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Let H, denote the get of all ¥ e sunch that, for an appropriate
neighbourhood V=@ of y, we have PXVCG,. -
Clearly, the H, are open, H,CH,.;. Let b <@ be arbitrary. ‘We shall

show that be S H,. Putting B'=P x (b), we evidently have, for some
n=1

p, BCG,. For 2;ny z e P, there exist open (in P and, respectively, in @)
sets Uy,V, such that (z,b) e UxXVxClp. Therefore, BC UP(UXX V) CGy.
XE. .

Since B iz bicompact, there exist e P (i=1,...,m) sueh that

BCU (UxxVy). Putting V= A Vs, we have BCPxVCG,. -Therefore,
=1 ' i=1

¥ being a neighbourhood of b,b e H, Hence Q= U H, which implies,

n=1

Q being compact, that Q=H,, for some #. Then clearly Px QC@,
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On Compact Measures *
By

E. Marczewski (Wroctaw)

Let. ;; be & measure in abstract space X; with w(X;)=1for j=1,2,...
Roughly speaking, a measure u in the Cartesian product X;xX;X ...
is called a product of {u;} (for the precise definition see below, Section 6),
if always

I Y XX e XX g X BEX Xpey 7 ot) = 1t B),

and the direct product of {z} if
By X By oo X By ¥ Xpia K Kz o) = 1 By) - 11a{ B oo - pia( En)-

Products of measures are especially important for Probability
Theory, in which they correspond to joint distributions of random va-
riables. Obviously, the direct produet corresponds to the case of sto-
chastic independence.

It is well known that for each family of o-measures there is a uni-
quely determined direct o-product?). The relations in the domain of
non direct products are rather complicated. The important theorem
formulated by Kolmogoroff®) concerns the case, in which each X;
is the veal line3) and its abstract analogue is false, as was proved by
Sparre-Andersen and Jessen?).

In Kolmogoroff's proof, the approximation of measurable sets
by compact ones is important. By eliminating non-essential topological
concepts from this proof, I arrived at the notion of compact measure.
Tn this paper I shall establish the fundamental properties of this con-
cept, especially some relations between compactness and independence
in the sense of the General Theory of Sets®) (theorems 5 (iii)-(v)). Then
T shall show that each product of compact measures is compact (6 (vii)),
*) Presented to the Polish Mathematical Society (Wroclaw Section), on the
10" of November, 1950. Cf. preliminary reports [9] and [I1].

1) See e. g. Halmos [5], p. 157, Theorem B.

) See Kolmogoroff [6], p. 27, Halmos [5], p. 212, Theorem A.

3) — or bicompact topological space, cf. Halmos, L ., p. 212.

4 S§parre- Andersen and Jessen [1]; cf. also Halmos [5]. p. 211-213, and
p. 214 (3).

5) Cf. e. g. Marczewski [7], [8] and [10].
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which implies that it can always be extended to a o-measure. Also the
precise analogue of Kolmogorofif’s theorem is fulfilled by compact
measures ®) (this follows from theorem 6 (viii)).

The concept of compact measure seems to be useful not only in
problems of Cartesian multiplication, e. g. compactness is a sufficient
condition for the countable additivity (theorem 4 (i)). .

The converse theorem is false since the relative Lebesgue measure
in a non-measurable set of Sierpinski is not compact (theorem 7 (iv)).
A stronger result was recently obtained by Ryll-Nardzewski, who
defined the notion of quasi-compact o-measure and proved that the
relative Lebesgue mnieasure in any non-measurable set is never quasi-
compact (of course every compact o-measure is quasi-compact). Ryll-
Nardzewski’s results on quasi-compact measures will be published in
the same Journal (cf. also preliminary report [12]). The notion of quasi-
compact o-measure is equivalent to that of perfect measure in the gense
of Gnedenko and Kolmogoroff?).

1. Preliminaries. For each class K of sets we denote respectively
by (K)s, (K)4, (K)q, and (K); the class of all sets of the form

B, +B, ...+ B,

nl
B+ B+,

E.E,... B,
B, B,-..

where E; ¢ K. Next, we denote by (), the smallest field (i. e. an addi-
tive and complementative class), and by (K); the smallest o-field (. e.
countably additive field) containing K.

