On the Decomposition of a Locally Connected Compactum
into Cartesian Product of a Curve dnd a Manifold
By
K. Borsuk (Warszawa)

1. A space!) X is called fopologically prime if there exist no two
spaces ¥ and Z, each containing at least 2 points, such that the Car-
tesian product ¥ x Z is homeomorphic to X. The factorization into
prime factors is in general not unique 2). However there exist important
special cases in which the uniqueness of the factorization holds3) and
also other important cases in which the problem of uniqueness remains
open. In particular the question whether the factorization in the 1-di-
mensional spaces is unique remains still unsolved.

The purpose of this note is to show that if X, and X, are locally
connected compacta of dimension <1 and Y is a manifold (closed or
with boundary) then the homeomorphism of X;x Y with X, x Y implies
the homeomorphism of X, and X,. In particular it follows that the de-
composition of a space in the Cartesian product of a locally connected
compactum of dimension <{1 and of a finite number of simple arcs and
simple closed ¢nrves is unique.

2. Let .X be an arbitrary space. A point xe X is said to be Buclidean
provided that there exists a neighbourhood U of x in X homeomorphic
to a Euclidean space E, (of an arbitrary dimension n). By «(X) we de-
note the set consisting of all Euclidean points of X. Evidently «(X) is
an open subset of X. The components of a(X) will be called BEuclidean
components of X. Evidently if € is a locally connected curve then the
diameters of the Euclidean components of ¢ converge to zero (provided
that ¢ contains an infinite number of Euclilean components).

A point weX is zaid to be semi-Buclidean provided that it is not
Euclidean and there exists a neighbourhood U of z in X homeomorphic
with the Buclidean half-space, . e. with the set of all points (x,,;,...,u,) € B,
with #,>0. By (X) we denote the set consisting of all semi-Euclidean
points of X. Evidently the set f(X) is open in the X —ao({X) and it is
a{f( X)) = LX)

1) Troughout this paper all spaces are metric.

%) See [1], p. 825. Also [2], p. 284 and [3].

3) See [4] and [5].
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By 7(X) we denote the set Y —a{X)—p(X). Thus
(1) X = X) + A(X) ()

and the sets u(X), p(X), y(.X) are disjoint.
Evidently
(X« ¥)Da(X)wY)
and
A YY)D alX) = ()= p(V) = oY) == g(X) - prY).

The problem whether in these formulas the symbol “2% may he
replaced by the symbol “="" remains open.

Examples: 1. A (closed) manifold (in the classical sense) is cha-
racterized as a continuum X such that A(X)=y(X)=0. A manifold
with a boundary is characterized as a continuum X such that p(X)=0.
Evidently for a bounded »-dimensional manifold X the set p{X) con-
tains & finite number of components and each of them is a closed (n—1)-
dimensional manifold. In particular a a-dimensional Euclidean eell is
a manifold with a boundary.

2. If ¢ is a locally connected curve then «(C) is the same as the
interior of the set (', composed of all points of order 23).

In fact, every point wrea((’) lies evidently in the interior of (.
On the other hand, if a point x belongs to the interior of (', then ®) there
exists a simple are LC ', such that e a(L). In order to prove that rrea{()
it suffices to show that

(2) if «(L)C(, then the set a(L) is open in (.

For if it is not so, then there exists a sequence {«,} C('—L convergent
to z. Since (' is locally connected, there exists, for sufficiently large »,
a simple arc L'C(, joining x, with « and having the diameter less than
the distance between »r and the end points of L. In L' lies another simple
arc L'’ containing only one point y of L. Then the order of C'in y is =3,
which is incompatible with the relation yeLCC,.

In an analogous manner we show that g(C) ix the same as the set

‘composed by all points xe (' of order 1 lying in the interior of Cy-+(r).

It follows that y((') is the same as the closure of the set composed by
all points of ' of order =3.
It follows that the relation

. ) =2(C)=0
characterises under locally connected curves (' the simple closed curves,
and the relation '

OO =3(C),

the simple arcs.
o “Mg) Invt:he sense of Menger-Urysohn. See [6]. p. 483 and [T}, p. 279,
5y [8], p. 577
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3. Let X be an arbitrary space and I the interval 0<{i<{1. A con-
tinuous mapping f(r,?) of XX I into X is called a homotopic deforma-
tion of X if

fle,0)=2 {for every xeld.

A point p of a space X is homotopically labile ®) whenever for every
£>-0 there exists a homotopic deformation of X satisfying the following
conditions:

(3) ()(J?,f(.’l?,t)v) <e for every (ax,t)eX I,
4)  f(m,1)s5p  for every weX.

The points which are not homotopically labile are said to be homo-
topically stable. A point z,e X is said to be homotopically fized in X if
for every homotopic deformation f(x,t) of X we have f(x,,1)=ux,.

Eramples: 3. In a manifold with a boundary the set, of all homo-
topically labile points is the same as the boundary of the manifold.

4. Let € be a locally connected curve. A point p e ¢ is homotopi-
cally labile if and only if it is of order 1 and there exists a dendrite DC(
containing p in its interior.

The sufficiency is evident. On the other hand, if pe C is homo-
topically labile, then it is of order 1°7). If no dendrite DCC constitutes
a neighbourhood of p then every neighbourhood of p contains a simple
closed curve. Then p is not homotopically labile 8).

5. Let 4 be a Euelidean component of a locally connected curve (.
A point peA is homotopieally labile in ¢ if and only if p e d-B(0).

