coefficients belonging to 9o, called the product of the chains » and »’.
It is known 2) that

2) (X %)= (—1)k -2 X'+ X',
It follows that:
(3) If y and 5’ are (;,ycles, then y Xy’ is a cycle.

(4) 1If y is an e-cycle n-homologous to zero in M and ' is an
g'-cycle in M', then pyxy’ is an (e+¢')-cycle (n+¢')-homo-
logous to zero in M x M'.

4. True chains. A sequence of chains z={x,} is called a frue
k-dimensional chain of M if there exists a compact subset M, of M
and a sequence {e,} of positive numbers convergent to zero and
such that , is a k-dimensional e,-chain of M, (the coefficients
of %, belong to an abelian group U,, in general depending on n).
If we multiply each of the chains x,, constituting a true chain s,
by an integer m then we obtain a true chain, which we denote
by m-z. ,

If x={x} and A={l.} are two k-dimensional true chains
of M and for every n=1,2,... the coefficients of », and i, belong
to the same abelian group 9., then the sequence {#n+24n} 18
a k-dimensional true chain of M called the sum z-+ A of the chains
% and 4.

The true chain y={y,} of the space M such that every one
of the chains y, is a k-dimensional cycle is called a k-déimensional
true eydle of M. If x={x,} is a true (k-1)-dimensional chain of M,
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then the sequence {dx,} is a true k-dimensional cycle of M , called
the boundary 9x of the true chain x. A true k-dimensional cycele y
of M is said to be homologous to zero in M (notation: y~0 in )
if there exists a true (k41)-dimensional chain x of M such that
Ix=y. We say that a true cycle y is weakly homologous to zero in M,
it there exists an integer n,%=0 such that the true cyele ny.y is
homologous to zero in M. ' -

A true eycle y={y,} of M such that wll cocfficients of the
cycles y, belong to an arbitrarily given abelian group A i said to
be convergent in M if the true cycle {y,pi—yp,} is homologous to
zero in M.

All k-dimensional true cycles with rational coefficients con-
vergent in M constitute a group C*(IM) and the k-dimengional true
cyeles with rational coefficients convergent and homologous to zero
in M constitute its subgroup H*(M). The rank of the factor
group C*(M)/H*( M) is said to be the k-th Betti number of I,
‘We denote it by p*(3I).

Let M and M’ be two metric spaces and let < denote an
ordering relation in M and ~2 an ordering relation in M’. 1f == {n}
is an arbitrary k-dimensional true chain in M and 2 =Ly} a K'-dli-
mensional true chain in M’ with integral coefficients then, putting

2 X&' ={5n X sp}

we obtain a (k-%')-dimensional true chain in M x M’. With regard
to (2) we have
(5) X )= (—1)F X8+ D2 X ',

It follows that if 2 and y’ are true cycles then yXy' is also
a true cyele and if y (or »’) is homologous (or weakly homologous)
to zero in M then ¥ Xy’ is homologous (or weakly homologous)
to zero in M x.M’. And if the true eyeles y and 5’ are convergent
then also the trne cycle y Xy’ is convergent. -

5. Ma.lpplngs of true chains. Let fbe a mapping of a metric
space M in a metric space M'. Tf we assign to each simplex
A=(ay,by,...,a) of M the simplex Ap={f(ay),f(ay),...,f(as)) of M’
then we obtain a transformation mapping each k-dimensional chain %
of M into a k-dimensional chain s} of I, :

) 10 n Evidently this chain-
mapping commutes with addition and with the operation of
boundary 2.

icm
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If the mapping f is continuous then we see at once that the
corresponding chain mapping assigns to every k-dimensional true
chain x={x,} of M a k-dimensional true chain xp={wns} of M*
and to every k-dimensional true cyecle y={y,} of M a k-dimensional
true eyele y;={y.s of M’ and it commutes with addition and with
the operation of boundary 3. Moreover if the true cycle y={y,}
is convergent in M, then the corresponding true cycle Yr={ns}
is convergent in M’ -

If f is a homeomorphism mapping M on M’ then we obtain
in this manner a (1—1)-correspondence between the true cycles
of the spaces M and B’ conserving the convergence and the relation
of homology.