If M is a field of subsets of a fixed set X, we call measure in M
each non-negative and additive set function ;(B) defined for E ¢ I and
such that 1(X)=1. A measure is countably additive if for each sequence
of disjoint sets Fje M, with B, +E,+... ¢ M, we have

#(By+ By +...) = y(By) -+ p(Ba) + ..

It is well known that a measure x is countably additive if and only
if each sequence of sets E,DF,D..., with 1(EB;)>a>0, has a non-void
product.

A countable additive measure x in a o-field is called a c-measure.
A measure is called non-atomic if for each set E with 1(B)>0 there is
a set D such that u(E)>u(D)>0.

If 4 is a measure in M, and L is a subfield of M, then by u|L we
understand the partial measwre of u in I, i. e. the set function A defined
only in L and equal to x in L. Then we call w an extension of 2. If u is

%) In this connection cf. a theorem formulated by Doob and Jessen in the paper
by Andersen and Jessen [3], p- 5.

") Gnedenko and Kolmogoroff [4], p. 22.23.
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a g-measure, then it is called a o-exiension of i to M. The well known -
theorem of Fréchet and Nikodym says that

() Any countable additive measure y in M has the unique o-exien-
ston v to (M); and then we have
nE) = inf _): u(E;),

i=1

where {E;} runs ocer all sequences of sets H;e M such that B, + By+ ... DB 8).

It easily follows from (i) that

(i) If g is a measure in M and » & o-extension of pu to (M), then
for each E ¢ {(M); we have

¥ B) = inf W K)= sup »(H),

where K runs over all sets containing E and belonging to (M), and H runs
over all subsets of B belonging fo (M )s.

Finally I shall prove an elementary lemma:

(ili) Let Z be a set of finite sequences of positive integers with the fol-
lowing properties:

19 There is an infinite sequence (b,l,,...) such that, if (ky, ky,..., k) € Z,
then k<l for j=1,2,...,n

20 For each n=1,2,... there is a sequence (ky,ky,... k,) ¢ Z;

3% If (kyykay.oosknyhayr)e Z, then (ky, kos... kn) € Z.

Then there is an infinile sequence (ky,ka,...} such that (ky,ky,....k.) e %
for n=1,2,...

Applying 1° and 2° we define (k;,%,,...) by induction in such s way
that for each positive integer n there exist arbitrarily long sequences
(Kyskayory Kny Bnc1yanes Kniw) € Z. In view of 39 (ky,k,,...) is the required
infinite sequence.

2. Compact classes of sets. A class F of subsets of a set X is
called compact, if for each sequence P,e F the relation P, P,...P,=+0
for n=1,2,... implies P,P,...==0. Obviously, a multiplicative class F
of sets (i. e. a class F=F,) is compact if and only if the product of any
decreasing sequence of non-void sets belonging to it is non-void. A topo-
logical space is compact if and only if the class of all its closed subsets
is compact. More generally, the class of all compact subsets of a topo-
logical space is compact. Evidently

(i) Each subclass of a compact class is compact.
Now we shall prove that
(ii) Ij I is compact, then (F)s is compact.

%) See e. g. Kolmogoroff [6], p. 15-16, Halmos [5], p. 54-56.
8*
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Let us consider the product

:(P}Pé...)(P%P‘é...)... f\'here Piel
and let us suppose that
(= (PP )(PPh.) . (PIPS.)70  for n=1,2,..
Obviously
(%) - P=PIPIPiPiPiPiFi..

and each partial product of (==) is non-void because it contains a pro-
duct of the form (). The class F being compact, we obtain P=40, ¢. e. d.
(ifi) If F is compact, then (F); is coinpact.

Let us consider the product
P=(P}4+ P} +...+Pp)(Pi+Po+.. PreF

.+Pi)... where

and let us suppose that .

E

(P2 Pis o+ PR (P + Pa o+ PL) o (P4 Pot o+ PL)FO

: for n=1,2,..
Consequently for each natural »n there is a sequence %y,k,,...

numbers such that
(%) P Py

sk, of natuoral

Py A0,

Let us denote by Z the set of all finite sequences {k} with the pro-
perty (%F). It follows from the lemma 1 (iii), that there emsts an infinite
sequence {k;} such that the inequality holds for n = .. The class F¥
being compact, we obtain Pi P§,...==0, whence P;r:O, q e.d.