The sufficiency is evident. To prove the necessity let us observe
that if pe A is homotopically labile in ¢, then (by example 4) p is of
order 1 in (' and there exists a dendrite D CC being a neighbourhood
of p in C. Let L, be a simple arcC.D such that p is one of its end points.
Let ¢ denote the other end point of L;. If L, is not a neighbourhood of p
then for every >0 there exists a simple are L,C D with the diameter <e
containing a point reD—1IL,. It follows that there exists a simple
are LyCL, such that L, - I, contains only one point s. If e< ¢(p,q) then s=%q.
Moreover s+ p, since p is of order 1. Hence s is a point of order >3 of D
and o(p,s)<e. If ¢ is sufficiently small, then the diameter of the com-
ponent G of D—(s) containing p is arbitrarily small. Since D is a neigh-
bourhood of p in C, we infer that for sufficiently small ¢ the set &
constitutes also a component of C—(s) and G.G—G=(s). Moreover
A GFE0£EA—G. I{_: follows that se A, which is impossible, because s is
of order >3.

% 9], p. 160.
%) [9], p. 168, Corollary 3.
%) {9}, p.- 175, Corollary 2.
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6. In a locally connected curve € the homotopically fixed points
arve the same as the points in which € is not locally a dendrite.

In fact, if there exists a dendrite DC( which is a neighbourhood
of a point xy in € and 2, is another point of D, then setting

flz,ty=a  for every (r,0)eC~(0)~C—D1I,
J(o,1) =y,

we obtain a continuous function f(w,?) mapping the compactum
Z=Cx(0)+C=DxI+{x)x (1)CCx I

onto a subset of ¢. The values of f(z,#) in the set Z-(Dx I) belong to

the set D which is an absolute retract. It follows that f(z,?) can be ex-

tended to a homébtopic deformation of ¢ earrying x, in z,. Hence z, is

not homotopically fixed.

If, however, there exists no dendrite DCC which is a neighbour-
hood of x, in C, then for every n=1,2,... there exists a simple closed
curve 2,CC such that the distance g(z,,2,) and also the diameter of 2,
converge to (. Then for every homotopic deformation f(x,t) of C we
have )

0, Cf(&2,,1). :
In every curve 2, let us choose a point &z,. Then &, g and ol f(@,, 1)) 0. .
Hence
f(re, 1) =1im f{a,, 1) = lim &, = 2,

n—>x EE 21
i. e. the point », is homotopically fixed.

4. Lemma. Let C be a locally connected curve, M a manifold (closed
or not), xeC and ye M. Then

(B) (x,y) is homotopically labile in Cx M if and only if » is homoto-
pically labile in C or y is homotopically labile in M.

(6) (e,y)ea(C = Iy if and only if rea(C) and yeaolM).

Proof. Since the considered properties are local, we can assume
that M is a Euclidean n-dimensional cell ¢. In this case statement (5)
is proved on another place *). Hence it remains to give the proof for
statement (6).

It is evident that reo(C) and yea(M) imply that (r,y)ea(Cx M).
On the other hand, it is known?) that if (x,y)ea(Cx M), i. e if (x,y)
has a neighbourhood in € x M homeomorphic with the Euclidean (n+1)-
dimensional space, then rea(C). Moreover the point (x,y)ea(Cx M) is
not homotopically labile in C'x 3, hence (by 5) ¥ iz not homotopically

$) {9], p. 163 and p. 175, Corollary 4.
) [5], p. 275.
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144 : K. Borsuk:
labile in M. It follows, by example 3, that y does not belong to the
houndary of M, i. e yea(M).

5. A point p of an arbitrary space A is said to be approwimately
Buclidean provided that for every £>0 there exists a homotopic de-
formation f(x,t) of X satisfyving the conditions:

(M) olfte,t,al<e  for every (x,t)eXx I,
(8) pealf(X,1)).
(9)  The dimension of f(X,1) at p is equal to the dimension of X at p.

Examples: 7. Every Euclidean point of X is also approximately
Euelidean.

8. Let @, denote the 2-dimensional Euclidean éell defined in E,
by the inequality

.34 1
(-1'7‘5";_1) + 2 "+1 for n=1,2,...

It will easily be seen that in the set X = z,QnTI X (0) the point

(0,0) is approximately Euclidean, but not ]mlehd_ean.
9. In a manifold (elosed or not) the approximately Euclidean points
are the same as the Euclidean points.

Remark. For an £>0 consider the continuous function i w) de-
fined for # >0 by the formulas:

’ for 0<u<2e,
3—— 2eCu < 3e,
u =3¢,

If f(x,?) is a homotopic deformation of f satisfying the conditions
(7)-(9), then setting

wa,0)=1{e,2o(e,p)) 1) for (a,0eXxI

we obtain a continnous deformation of X satisfying the conditions:

(10} olp(e,t),2)<e  for every (2,0)eX %1,

(11) pealp(X,1)),

(12)  the dimension of ¢(X,1) at p is equal fo the dimension of X at p,
(13) if o(x,p)>=>3e then g(x,i)=x for every tel.

Now consider another space ¥ and suppose that there exists a ho-
meomorphic mapping h of a neighbourhood U7 of p in X such that
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V="n(U) constitutes a neighbourhood in ¥ of the point g=~A(p). For
every 7n>0 there exists an £>0 such that
(14) If e X and o(x,p)<3e then ze¢ U and hz)eV,
(15)  If 2,mee X and o(wy,p)<e, o(7e,p)<<e then Q(h(ml)f h(mz))<77-

Let g¢(x,%) be a continuous deformation of X satisfying the con-
dition (10)-(13). Setting

vy, t) =he[h N y),t]  for every (y,f)eVxI,
p(y,t)=y for every (y,i)e(¥—V)xI,

we obtain a continuous deformation of Y satisfying the conditions:

(16) olw(y,thy)<n  for every (y,)e¥ xI,

(17) geafp(V,1)],

because ¢(U,1) constitutes a neighbourhood of p in X and p ealp(U,1)].
(18) The dimension of p(X,1) at q is equal to the dimension of ¥ af q,
because the dimension of p(¥,1) at g is equal to the dimension of
K (Y,1) at p, that is to the dimension of ¢(U,1) at p. But this lash
dimension is equal to the dimension of X at p, hence also to the dimen-
sion of Y at ¢.