6. Cycles on S,. The k-dimensional sphere S, is homeo-
morphic with the boundary By of a (k-1)-dimensional simplex dpty.
Consequently instead of the eycles on &, we shall consider the
cycles on B,. Let P, denote the complex made up of all k-dimen-
sional faces of J,14. Choosing a positive ovientation in Py, let us
denote by g, the k-dimensional cyecle defined as the sum of all
k-dimensional positively oriented simplexes of the n-th haryecentric
subdivision of P, It is known that the sequence ar={mpn} 18
a convergent k-dimensional true cycle of the polytope B, and that,
for each k-dimensional true cycle y={y,} of B, with the coefficients
of y, belonging to a group Uy, there exists a sequence {an) such that
an Uy and that y is homologous in By to the true cycle {a,- ).
Evidently the last cycle is homologous to zero in B; if and only
if almost all coefficients o, vanish.

Since 8 and B are homeomorphie, we infer that:

There existe in 8y a convergent k-dimensional true eyele o= {okn}
with integral coefficients such that for every k-dimensional true cycle
y={ru} of Sp, with the cvefficients of yn belonging to an abelian
group Wy, there ewists a sequence {u,} with aneW, such that y is
homologous in 8 to the true cyele {ap-oun). The last cycle is homo-
logous to zero in Sy i and only if almost all coefficients a, vanish.

7. Spherical cyeles and spherically essential cycles.
A I-dimensional true eyele y of a metric space M will be said to
he spherical if there exists a k-dimensional true cycle y" in S and
a continuous mapping e MS% such that

ZNZ} in A1.
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A k-dimensional true cyecle Y of M will be called spherically
essential in M if there exists a continuous mapping 7 of M in &
such that p; is not homologous to zero in 8. Bvidently if y ig
homologous to zero in M then y is not sphevically essential in M.

Theorem?). Let M be a metric space of dimension <<k. Fach
k-dimensional true eyele y not homologous to zero in M is spherically
essential in M. B

Tirst we establish a lemma (m)1‘m131tui:ing a slight extension
of the known lemma by Lebesguet),

Lemvma. Let Ay, Ay, ..., A, be compact subsets of o melrie space B,
For every 1> 0 there ewists a 6 >0 such that if B is a subset of 1 with
diameter <O and iy, iy, e 18 @ system of indices <v such that
B-A, =40 for v=1,2,...,a, then there exists @ point aedy-Ay-... Ay,
such that o(a,B)<7.

Proof. Suppose that for an % >0 such a 6> 0 does not exist.
Then for a system of indices 4;,4, ...,7. there exists for every natural
n & set B, with the diameter <1/n such that B,-A; 0 for
v=1,2,...,a and that

(6) o(a,Ba) =7 for every wedy Ay Ay,

Let avnedy-B,. Since 4, is compact we can assume thab
the points ay, converge to a point agedy. Then also @, —a, for
every v=1,2,..,a and we infer that agedy Ay ..o Ay, But

o(ag, Bn) < o(ay, a1,0) -0,
hence o(ay,Bn) <y for almost all u, contrary to (6).

Proof of the theorem. We first show, by induetion, that
the theorem is true for compact spaces.

If =0 then the cycles i, constituting the 0-dimensional
true cycle y={y,} are of the form

¥Yn==Gn,1 (a"vi) + Ony2 (an,2) + .. an,ln(“n,ln)
where

Upt+ tnot .- ang, =),

%) Compare P. Alexandrotf, Dimensionstheorie. Ein Beitrag 2ur Geomelrie
der abgeschlossenen Mengen, Math. Ann. 108 (1932)

& » P. 223, where an analogous
theorem is proved by another method under a slightly more restrictive hypo-
thesis.

‘) Bee, for instance, P.

Alexandroff and H. Hopt Topologie I, Ber-
i 10 o pi, Topologiec I, Ber
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Since y is not homologous to zero in M there exists an >0
and an increasing sequence of indices {n,} such that no ome of the
cycles yu, is s-homologous to zero in M. It follows that the compact
space M is the sum of two closed sets X, and Y, such that:

(7) If relX, 9e¥, then

(8) The sum f, of the coefficients an,; such that a,,;eX, does
not vanish.

-1

and ola,y) >e.

Since M is compact there exists a subsequence {X,} of the
sequence {X,} convergent to a set X,CM. From (7) it follows that:

(9) X,=2X, for almost all indices 4.
Putting
Y,y =M—X,
we have
Y, =Y, for almost all indices 7.

Hence

(10) M=X+7Y, and if ¢ X, and y ¢ ¥; then p(x,y)>=e.