3. Approximation with respect to a measure. Let u be
a measure in a field M of subsets of X. Let F be a class of subsets of X,
‘We say that I approvimates M with respect to u if for each HeM and
each 7>>0 there exists a set Pe F' and a set D e M such that

DCPCE and  u{B—D)<n.

Let us eonsider, for instance, the field E of all finite sums of inter-
vals of the form e<<x<f, where 0 <a<f<1. Evidently the class F' of
closed linear sets approximates E with respect to the ordinary measure.
] Obviously o class F contained in M approximates M, if and only
if for each E ¢ M and 5 >0 there cxists P e F such that

PCE and w(E—P)y<y.
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(i) Let y be a measure in a field M of subsets of X, and v be the g-ex-
tension of p to the o-field (M), If F approximates M with reepect to
then (F)s approvimates (M); with respect fo v ®).

Let Ee (M) Tt follows from 1 (ii)
a set H e (M); such that HCE and

that for each ;>0 there is

WE-—Hy< 1.

We have H=E,E,... where E;e M. By hypothesis, for each
j=1,2,... there ix a set P;je F and a set ;e M such that

D,CP,CE, and  uE D)\“ﬂ

Setting D=2D,D,... and P=P,P,..., we obtain

DCPCH  and  r(H— I))\.),

whence
DCPCE and W E—D)<1.
Obviously P e (F); and D e M, and consequently { ¥'); approxima-
tes M3, q.e.d.

{it) Let « be a measure in the field

M= (X ),

where M, are fields of subsets of X. Let F; be classes of subsets of X. If I}
approximates M, with respect to y, then the class

G (Y Fla
1eT
approrimates M acith respect 1o pi.

Each set E ¢ M is obviously of the form

n i
) E= Y []E where EjeM,..
i=1j=1 J

Let us put k=max(k,...,k,). By hypothesis for each >0 and
for each pair (7, j) (where i <<n and j<k;), there is a set Pje¢ I',t and
a set J) e JI,J{ such that

D/CPICE, and  wE—Dj)< %{
Consequently we have
& A k
Iroicll FiC]l E]
i= j=1 j=1

%) Theorem proved in cooperation with R. Sikorski.
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and .
ki k; k;
w( [1 B —[1D)<u X (B—D))< L.
i=1 i=1 Ji=1 n

Hence, by putting

D=

X k;
i 2

Di and  P=} ][] PF

Ibg-

ji=

-
i
kA
“
i
=

we obtain DCPCE (PeG,DeM) and y(E—D) <1y, q.e. d.

4. Compact measures. A measure x defined in a field M is cal-
led compact, if there exists a compact class F which approximates M
with respect to .

Examples of compact measures: the ordinary measure in the field K
(ef. Section 3), the Lebesgue measure and more generally any c-measure
in the field of all Borel subsets of a separable and complete metric space 19).

(i) Every compact measure is countably additire.
Let i denote a measure in a field M and F' a compact class which
approximates M. Let E; e M form a descending sequence of sets with

#(E)>a>0. By hypothesis, there are a sequence of sets P;e¢ F and
a sequence of sets D;e M such that: ‘

7
2i°

D;CP;CE; and w(E—D;) <

Consequently,
By —DyDy... D) = t{ B\B,y... B,—D\D,... Dy << Y (Ej— D)< a,
=

whence D, D,...D,==0 for n=1,2,...

Since
D.D,..D,CPP,;..P,

and since the class F is compaet, we have P, P,..=£0, and a fortiori
B, B,...#0, which implies the countable additivity of ..

It follows from the Fréchet-Nikodym theorem 1(i), theorem (i),
and propositions 2 (ii) and 3 (i), that

{ii) Every compact measure has the compact a-extension.

Let us notice that this theorem gfves the existence proof of the
Lebesgue measure as the s-extension of the ordinary measure in E.