Thus we see that the property of a pmnt being approximately Eucli-
dean is a local one.

6. Lemma. If p is an approximately Buclidean point of an arbitrary
space X, then X is locally contractible at p.

Proof. Let f be a homotopic deformation satisfying (7) and (8).
By (8) there exists a neighbourhood ¥ of p in f(X,1) and a homotopic
deformation g(y,i) of ¥V in f(X,1) such that

olgly,t),y)<e  for every (y,)eV x1
and
g(y,1)=p for every yeV.

The set U=jf*(V,1) constitutes a neighbourhood of p in X. Setting
¢(z,t)=f(z,2t) for every relU and O0<i<3,
olz,ty = g{f(z,1), 2t—1] for every xelU and }<i<I,
we obtain a homotopic deformation of U satisfying the following con-

ditions: ‘
olg(a,t),p) <2¢  for every (z,0)eUxI,
p(x,1)=p for every wxelU.
Hence X is locally contractible at p.

Fundamenta Mathematicae T. XL. 10
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7. Theorem. Let C be a locally connected curve. A necessary and
sufficient condition that a point peC be approximately Buclidean is that
¢ is Tocally contractible at p and p is of order 2.

Proof. To prove the necessity suppose that p is approximately
Euclidean. By the lemma of No. 6 the curve € is locally contractible
at p. Hence there exists a dendrite DC (' which is a neighbourhood of p
in . By (8) there exists a simple arc LCC such that pea(L). Hence
p is of order >2. Suppose, contrary to our condition, that p is of or-
der >2. Then D—(p) contains at least 3 components I,1,%. Let us
choose a point p el for i=1,2,3 and let L; denote the simple arc
joining in D the points p and p,. It is easy to see that there exists a po-
sitive ¢ such that

(19) olx,C—D)>e for every wel;+Ly+ Ly,

(20) TFor every component I'=.T17; of D—(p) it is o(p,,1") >¢ for t=1 12,3,

Let f(z,t) be a homotopic deformation of X =( satisfying (7) and (9).
Then, by (19), it is f(L;;1)CD and, by (20), f(p,,1)el; for i=1,2,3.
It follows that L;Cf(L;,1) for i=1,2,3, hence L;+L,+L,Cf(C,1). Con-
sequently p is of order >3 in f(C,1), i. e. condition (8) fails.

To prove the sufficiency let us observe that the local contracti-
bility of € at p implies that for every >0 there exists a dendrite D of
diameter less than e constituting a neighbourhood of p in ¢. Since p is
of order 2, there exists a simple arc LCD such that pea(L). Moreover
we can assume that the diameter of L is less than an arbitrarily given # >0.
Let py, ps be the end points of L and let D, denote the closure of the com-
ponent of D—(p,)—(p,) containing p. Evidently, for 5 sufficiently small,
D, i8 & dendrite sueh that LCD,CD—0—D and consequently D,- C—D,
=Dy D—Dy=(py)+(ps). It is easy to observe that there exists a homo-
topic deformation f of D, satisfying the conditions:

fle,ty=x  for every xeL, 01,
f(Dg,1) = L.

Setting f(x,t)=2x for every (z,t)e(C—Dy)x I we obtain a homotopic
deformation f of C satisfying the conditions (7), (8) and (9).

8. Let us denote by T, the polytope made up of three #-dimensio-
nal simplexes A3, 43,43 having exactly one (n—1)-dimensional face A"
in common. In particular T is homeomorphic to the sum of three gimple
ares disjoint except for one of their and points, and 7', is homeomorphic
to the Cartesian product of T, and n—1 simple ares. Let a, denote the
barycenter of 4" and A the polytope made up of all (n~—1)-dimensional
(closed) faces of A%,A3,45, distinet from 4™,

2
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Lemana. If h is a homeomorphism mapping T, into a n-dimensional
space X then the point h(a,) is not approvimately Buelidean in X.

Proof. Suppose, on the contrary, that k{a,) is approximately Eucli-
dean in X. By lemma 6 there exists a neighbourhood U, of k{a,) (in the
space X) contractible in .X. Hence every true cycle (in the sense of Vie-
toris) lying in a compact subset of U, is homologous to zero in X.

Since, for every >0, there exists a homeomorphism mapping 7,
in its subset with diameter <¢, in such a manner that a, remains fixed,
we can assume, without loss of generality, that

STR(Ta)] < § oth{an), X~ Uo) ,

where ¢ denotes the diameter. Moreover we can assume that h is the
identical mapping. Hence T,CU,.
Let us choose an orientation in the simplexe 4™ and assign to

each of the simplexes 45, »=1,2,3 an orientation such that the bonn-

dary of A% contains 4™ with the coefficient 1. Then the chain
x=d71+ A3+ Ag}

in which we regard the coefficients as the rests modulo 3, has as its

boundary a (n—1)-dimensional cyele (mod 3) y lying in .1.

Let y denote the sequence {y;} made up of the successive bary-
centric subdivisions of y. Evidently y is a true (n—1)-dimensional con-
vergent cycle mod 3 (in the sense of Vietoris) and it is homologous to
zeroe in T,, but not homologous to zero in any closed proper subset of T',.
Moreover, if P is 2 compact subset of U, such that + is homologous to
zero in P, then T,CP. In fact, if 2 = {4,} denotes a true chain (mod 3)
in P such that
(21) =y for k=1,2,..
and if »={x;} denotes the sequence of the successive barycentric sub-
divisions of x, then
(22) e = QA =1y.

Henece x—4 is an n-dimensional true eycle (mod 3) lying in P+ 7,CU,.
But every cycle lying in U7y is homologous to zero in X. In particular

the n-dimensional cyele »—4 is homologouns to zero in X, and since

dim ¥<n we infer, that »—2 is homologous to zero in P+T,. It fol-
lows, by the well-known theorem of Phragmen-Brouwer, that y is homo-
logous to zero in the set P-T, and consequently I,CP.