Let 2 denote the sum of all coefficients a,; such that a,;e X,.
By (8) and (9)

(11) ﬁ‘,).yir: Bv;s=0 for almost all indices 4.

The sphere §, contains only two points p and ¢. Putting

fle)=p for wmeX,,
flr)=gq- for aeX,,

we obtain a continuous mapping of M in S, The function f maps
the true cycle y={y,} onto the true cycle {f.-(p)—fn-(g)} which,
by (11), is not_homologous to zero in §,.

Assume now that #>0 and that the theorem is true (for
compact spaces) for dimensions <k. Let y={ya} be a k-dimensional
true cyele not homologous to zero in a cEmpacts space M of dimen-
sion k. Then there exists a positive number & and an increasing
sequence of indices {n,} such that ¥n, 18 not e-homologous to 0
in M. Since M is compact and dim M <k, there exist open sets
V4, Vay...,Vy covering M such that for every i=1,2,...,r the diameter
of 7; is <e and that

dim (V;—V)<k—1.
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Patting
M, = 21 Vi—Vy;  G=V,— YT,
= P

we see at once that M is a closed subset of M such that
dim My &

and Gy, G,,..., G are disjoint open subsets of M with diameters <&
and such that
I o
M—My= 6 and M=23@,.
=1 1
Let 0,/2 denote the maximum diameter of simplexes of Yo
Then é,—-0. By the lemma there exists for almost every n a positive
number #, such that

lim 9, =0

=00
and that for every subset B of M with diameter <0, it B Giv-:()
for v=1,2,...,a, then there exists a point aely-Gy-...- Gy, such

that o(a,B)<< 1.

Now we associate with each vertex p of 3, a point wa(p)e M
in the following manner:

Denote by B(p) the set composed by all points g € M such
that there exists in y, a simplex A containing p and q among its
vertices. Evidently p e B(p) and the diameter of B(p) is <6,

Let 4y,4y,...,7 be the maximal system of indices <» such that
B(p).~Gi,,#O_foz every y=I1,2,..,a. By the lemma there exists
a point aeGy-Gyy-...- G, such that 2(a,B) < np. We put ay(p)=a.

Evidently the cycle wa(yn) is (ya+ dn)-homologous in M to
the eycle yp. It follows that the cycles wn(y,) constitute a true
k-dimensional cycle in M and that for almost all » the cyele w,,(yn,)
is not s-homologous to 0 in M. o

Moxreover let ns observe that for almost all n each simplex
on(4) of wn(y,) having a vertex belonging to G lies in Gh. In fact,
by the construction of the function w,, if a vertex wn(p) of wp(d)
belongs to G; then also pe@; and for every vertex ¢ of 4 it is
wn(q) e Gy.

Let us denote by wn; the chain made up of all simplexes of
on(ya) having a vertex belonging to @ with the same coefficients
a8 in wa(yn). Then '

On{Yn) = #n0+ %n1+ ... tn,r
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where #,0 is a chain lying in M, and for i=1,2,...,7, *n,; is a chain
lying in @. Then dx,y is, for ¢=1,2,..,r, a (k—1)-dimensional
cycle lying in the boundary D,CM, of the set G; and {9x,} is a true
(k—1)-dimensional cycle of M, If for every ¢=1,2,...,r, the true
cycle {x,;} were homologous to zero in Dy, then there would exist
a true k-dimensional chain {i,,} of D; such that 9i,;=dx,, for
every n=1,2,...,, i=1,2,...,. Since the diameter of D, is <& the
eycle Ani—%q; i% e-homologous to zero in M. It follows that the
chain

%ny,0 + }"’wl + ot j"’v-’ = w’lv( Vny)— (%"ml— }”"uJ) T (H"w’_- z'"vv")

would be a k-dimensional cycle lying in M, and e-homologous in M
10 wn, (¥s,). Bub wn,(ys,) is 10t s-homologous to zero in M. Hence
the cyele xn, 0+ Anyt+ ..+ An,r Would not be e-homologous to zero
in M, and the true %-dimensional cycle {#no+ Ani+ ...+ Ans} of M,
would not be homologous to zero in M, But this contradicts the
assumption dim M,<<k—1. )

It follows that there exists an index ¢, such that the true
{k—1)-dimensional cycle &=={8x,,} is not homologous to zero
in D;. By the hypothesis of the induction there exists & continuous
function ¢ mapping Dy, in Sp—; and carrying the true cycle 3 into
a true cycle homologous on Sx—; to a true cycle of the form
{an-or—1,n}, where a,==0 for an infinite collection of the indi-
ces n. We may assume that S, is the ,,equator” of the sphere S
dividing it into two halfspheres H; and H,. Evidently there exists
4 continuous extension f of ¢ over M such that f(G,)CH, and
f(M—G;)CH,. One readily sees that f maps the true cycle {wa(ya)},
hence also the true cycle y into the cycle homologous in S to
the true cycle of the form {a,-o,}. Hence y is spherically essential
in M and the proof of the theorem for compact spaces is complete.