**} A non-negative charge in a com: i

ati pact space in the sense of A. D. Alexandroff
(ef. {13, p- 314, definition 1,.p. 327, definition 7, and [2], p. 567, definition 1) is a compact
measure in the sense of this paper. In connection with (i), see [2], p. 590, Theorem 5.
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Now we shall prove that

(i) If u is @ compact o-measure in the o-field M, then there erists
« compact class GCM which approximates M rcith respect to n1).

More precisely we shall prove that

(iv) If u is a o-measure in a a-field M and a class F approvimates M
with respect to p, then the elass (= (F);. M approximates M too.

Let Ey, ¢ M and 5 >-0. Then there exist two sequences of sets: {Py,}
and {F,} such that

E, P, JEDP,..., Eje M, Pjel

and

0 ,7 -4 %
W By —E) <L for j=1,2,..

Let us put
P,=P,P,... = E\E,...
Hence
WEy—Pg) =y and Pye &, q.e.d.

Theorem (ifi) follows from (iv), 2(i) and 2 (ii).

5. Compactness and independence. We say that the classes F,
{(where t ¢ T) of subsets of a fixed set X are countably independent, if for
each sequence of different indices {,¢ T and each sequence P, of non-
void sets such that for each n

(=) either P, e F, or Y—P,« F,

we have P P,..=0.
Replacing the condition (z) by the condition P,e F; we obtain
the definition of countably psewdo-independent classes F.
In the case of complementative classes of sets, in partieular in
that of fields, independence and pseudo-independence obviously coincide.
The most important examples of independent classes are the classes
of eylinders in the theory of Cartesian multiplication (see Section 6 below).
(i) If the classes F, (where te T) are countably multiplicative (i. e.
(F)s=F,), countably pseudo-independent and compact, then the class
F=}F, is compact.
teT
Let P=P,P,..., where P; e I’ and
(#2) P, P,...P,=0  for n=1,2,...
Obviously P can be represented in the form of a finite or denumer-
able product P=;@,..., where

Qn= .Pj,,,-Pj,,,.‘. , Pf,, eF, and tuzhe for m'zEm’.
1 2 k

1) This proposition is due to . Ryll-Nardzewski. We do not know, whether
an analogous proposition holds without the assumption of countable additivity.

.
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Tt follows from (==) and the compactness of I} that €, ==0. The
families F, being countably multiplicative and countably quasi-inde-
pendent, we have @, ¢ ¥ and §;@Qs...550, (. e. d.

The preceding proposition and 2 (i)-(iil) imply directly that

(ii) Under the hypotheses of (i), the class (F)gs is compact.

Applying this proposition and 3 (ii) we obtain directly the following
general theorem:
V (iii) Let u be a measure in the field

M= (3 ),
teT

where the M, arve fields of subsets of X. Let us suppose that u | M, is compact
and, what is more, that there exist compact, countably multiplicative and
countably pseudo-independent classes ¥y which approvimate M, wth respect
Then 1 is compact, namely the class

( 4\: 1"1)11?

‘teT

to u.

approvimates M with respect to p.
In the most important case of the countable addivity theorem (iii)
implies the following theorem:

(iv) Let 1 be a measure in the field M = ( 3 M), where the M, are
tel

countably independent o-fields of subsets of X. If all the partial measures
wlM, are eompact thew u is compuct.

In fact, the measures u M, being compact, they arve os-additive in
virtue of 4(i) and since the M, are c-fields, the x| M, are s-measures.
By 4 (iii) there exist compact and countably multiplicative classes F,CM,
which approximate the M, with respeet to x. Since the fields M, are
countably independent, the classes F; are also countably independent
and we can apply theorem (iii).

Obvionsly, it follows from (iv) that there is a compact os-extension
of x. We shall prove that some partial measure of this o- extenmon 15
also compact:

(v) Let M, (t<T) be countably independent o-fields of subsets of X,
et Lytyee =Myt M)y and L= L, ..., , where (ty,1s,...,1,) runs
over all finite systems of ‘indices belonging to- T. Let 1 be a measwre in L
such that A\ L ..., 18 @ o-measure jor each i1,0a,...,t,. If all partial mea-
sures MM, are compact, then 1 is compact 2).