By our assumption a, is approximately Euclidean in X, conse-
quently there exists, for every £>0, a homotopic deformation f(w,t)
of X such that

g{i(x,t),ac)<e for every (w,f)e X x I,

ay € o f{w,1)].
10*
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If ¢ is sufficiently small, then f(z,1) carries the true cycle y into
the true cycle f(r,1) lying in the set X—U,, where U, denotes the set
composed of all points p ¢ X with o(p,a,)<e. Moreover, if ¢ is sufficiently
small, the set f(T,,I) lies in U,.

But the set U.-T, contains three n-dimensional simplexes having
exactly one (n—1)-dimensional face in common. Hence U,.-T, is not
a subset of o[f(X,1)]. We infer that for e sufficiently small there exists
a point
(23) beT,,—f(!l,l)-—f(T,,,l).

But
r~f(r,1) in f(A,I),
f(r;1) =2f(%,1)~0 in f(Th,1).

It follows that y is homologous to zero in the compact set f(A,I)
+#T,,1)CU,, which implies, as we have shown, that T,Cf(A,I)4-f(T,,1),
contrary to (23). Thus the lemma is proved.

9. Theorem. Let 0,C,,...,Cr be locally connected curves and M
a manifold (closed or not). In order that a point p=(py,Ps,...,Pk,q) € X
=0 XX .. X O X M be approzimately Buclidean in X it is mnecessary
and sufficient that p; be approximately Buclidean in C; for every i=1,2,..,k
and q be Euclidean in M.

Proof. The sufficiency is evident. To prove the necessity let us
observe that if p=(p,,Ps,...,P%,¢) is approximately Euclidean in X then,
by lemma 6, X is locally contractible at p, hence also O; is locally
contractible at p, for ¢=1,2,...,k. It follows that there exists a dendrite
lying in C; and constituting a neighbourhood of p; in ;. Since the pro-
perty of a point being approximately Euclidean is a local one we can
suppose that C; is a dendrite for ¢=1,2,...,k and that M is. an Bucli-
d‘ean cell, 7. e. M is of the form OpyyX ...xC,, where Cpyq,...,C, are
gsimple arcs and n=dim X.

) The point p, as an approximately Euclidean one, lies in the inte-
rior of an n-dimensional cell CX. We infer ) that p is homotopically
stable in X. Tt follows ) that p, is homotopically stable in C;, hence
the order of p, in C; is >2 for i=1,2,...,n.

By the theorem of No.7 it remains to prove that p; is of order <2
in C; for 4=1,2,...,n.

Suppose, on the contrary, that for an index ¢ the point p, is of
pmﬁer >38 in €;. We can assume that i==1. Then there exists three :%imple
ares L‘P,Iff’,lrl@ starting from p, and satisfying the condition

PP = IPLP = TP~ (5,

1) {9], p. 168, Corollary 1.
1) [9], p. 163.

@
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Since p, is of order =2 for i>>2, there exists a simple arc L;CC;
such that p,ea(l;) for i=1,2,..,n. Evidently the set (L§1)+L(12’-§~L(13))
%Ly X ... XLy can be topologically mapped into a sum of three n-dimen-
sional simplexes A7, 43,43, having an (x—1)-dimensional face 47 in
common in such a manner, that the point p is carried into the bary-
center a, of A" . Applying the lemma of No.8 we infer that p is not
approximately Euclidean in X, contrary to our supposition.

10. Let X be an arbitrary space. By an isotopic deformation in X
we mean a homotopic deformation f(r,) of X such that for every foel
the mapping f(x,t,) maps X into itself topologically.

A point p e X is said to be isotopically labile if for every e >0 there
exists an isotopie deformation f(z,t) in X satisfying the following con-
ditions:

g(f(m,t},x‘i<s for every (a,f)eX x [,

fle,1)=p for every xrelX.

The points which are not isotopically labile are said to be iso-
topically stable.

Evidently every isotopically labile point is also homotopically
labile, but not vice versa (see example 11).

If X and X' are two spaces and p is isotopically labile in X and
p’ is an arbitrary point of X', then the point (p,p’) is isotopically lahile
in XX

Examples: 10. Every semi-Buclidean point is isotopically labile.
In particular in an n-dimensional manifold M the isotopically labile
points are the same as the points lying on the boundary of M.

11. If C is a locally connected curve, then the isotopically labile
points are the same as semi-Euclidean points.

Since every semi-Eueclidean point is isotopically labile and every
Euclidean point is homotopically stable, it remains to show that every
point pey(C) is isotopically stable. By example 4 it suffices to prove
this in the case when there exists a dendrite D containing p in its in-
terior and when p is of order 1. Suppose that -there exists 2 homotopic
deformation f(a,t) in ' sueh that peC—jf(C,1). Since peyp(C) there
exists in every neighbourhood of p a point p’ of order =3. If we choose p’
in a sufficiently small neighbourhood of p then p" e D—f(C,1). Then
the continuum f(p’,I) contains a point p' e D—f(C,1) of order 2 ).
By theorem 7 the point p” is approximately Euclidean in (. But there
exists a number t, such that the homeomorphism fla . t,) satisfies the
condition

flp'st) =p""

1) [10], p. 223.
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Since p’ is of ovder >3 there exist in’ ¢ three simple arcs L®, L IO
having only the point p’ in common. By the lemma of No. 8 the point p"
cannot be approximately Euclidean.

1. Lemma. If O is « locally connected curve and M a manifold
then the set of all isotopically labile points of C X M is the same as the set
Cx B(M)+B(0)x M.