Passing to the case in which M is an arbitrary metric space
we find a compact subset ¥ of M containing y and a continuous
funetion g mapping N in S in such a manner that y, is a true cycle
not homologous to zero in Sy. Since dim M <% there exists 5)
a continuous extension f of g over M with the values lying on Sk.
Then f carries y into the true cycle yy=1y, not homologous to zero
in S;. This proves the theorem. ’

5) See, for instance, W. Hurewicz and H. Wallman, L c., p. 83.
Fundamenta Mathematicac. T. XXXIX. 3
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8. Homology and extension of mappings. We now
prove the following

Lemma. Let | be o continuous mapping of a compact space X
in @ metric space ¥ and let y=={yn} be o true cycle lying in X. The
true cyele yp={yar} is homologous to zero in Y if and only if there
ewists @ continuous extension 1 of f, with ihe values belonging to Y,
over a compact space X'DX such that y~0 in X',

Proof. The condition is sufficient beeause the velation e~k
in X' implies the relation yp=y;~0 in ¥. Thus it remaing to prove
its necessity. T

First let us observe that if h is a homeomorphie mapping
of X onto any compact space X, and y~0 in ¥ then it suffices
to show that there exists a continuous extension ¢ of the mapping
i e Y™ with the values belonging to ¥, over a compact space
XDX, such that the true cycle 7, 18 homologous to zero in X§.

Consequently we may assume that X is a subset of the Hilbert
cube Q. ®). By our hypothesis there exists a compact set ¥,CY such
that f(X)CY, and the true cycle ¢ is homologous to zero in ¥,
Let X, be the subset of the compact space QoX Y, composed of
all points of the form zxf(») with o « X. Putting

Mu)=a xf(») for every zeX

Wwe obtain a homeomorphic mapping of X onto X,. From the remark
just made, we infer that it suffices to show that there exists a con-
tinuous extension g of f&~* over a compact space X{DX, such that
the values of g belong to ¥ and that 7,~0 in X§.

Let us put

X6=lp§'['p=tw>< f@), 2« X and 0]+ (0) X Y,.
Evidently X is a compact space snd X,CXg. Putting

gt -oXf(@))=Ffw) for xeX and 01,
gOXy)=y for ye¥,

%) By the Hilbert cube Qo we understand the set of points {ws} in Hilbert
space whose n-th coordinate xp satisties the inequality 0<Cirn<fn. If oo {rn} € Quw
and 0<{t<C1 then t-x denotes the points {i-xn}e Qu. In particular we denote
by 0 the point {r} such that zp=10 for every n=1,2,... 'Consequently 0 x=0
for every xeQu. By the known theorem of P. Urysohn each metric geparable
space is homeomorphic to a subset of Qo. '
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we obtain a continuous funetion g mapping Xj into Y. The value
of g at the point i{a)=a X f(z) is equal to f(z). Hence ¢ is an extension
of fr7T,

It remains only to show that the true cycle 7, 1s homologous
to zero in X3. To do it let us observe that putting

P (@Xf(®))=A-aXf(®) for weX and 0<<ikK1

we obtain a continuous family of the functions {p,} deforming
homotopically the set X, in the space Xj. By this homotopic de-
formation the true cyele y,= Vag, 18 carried into the true cycle Vhg,
being the image of the true cyele 3, by the homeomorphic mapping
y—>0X y of the set ¥, on the set (0)x Y,. But the true cycle 5, is
homologous to zero in ¥, hence Vhg, 15 homologous to zero in
(0)x ¥,CX;. Thus we have

. o - ‘,/
V0™ Vny, N Xt and Vn %NO in Xp
and finally y, ~0 in Xj. This proves our lemma.