Put p=7ilM, In view of 4(iii), there iz a compact class F,CM,
which approximates M, with respect to p,. It follows from (iil) and 3 (i)

*) At first I proved only that 2 is countably additive. The atronger formulation
was suggested to me by C. Ryll Nardzewski.
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that the class (Fy+...+F, L)asy approximates Lijtyenes

with respect- to
MLy 1yeeer,- Consequently the class

n
Fo=( 3 F)u
1eT

approximates L with respect to u, and since the class F is compact
by (i) and 2 (ii), the measure 2 is compact.

6. Compactness and Cartesian multiplication. We shall
apply theorems of the preceding Section to Cartesian multiplication.

fX,} being a family of sets, where ¢ runs over a set' T, we denote
by X" the Cartesian product of {Xy}, 4. e. the set of all functions # which
attach to every t ¢ T a point x, ¢ X,. Any set ZC X7 iz called a countably
reduced Cartesian product of X, if for each sequence of indices #;« T and
each sequence of elements &€ X, there is an reZ such that x,j=5j.

We fix a countably redueed Cartesian produnct ZCX7 and for each
ECX, we put

C{E)= EfreZ 7 e E].

We call C(E) a gylinder {in Zj with the index { and with the base E.

It folows easily from the fact that Z is a countably reduced Car-
tesian product of {X,} that

(i) The classes C, of all cylinders with index t are countably independent.

It for any te T' F; denotes a class of subsets of X,, and ¢, & set
function in X, then we denote by

F¥ the class of all sets C(E), where E e F),

¢t the set function: ¢F[((E)]=1q(B).

(i) If M, is a multiplicative class [a field, a o-field] of subsets of X,
then M is a multiplicative class [a field, a o-field] of subsets of Z.

(iii) If i, is a measure [countably additive measure] in M, then u*
is a measure [countably additive measure] in MJF.

(iv) If Xy is a compact class of subsets of X,, then F¥ is a compact
class of subsets of Z.

(v) If F, approximates M, with respect to y,, then F¥ approrimates
Mx u-z‘tb respect 1o uf.

If pn, is a compact measure then uf is a compact measure.

Let us suppose that s, is for each t ¢ T' a measure in a field M, of
subsets of X,. By the product of {i,} we understand any common ex-
tension of {1/} to the field

M=(2 ),
tel
The problem arises whether each product of c-measures is countably
additive. The negative answer follows from a result by Sparre-Ander-
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sen and Jessen ¥). Nevertheless the answer is positive in the case of
compact measures:
(vil) Bach product of compact measures is compact.

In fact, if the u, are compact measures in the tields M, of subsets’

of X,, then there exists for each ¢ e T' a compact and countz?bly multi-
plicative class ¥ of subsets of X, which approximates M, with respect
to p;. By (ii)-(vi) for each t e T, M* is a field of subsets of Z, uf is a mea-
sure in M;* and F* & compact and countably multiplicative class appro-
ximates M* with respect to uf. Since the clagses F* are countably inde-
pendent in virtue of (i), then by applying of the fundamental theorem
5 (ii), p is compact.

Analogously, theorem 5 (v) implies the following abstract genera-
lization of Kolmogoroff’s theorem:

(viii) For each te T let u, be a compact measure in a fleld M, of sub-
sets of X,. Let us put

1

Loty =(MX+ MZ+ ..+ M*); and L= )

1y . .
112ty
(1ta.ty)

If i is a wmeasure in L such that MLy yeeur, 8 a o-measure “and
AMM*= u}, then % is compact.

7. Sets of measure zero. In this seetion we shall prove that
the compactness of a measure excludes the possibility of certain sin-
gularities.

At first we shall prove two lemmas:

(i) Let y be a compact non-atomic o-measure in a o-field M. Let F
be a compact subclass of M which approximates M with respect to .. Then,
Jor each E ¢ M with u(E)>0 there is a subset D of E belonging to I and
such that 0 < (D)< (E)/2. : .

The measure ; being non-atomic there.is a subset B* e M of B
such that 0<<u(E*)<<u(E)/2 and by hypothesis there is a subset D ¢ F'
of E* such that 0< u(D)<u(E)/2.

(i) Under the assumption of (i) there are two disjoint subsets E, and B,
of E belonging to F and such that )

WEB)>0, u(B)>0  and (B, + By) <, u(E) ).

Applying (i) we obtain a subset D ¢ Fof E such that 0 < u(D) < u(B)/2.