Proof. Evidently every point (a:n,yo)eO'x AM)+B(C)X M is iso-
ﬁopieally labile. Moreover we know that every point (z,,y,)ea(C) X a( M)
i3 homotopically stable, and homotopically stable is also every point
(9,y,) sueh that in every neighbourhood of z, in € there exist simple
closed curves and ygea(M). Consequently it remains to show that if
zyep(C) and there exists a dendrite I CC containing r, in its interior
and ﬁ Yoea( M), then (x,,y,) is isotopically stable. i

Suppose, on the contrary, that for every ¢>0 there exists an iso-
topie deform‘avtion f«;(.n,y).t):(gb(.r,]/,t),w(‘r,y,t)) of ¢ x M such that

(24) g(‘ﬂ(.zr,y),th,(x,_z/))<‘s for every (x,y)e OX M,
(g, 90) e OX M —f(X % T,1).
Let 5 be a positive number so small that for every zeC with
ol@,%,)<<2n we have ze D and for every y e M with o(¥,%0)<27n we have
ye_a(M ). Let V, denote the meighbourhood of y, in j[ composed of all
points y satisfying the inequality o(y,y,)<y. If for every yeV, it it
#(9,9,1) =2, then y(zq,y,1) maps ¥, into a(M) and it is o ’ )

(25) oz, Y, 1),y) <& for every yel,, YoeVo—p(g, Vo, 1).
But this is impossible for sufficiently small &, because the point

seu(M) is homotopically stable in M 1),

Hence there exists an isotopie i isfyi
) C ; pic deformation f satisfying (24
& point y; « Ty such that ! vine (24) and

(26)

Loy 43, 1)7= T4
Moreover, we can assume that <2 7. Then g(q(;c“,yé,t),‘po) <7, hence
d o 1) 1 i interior .
and {20, Yo,t) lies in the interior of D for every tel,
Q(#’(%:yéyi)yyo\ < 9( :(‘.rn,y{],t),yi,l) + Q(Z/I;;!/o)‘f: 2y
hence i !

o w{%o;Y0,t) ea{ M) - for every fel.

) [9% p. 188.

L ]
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By the continuity of ¢ and p there exists a positive ¢ >0 such
that if o(x,x0) <& then

a{ah,Y0,t) lies in the interior of D for every tel,
q('rll);ziérl)séxf,l;
(oo, Yoty eal M) for every tel.

Since xgep(C), there exists a point xg of order =3 satisfying the
inequality o(xo,x5) <¢'. Evidently there exists a homeomorphism mapping
a polytope T, (where n—1 denotes the dimension of 1) made up of
three n-dimensional simplexes 7,454 having one (n—1)-dimensional
face 4™ in common, into ¢'x M in such a manner that the barycenter
of A"™! is mapped onto («5,ys). Applying the lemma of N 0.8 we infer
that for every tel the point f(xs,¥s,%) is not approximately Eunclidean
in ¢ x 3. But the set ¢(z},ys,I) is a continuum joining, in the interior
of D, the point x} with the point ¢{j, ¥a,1) =g, It follows that for some
to€ ] the point ¢(xh,ys,%) is of order 2. By the theorem of No.9 we infer
that j(xj.ys,%) is approximately Euclidean. Thus our supposition that
the point (rg,¥,) is isotopically labile leads to a contradietion.

12. By an isotopic deformation on X we understand an isotopic
deformation f{r,) in X satisfying, for every f,el. the condition

X, tp) =X

Two points p,geX are said to be isolopic on X if there exists an
isotopic deformation f(x,t) on X such that f(p,1)=g¢. Evidently the
relation of isotopy is reflexive. Let us show that it is also symmetrical
and transitive. Let f(x,f,) denote for every fyel the inverse of the
mapping f(ir,t,). It will easily be seen that fYx,t) constitutes an iso-
topic deformation on X and that F™¢q,1)=p. Hence isotopy is a sym-
metrical relation. Moreover if f(x,?) and g(x,t) are two isotopic deforma-
tions on X, then setting

g(x,t) =gif(x,1),t] for every (x,t)e XX I

e obtain an isotopic deformation on X such that ¢(p,1)=glg,1). It fol-
lows that the isotopy of p with g=f(p,1) and of ¢ with r= g{q,1) implies
the isotopy of p with r, i. e. the relation of isotopy is transitive.

We infer that the space X decomposes into disjoint sets of isotopic
points. It is clear that these sets are connected (even arcwise connected);
we call them isofopy components of X. Evidently if p and ¢ are two points
belonging to one isotopy component of X, then X is locally homeo-
morphic in p and in g

Moreover let us observe that if X and X' are two spaces and p,ge X
are isotopic on X and p’,¢’ are isotopic on X', then the points {p,p’)
{g,q')e X x X’ are isotopic on XxX.


GUEST


152 K. Borsuk:

Examples: 12, Let X be the closure of the subset A of the Eucli-
dean plane B, composed of all points of the form (, sin n/z) with 0-<z<1.
Then X has 5 isotopy components: 4, three 0-dimensional components,
each containing one of the points a,=(1,0), ,=(0,1) and a;= (0,—1)
respectively, and the interior of the segment wma_.

13. Every Euclidean component of an arbitrary space X is an
isotopy component of X. In particular the interior of a manifold M is
an isotopy component of M. Evidently the other isotopy components
of M are identieal with the components of the boundary N of A,

14. Let C be a locally connected curve. The isotopy components
of C containing at least 2 points are identical with the Euclidean com-
ponents of C.

In fact, if p and ¢ belong to one Buclidean component of C, then

they are isotopic. On the other hand let p and ¢ be two different points
of an isotopy component 4 of . Let f(r,t) denote the isotopic defor-
mation on ¢ satisfying the condition f(p,1)= g. Then there exists a neigh-
bourhood U7 of p in €' such that

H(U,1)- U=0.