9. Cycles in the functional space. We now come to
the main result of this paper.

Theorem, If a compact space X contains a k-dimensional
spherically essential true cyde y=/{y.}, with arbitrary coefficients,
then the functional space Sz (m=%) contains o convergent (m—k)-di-
mensional true spherical cycle y* with integral coefficients not homo-
logous to zero in SX. -

In the case for which almost all of the groups Wy, to which the
coefficients of yn belong, contain no elements of finite order, the true
cycle y* is not weakly homologous to zero in Sr.

Proof. By Nrs 6 and 7 there exists a mapping ¢eSF such
that the true cycle yy is homologous in S to a true cycle of the
form {a, o4} where u,e, and a,==0 for an infinite set of
indices n. Putting

fExXy)=p@)Xy for eXyeX X Smi,

we obtain a continuous mapping f of the product X X Sn,—; onto
the m-dimensional orientable manifold SxX S,,,.k‘ such that the
true m-dimensional cycle {y,X om—nn} is carried by j into an
m-dimensional troe cyele homologous in Sz X Sm—x to the true
Gycle {an *Okn X Grn—k,n}-

3*
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Now let us consider a continuous mapping.  of the m-dimen-
sional orientable manifold SkX Sm—x onto the sphere 8p carrying
the true m-dimensional convergent cycle {oxnX Om—pn} With
integral coefficients into a convergent true cyecle homologous in Sy
to the cycle {0} We readilly see that ¢f maps the product X X Sp—g
into &, in such a manner that it carries the true cycle {ya x Cuimtin}
into & true eycle homologous in S to the true cycle {oy- oma}. If
we assign to each point yeSu—r the mapping _(/,,eﬁff, defined by
the formula

gy(@)=ypf(a X y)

then we obtain a continuous mapping ¢ of the sphere Sp—p into

the space SZ. The mapping g carries the convergent true (m— k)-di-

" mensional cycle {om—s} into a convergent true (m-— k)-dimensional
spherical cyele y* lying in S% and having integral coefficients.

Were y* homologous to zero in Si then, by the lemma of

N1 8, there would exist a compact space DSy such that the true

eycle {om—zn} is homologous to zero in @, and a e¢rntinuous extension

g' of g over @, with the values belonging to S&. The mapping g,

being an extension of g, carries the true cycle {om—sn} into y* and

it assigns to each point yeQ a mapping ¢'(y)=rq, eSX. Putting

NeXy)=gy(x) for sxXyeX xq

we obtain a continuous funetion ¢ mapping X X @ into 8. The
mapping % coincides in the set X X Su—xCX X @ with the mapping yf
and consequently it maps the m-dimensional true cycle {y, X Gm—in}
onto a true cycle homologous t0 {¢n 0z} in .

But the relation

- {Um—h.n} ~0 in Q

implies }
{¥nX Ometn}~0 in XxQ.

It follows that & maps {ynX Om—pa} into a true eyele homo-
logous to zero in S,. Hence
{tn Ompn} ~0 in 8,

and finally op=0 for almost allindices n, contrary to our agsumption.
Let us assume now that almost all of the groups A, contain

1o elements of finite order. If »* were weakly homologous to zero
in 87 then there would exist an integer 7,70 such that

Ng-y*~0 in Sx

icm
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Repeating the reasoning just applied we infer that there would
exist a compact set QD8 such that

{’)’Lo-dm._j,,.}NO in @
and a continuous funetion ¥ mapping X X Q into Sy in such a manner
that it carries the m-dimensional true cyele. {y,x Ny Om—kn} iDEO
& true cycle homologous t0 {ny-an-0mn} in Sm. It follows that
{15 an Gmn}~0 in Sy

and consequently #gy-a,=0, hence also a,=0 for almost all indi-
ces n. But this contradicts our assumption.

Combining the last theorem with the theorem of Nr 7 we
obtain the following

Corollary, If X is a compact space such that dim X<k and
PHX) >0 then p™HSH) >0 for m=k, k+1,...

Problem 1. Let X be o compact space of dimension <k and
such that every true k-dimensional eycle of X 4s homoiogous to zero
in X. Is it true that p™ *(Sm)=0 for m="h. k=+1,...2

Problem 2. Let X be a compactum of dimension <k. Do the
homological properties of the space SE (for m=k, k+-1,...) depend
only on the homological properties of X?

Problem 3. Is the space S5' unicoherent?

Panstwowy Instytut Matematyezny.
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