3} More precisely, it follows from Andersen and Jessen's result [3] that there
is 2 not eountably additive product of g-measures £11¢73,--» Such that for each n the
partial product; of pry, ptys e, i 18 countably additive. Ryll-Nardzewski remarked
that there is a product of two o-measures which is no countably additive.

)} By using stronger means, one ean replace the coefficient 3/4 by any posi-
tive number.
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Applying (i) twice we obtain E, e ¥ and E, ¢ F such that

BCD,  0<u(By)<bu(D)<]u(B)
B,CE—D,

and
0<u{By) < (B — D) < u(B)

which implies (ii). .
We shall prove the following theorem:

(i) If p is a compact and non-atomic o-measure, then each sef B
with u(E)>-0 contains a set N with p(N)=0 of the power of the con-
tinuum. -

Let M be ‘the o-field in which y is defined and F a compact sub-
class of .M which approximates M. Then, thanks to (ii), we can build
a dyadic set contained in . Thus it follows from (ii) that there exists
a system of sets B; ..., ¢ F, where §,=1,2,... such that

(=) W By iyt + By yee i2) < 1By sy e s

(#2)  BCE; By Clynos; a(Byyenny) >0,
(%) -Eiligw-x‘"1'.E51j2...fngzo.

Put

o
N=[] N B ...
n—:ll Ghigmip 12T
where (i},7y,...,7,) runs over the set of all systems consisting of » num-
bers 1 or 2.

Obviously N e M and in virtue of () u(N¥)=0. It follows from ()
and from the compactness of F that for each sequence {i,} of numbers 1
or 2, we have
E

BBy oy 1y #0

11y

and in virtue of (%¥) these products are digjoint. Thus the set N is of

the power of the continuum, q.e. d.

Sierpinski proved with the aid of the continuum hypothesis
that there is a non-denumerable subset § of the unit interval such that
each of its subsets of Lebesgue measure zero is at most denumerable 1),
Let M be the o-field of subsets of § which are Borel sets with respect
to 8. Let # be the exterior Lebesgue measure in M. Then x is a c-mea-
sure with the following property: each set of measure » zero is at most
denumerable. We call Sierpiiski measure any measure baving this pro-
perty. It follows from (iii) that

(iv) No non-atomic Sierpifiski o-measure is compact.

1') Cf. e. g. Sierpinski [18], p. 81.
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On Quasi-Compact Measures
By

C. Ryll-Nardzewski (Wroclaw)

This pdper *) is a continuation of paper On Compact Measures by.
Marczewski[6] (quoted in the sequel as C). Here I consider only o-mea-
sures, i.e. countably additive measures in a countably additive field”
and I define the notion of quasi-compact o-measure. This notion is equi-
valent to that of perfect measure introduced hy Gnedenko and Kol-
mogoroff?l).

It is known that the distribution function of a measurable real
funetion f(ir), i. e. the set function defined by the formula 1 (E) =1 f (E)]
can be considered either for Borel sets E, or for all sets E possessing
measurable inverse images f (E). In the case of Lebesgue measure these
two variants are not essentially different, as was proved by Hartman 2).
Theorem VI proves that this property is characteristic of quasi-compact
measures.

In connection with the abstract characterization of the Lebesgue
meagure, formulated by Halmos, von Neumann [3] and Rohlin [7]
I shall prove that in the domain of separable measures the compactness,
the quasi-compactness and the point-isomorphism with the Lebesgue
measure are equivalent (Theorem VII).

Other relations between the compactness and quasi-compactness
are stated in Theorems II and II1I.

Applying Marczewski’s theorem on the invariance of compactness
under Cartesian multiplication (C 6 (vii)), I shall prove that quasi-com-
pactness has the same property (Theorem VIII).

In this paper I shall preserve the terminology and notation of C,
in particular the letter X will always denote a set, on subsets of which
the considered measure is defined. :

*) Presented in part to the Polish Mathematical Society, Wroclaw Section, on
November 17, 1950. C'f. the preliminary report [8].

1} Gnedenko and Kolmogoroff [1], § 3, p. 22-23. This equivalence Iollows
from Theorem VI.

%) Hartman [4], p. 21, T1I.
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