We infer 3) that [7 does not contain any simple closed curve. It follows
that € is a local dendrite in every point pe A. Since 4 is arcwise con-
nected, there exists a simple arc L joining the points p and qin 4. By the
local homeomorphism all points of 4 have the same order >2 in C.
Since the set of all points of order >3 of a dendrite is finite or count-
able 1¢), we infer that L is a subset of the set ¢, composed of all points
of order 2 of C. By (2) the set a(L) is open in C. It follows that in every
point of a{L), hence also in every point of 4 the curve C is locally homeo-
morphic with the Eueclidean 1-dimensional space. Consequently 4 is
a subset of a Euclidean component of C.

13. Lemma. Let C be a locally connected curve and M a manifold.
Two points (24, Y,) € Y(C) X a(M) and (x,y,) e CX M are isotopic on CX M
if and only if xy=ux, and y,ea(M).

Proof. It is evident that x,=ux, and y,ea(M) imply the isotopy
of (zq,¥0) and (zy, 1)

Let us assume that (z,,y,) and (a,y;) are isotopic. By lemma 11
the point (x,,y,) is isotopically stable in ¢'x M. Hence also (x,¥;) is
isotopically stable. We infer, by example 10, that x,ea(C)+y(0) and
yyea{M). By the lemma of No.4 the point (zy,y,) is not Buclidean in
Cx M, hence x, does not belong to a(Q).

If remains to prove that if (w,,50) € ¥(C) X «( M) and (1, y,) e p(C) X a( M)
are isotopic on C'x M, then xy=wa,. If it is not so, then there exists

15) {9, p. 174
%) [10], p. 227.
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an isotopic deformation f((2,y),t) = (p(z,9,1), p(,7,1)) on Cx M such
that = (g, Yo, 1)5=2,. For every tel the point (g(xz,y,t), w@,y,t) is
isotopic to (z,,¥.), hence g(z,y,t)ey(C) and w(r,y,1) ca{M). The map-
ping ¢(z,Y,,t) is a homotopic deformation of C. Sinee ¢(2y,¥,, 1)F=1x, it
follows ) that not every neighbourhood of &, in € contains simple closed
eurves, i. e. ¥, has a neighbourhood in € which is a dendrite. It follows
that for some #j eI the point ¢(®s,%s,%) is of order 2 and for some other
ty e I the point (g, Yo,ty) is of order >3. By the theorem of No. 9 the
point f(a:o,-yo,ta)=((p(:nu,y0,t5), (o, yo,t{,)) is approximately Euclidean in
Ox M, and the point f(Zo,¥o,l§) =(p(@o,Yo,15), v(@0,%0,%)) is not appro-
ximately Euclidean in ¢ x M, which is impossible, because these points
are isotopie. :

14. Let 4 be a Eueclidean component of a locally connected curve C.
We shall say that:

1. A is of the first type if A-[p(C)+p(()]=10 (i. e. if (=4 isa simple
closed curve).

2. A is of the second type if A-p(C)=0 and A-p(C) contains exactly
one point (7. e. if A4 and 4 is a simple closed curve).

3. A is of the third type it A-B(C)=0 and A-p({') contains exactly
two points.

1. 4 is of the fourth type it 4-p(C)5=0.

Remark. Only in the case of C being a simple arc there exists
a Buclidean component 4 such that A4-B(C) contains exactly two points.
In any other case 4-p(C) contains at most one point.

Lemma. Let C be a locally connected curve and M a manifold (closed
or not). The isotopy components of Cx M are identical with the seis of the
Jollowing 8 types:

1° A % af M), where 4 is a Euclidean component of C of the first type,

20 4 % a(M), where A is a Buclidean component of C of the second type,

30 A x a(M), where A is a Euclidean component of C of the third type,

10 4 % o( M), where A is a Buclidean component of C of the fourth type,

50 4 % N,, where A is a Buclidean component of C of the first, second
or third type and N, is & component of B(M),

o [A-B(O)]X M +A X B(M), where 4 is a Euclidean component of €
of the fourth type,
T70 (o) X a M), where ryep(C),

80 (1) X Ny, where xoey(C) and Ny is a component of B(M).

Moreover, if a homeomorphism h maps CxXM onio the Cartesian
product C'x M, where C' is another locally connected curve, then h maps
every isotopy component of CxX M onto an isotopy component of C'x M
of the same type.

) (9], p. 174.

(=23
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Proof. It is clear that each of the sets 1°-8° lies in ome isotopy
component of €x M and that every point of 0x M belongs to exactly
one of the sets 1°-8°.

By the lemma of No.4 the sets 1°-4° are the same as the Rucli-
dean components of ¢ x M. By example 9 they are isotopy components
of ¢ x I and h maps every of them onto an isotopy component of ¢’ x I
belonging to one of the types 1°-4°. In order to prove that i maps each
of them onto a set of the same type it suffices to indicate some fopo-
logical properties distinguishing each of the types 1°-4°.

To do it let us observe that: :

1f 4 is of the.first type, then A X a(M)=0x M.

If 4 is of the second type, then 4 x (M) is homeomorphic to 8, x M

(where §, is a simple closed curve) and A X a(M)-(CX M)—A X o{ )
is connected (homeomorphic with M).
If A is of the third type, then A x o{J) is homeomorphic to Ix M

and AX a(H)-(Cx M)—A X (M) is not connected (homeomorphic to
B(I) % M), :

and AX a(M)-(Cx M)—A % (M) is connected (homeomorphic with M).

Evidently every point lying on a set of the form 5° or 6° belongs
to B(Cx M), while by lemmas 11 and 13 every point lying on a set of
the form 7° belongs to y(C X M). Since every set of the form 8° lies on
the boundary of a set of the form 7° we infer that also every set of the
form 8° lies in y(C x M). Consequently A(C x M) is the sum of the sets 5°
and 6°. .

It follows that the sets 5° and 6° are components of f(C x M), hence
each of them is an isotopy component of ¢'x M. Bach of them lies on
the boundary of exactly one Euclidean component of ¢ x M, namely
2 component of the type 5° on the boundary of a Euclidean component
of the type 2¢ or 3° and a component of the type 6° — on the boundary
of an Ruclidean component of the type 49%. It follows that % maps the
isotopy components of the type 53° and 6° onto the components of the
same type respectively.

By lemma 13 the sefs of the form 7° are isotopy components of
O X M and the sets of the type 8° constitute the components of the boun-
daries of the sets of the type 7°. It follows that also the sets 7° and 8°
are isotopy components of Ox M and that h maps every of them onto

2 set of the same type respectively. This completes the proof of our
lemma. )

15. Let € be a loeally connected cnrve. For every point (w,y)eCxC
let us denote by »c(z,y) the number (finite or not) of the Euclidean com-
ponents 4 of € such that the boundary of 4 containg only the points x,y.

°
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Examples, If ( is a simple elosed curve, then »c(z,y)=0. If O=1I,
then »¢(0,1)=1wc(1,0)=1and v(x,y)=0 for (x,y)5%(0,1) and (z,y)=~=(1,0).
If C is locally contractible, then every value of »c(x,y) is finite. If w4y,

then we(z,y) is finite for every locally connected carve (. Tf (=3 (,,
n=1
where C, denotes the circle lying in the Euclidean plane E, with centre

(1/n,0) and radins 1/n, then vc(((),o), (0,0)l =00 and re{a,y) =0 for all
others pairs (x,y).

Lemma. Let ¢ and ' be two locally connected curves. In order that
a homeomorphism h, mapping p(C)+ y(C) onto B(C')+y(C"), be extendable
to a homeomorphism of C onto C' it is necessary and sufficient that

rela,y) = volhi), h(y))
for all points x,y € p(C) + y(C).

Proof. The necessity of the condition is evident. To prove the
sufficiency let us consider for all points z,yep(C)+p(C) all Euclidean
components 4;,4,,... of ¢ with endpoints z,y. Since vc(x,y) = vc,(h(z), k(y))
we can assign to them in a one-to-one manner all Euclidean components
Ay,4;,... of ¢" with endpoints k{z),h(y). Let us extend the homeomor-
phism h, defined in the points x,y, to a homeomorphism of 4; onto 4;.
Since the diameters of Euclidean components of ¢ and (' tend to zero,
we see at once that the mapping defined in such a manner is a homeo-
morphism of ' onto (.

16. Theorem. Let ' and (' be two locally connected curves and M
a manifold (closed or not). A necessary and sufficient condition that ¢'x M
be homeomorphic with €' x M is that C be homeomorphic with C'.

Proof. The sufficiency of the condition is evident. To prove the
necessity we consider first the case of ¢(C x M)=0. Then »(C)=0; hence
C is a simple arc or a simple curve. In the first case the 1-dimensional
Betti number of ¢ x M is equal to the 1-dimengional Betti number of M,
in the second case the 1-dimensional Betti number of ¢ x M is larger
than the 1-dimensional Betti number of M. Hence in this case the topo-
logical structure of C is completely determined by the topological strue-
ture of M and (' xJl.

Now let us assume that p(C X M)7:0. By the lemma of No.14
there exists a one-to-one correspondence between the points xey(C)
and the isotopic components of XM of the form (r)x a(M). Setting

gx) =(@)x M for every zey(C)

we obtain a one-to-one correspondence between the points zey(C) and
the closed sets of the form (r)x M. Evidently ¢ is a homeomorphism
mapping y(C) onto a subset of the space 26XM.
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Moreover to every point xep(C) corresponds exactly one Euclidean
component - 4, of ¢ such that reA.. Bvidently A.e2¢ depends con-
tinuously on x. Since y(C)s£0, to different points z,2"¢p(0) always
correspond different Buclidean components 4, and A.. Setting

glx)= (@) x M+ A, x (M) for every xep(0)

we obtain a continuous one-to-one mapping of #(C) into 26XM, Moreover
if @, € f(0) and &, —~>xoey(C), then the diameters of A, converge to zero,
and we infer that

@) = (o) X M = ().

Hence ¢ is a homeomorphism mapping the compact set B(C) + y(C) onto
a subset of 2€xM, Moreover, for every two points x,y e f(C)-+(C) the
number »c(x,y) is equal to the number of Euclidean components of ¢ x M
for which the boundary contains hoth sets ¢(») and ¢(y) and does not
contain any other of the sets g(2). )

Let ¢’ denote the homeomorphism of g(0')-+y(C') into 2CXM
analogous to ¢. Then »c (%', ¥’) is equal to the number of Euclidean com-
ponents of €' x M for which the boundary contains both sets ¢’(z') and
¢'(y’) and does not contain any other of the sets ¢'(2').

Consider now a homeomorphism % mapping CxM onto ¢ X M.
By lemma 14, & maps each isotopy component of ¢'x I onto an isotopy
component of ¢'x M of the same type. It follows that h maps each of
the sets ¢(x), where xep(C)+9(C), onto a set of the form ¢'(x'). Since
k indnces a homeomorphism of 2€XM onto 2¢XM we infer that the map-
ping ¢(r)—~¢'(a’) is a homeomorphism. It follows.that setting

&' =y(r)
we obtain a homeomorphism mapping A(C)-+p(C) onto A(C")+p(C').
Moreover for every z,yep(C)+y(C) the Tuclidean components of ¢ x M
for which the boundary contains both sets g(z) and g(y) and does not
contain any other of the sets ¢(2) are mapped by h onto Eueclidean com-
ponents of ¢’ XM for which the boundary contains both sets ¢’(2') and
#'(y") and does not contain any other of the sets ¢'(2').

It follows that »c(x,y)=rc(p(),p(y)) for every x,yep(C)+»(C).
By lemma 15 we infer that v can be extended to a homeomorphism
of C onto C’. Hence C and €' are homeomorphic and our theorem is
proved.

17. A space Y will ba said to be topologically divisible by a natural
number n if ¥ is homeomorphic with the Cartesian product ¥,x ¥,
where ¥, contains exactly »n points.

waore'm. A loeally connected compaclum Z with p(Z)£0 can be
dewposefd, n at most one manner, into a Cartesian product X x ¥, where
X is 1-dimensional and not divisible by any natural number >1. and
AHY)=0.

e
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Proof. Suppose first that Z is connected. Then X is a locally con-
nected curve ¢ and Y a manifold M. Since y(Z)5=0 and y(M)=0, we
infer that y(0)£0. By lemma 14 there exists in Z an isotopy eomponent
of the form 7°. The closure of this component is homeomorphic with M.
Hence the topological structure of the manifold ¥ is uniquelly deter-
mined by the topological structure of Z. Applying theorem 16 we infer
that also the topological structure of X is uniquely determined.

Before investigating the general case let us introduce some ge-
neral notions: ‘ :

For every compactum X let us denote by T'(X) the topological
type of X. The topological type of the empty set will be denoted by 0
and the topological type of the space containing exactly one point — by 1.

If Z decomposes into a sum of two disjoint compacta X and ¥,
then the topological type of Z will also be denoted by I'(X)+T( Y).
It X, X,,...,X, are disjoint compacta of the same topological type, then
the type T(X,+X,+..+X,)=T(X,)+T(Xs)+..+T(X,) wil also be
denoted by = - T(X,).

The topological type of the Cartesian product X X1 will be de-
noted by T(X)-T(Y).

Tet ns assume now that

(27) . X =0+ Cyr o tCpy

where 0; are disjoint locally connected continua of dimension <1 and
that X is topologically prime. We can assume that the topological types
T(C,),...,T(C,) are distinet from one another and the remaining types,
T(Cpi1),-.-, T(Cr), appear already among them. Let ay denote, for every
#=1,2,...,p, the number of the sets of the type T(C,) among Cy, Cs, ..., Ok-
Then

(28) T(X) =, T(Cy) + ... + @, T(Cp)-
Moreover, we can assume that
(29) p(Cu)5=0 for 1<<iu<r and PCu)=0 for r<p<p.

Sinee every continuum Cs:0 with »(C)=0 and dim 0«1 is either
a simple closed curve, or a simple are, or it contains only one point,
we can assume that p=r+3 and that a.i1, Griey dris denote respe-
ctively the number of simple closed curves, of simple arcs, and of sepa-
rate points among the components of X.

Tet X* denote the sum of all C, with »(Cu)7%0. Then

(30) T(X*) = q, T(C)) + ... + & T(Cr)-

Similarly Y=M,+M,+..+M, where M; are disjoint manifolds,
and we can assume that T(M,),..., T(HM,) are different from one another
and the other types, T(My41),..., T(HM1), appear already among them.


GUEST


158 K. Borsuk:

Let b, denote, for »=1,2,...,¢ the number of the sets of the type T(M,)
appearing among 3, M,,..., M;. Then ’

(31) T(Y)=b,T(Iy) + ... +b,T(H,),

and the natural coefficients bi,...,b, have no common factor >-1 (be-
cause Y is not divisible by any natural >1).
Since Z==X X Y, we have

(32) 1(Z) = X N ab,T(C)T(L,).
a=1 r=1
Let Z* denote the subset of Z made up of all components C, X M,
with (0. x M,)s-0. By (29) and (30)

(33) T(2*) = X 3 abT(C)T(M,) = T(X*)T(Y).
' =1 r=1

According to the case already examined the decomposition of every
component C, X M, (1=1,2,..,rv=1,2,...,q) of Z* into the Cartesian
product of €, and M, is unique. It follows by (33) that the topological
types T(Cy),..., T(C,) and T(M,),..., T(M,) are uniquely determined by Z*,
hence also by Z. Moreover let us observe that the coefficients b,,..:,b,
are proportional to the numbers of components of Z* topologically divi-
sible by M,. Since b,...,b, have no cormmmon factor >1, we infer that
they are uniquely determined by Z*, hence also by Z. Moreover, if d,
denofes the number of components of Z* topologically divisible by C,
then by (33) there is

for o =1,2,..,r

Hence the coefficients a,,...,a, are uniquely determined by Z.

It remains to show that every one of the numbers Ori1,y Orio, Oris
is uniquely determined by Z. Let s denote the smallest integer among
the dimensions of the components of ¥ and let m, denote the number
of components of ¥ of the dimension s. Then Z contains Gryy - My OF
components of the dimension s. Thus a,,; is uniquely determined by Z.
Moreover let ¢ denote the greatest integer among the 1-dimensional
Betti numbers of the components of ¥ and let #, denote the number
of components of ¥ with the 1-dimensional Betti number equal to f.
It is easy to observe that Z contains a,i,-7, components for which the
1-dimensional Betti number is equal to {41 and that the 1-dimensio-
nal Betfi number of other components of Z is <t It follows that
@,y is uniquely determined by Z. Finally let us observe that

q

(Gpq + Gppn+ Bryg) - ;; b, is equal to the number of components of Z—2Z*.
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Hence a1+ @15+ @15, and consequently also a,., is uniquely deter-
mined by Z.

Thus the proof of the theorem is completed.

7 Corollary. A locally connected compactum Z has af most one de-
composition into a Cartesian product X X X, X ... X Xy, where dim X,<1
and each of the factors X;, i=1,2,...,k is either a simple arc or a simple
closed curve.

It is enough to combine the last theorem with the theorem )
which says that a connected polytope can have at most one decompo-
sition into a Cartesian produet of 1-dimensional factors.
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