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for every xeX all the sections Sx(Zklkzu Jy) form a eompact clags. Thus,
for every infinite sequence (%y,k,,..), we may apply the fundamental
lemma to the sequence of sets Zi D Zyy,D... Since P(4 xB)=4 whe-
never B is non-void, we obtain

P(Z) ::f\; P(Zklzklkg”') == V‘ Ekl 'Ek].kz"' € 1’4‘{1‘4 = ,L’z',“ q. e. d.
ki

i

Note. The assumption in IT of the compactness of ¥ may be re-
placed by the following: there is a compact class F* such that FCF}.
In fact, if H* denotes the class of all sets ExF where He I and F ¢ F*,
then it is easily seen that H%D H, whence, by (4), Hi=H,. Thus we
reduce the generalized form of IT from the original one, applied to the
classes E, F'* and H*.
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Remarks on the Compactness and non Direct Products
of Measures ¥)

By

E. Marczewski (Wroclaw) and C. Ryll-Nardzewski (Warszawa)

Introduction. The direct product of two normalized measures
# in X and » in Y, 4. e. the measure 1 in X X ¥ such that

(1) . M4 xB)= u(4) »(B),

has many regularity properties, e. g.
I. If ¢ and v are countably additive, so is 4i1).
IT. If u, » and 7 are c-measures, then

WEXY)=u(B) for BCY

(where, for every measure u, the symbol y, denotes the inner measure
induced by u)?).

In sections 1 and 2 of this paper we deal with the same proposi-
tions for non-direct products, i. . when the condition (1) is replaced
by the weaker ones:

(2) HAXY)=u(d), MXxB)=nB)

Tt turns out that the propositions I and IL for the nondirect products
remain true under the additional assumption that the measure v is compact,
and that they are false in general.

Sections 8 and 4 are further contributions to the study of compact
measures. It is known that the minimal o-extension of & compact mea-
sure is also compact. Here we show that the converse of this theorem
is not true.

We apply theorems on compact measures proved in the paper:
Marczewski [3] (quoted below as C), and theorems on projections
proved in the paper: Marezewski and Ryll-Nardzewski [4] (quo-
ted as P).

#) Presented to the Polish Mathematical Society, Wroclaw Sect., on April 1, 1952.

1) This follows e. g. from the existence of the direct ¢-product of any two o-mea-
sures, see €. ¢g. Halmos [2], p. 144, Theorem B.

*) This follows e. g. from the abstract Fubini theorem. See ibidem. .


GUEST


166 E. Marczewski and C. Ryll-Nardzewski:

Terminology and notation are those of ¢ and P. In parti-
cular, we understand by a measwre any non-negative, normalized, and
additive set function, defined in a field of sets. A measure # in the field
M is countadbly additive, if (B +Ey+ )= u(By) + u(By) +... for each
sequence of sets, such that E;eM and E,+E,+..e M. Any countably
additive measure in a o-field is called o-measure. If u is a countably ad-
ditive measure in a field M, then there exists a unique o-measure » in
the smallest o-field containing M, such that p=v/M. The measure » is
called minimal o-emtension of u.

For any class K of sets, K,, K, and K; denote respectively the
class of all gets of the form B, 4+By+..+E,, B,+E,+... or EFE,...,
where F; ¢ K.

1. The countable additivity in cartesian products. Let X
and ¥ be two sets, M and N fields of subsets of X and Y, and, finally,
_ i and v measures in M and N. A measure 1 in the smallest field I con-
taining the class of all sets 4 X B, where 4 « M and BeN, is called pro-
duct of u and », if it fullfils the condition (2) for every 4 <M and every
BeN. Of course, if (¢ I and if the projection 4 of ¢ on X belongs to M,
then A(C) < u(A). '

In this section we deal with the problem of the countable addi-
tivity of products of two measures. We recall that every product of com-
pact measures iy compact and thus countably additive (C 6(vii)). Now
we shall prove that

(i) 4 product 2 of a countably additive measure u and of a compact
measure v is countably additive.

Let us retain the above mentioned symbols M, N, X and Y, and
let us denote by F a compact class approximating N with respect to ».

Let L denote the class of all gets
(3) (41X By)+(Ay X By) + ... + (4, X B,),
where 4;e M and B;eN and let K denote the class of all sets of the
form (3), where 4;¢M and B;eF.
In‘order to prove the countable additivity of 1, let us suppose
6,0CD..., where Eel and AEy) >a
'we have to prove
(4) C,0, ...540.

By hypothesis, for every B¢ N and 7>0, there are Pe I and
B*¢ N, such that )

B*CPCB,  u(B—B*)<y,
whence, for every AeM, :

A XB*CAXPCAxB, )'(AXB_AXB*)<Z[X><(B~B*)]<,7.
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Consequently, for every C'e L and >0, there are @ ¢ K and C*¢ L,
such that
cxCocCe, MO—C*) <.

Hence, we may define by induction a sequence of sets D;e L and
a sequence of sets @Q;e K, such that D;C(;, A(D;)>a/2, and

DD, DD, DQ:D ...
Obviously
Q:0,... = DD, ... C 0, C,.

It follows from the definition of the class K that the vertical see-
tions of the sets @,@,,..- form a compact class, whence, by a lemma on
projections (P, fundamental lemma), we have

(8)  P(0105...) DP(Q:Qs...) =P(Qy) - P(Qo) - .. DP(Dy) - P(Lhg) - ..,

where P(Z) denotes the vertical projection of the set ZCX X Y.
Thus, in view of the relations:

[/

P(Ded,  uP(D)]=HDy)> 5,
and of the countable additivity of », we obtain P(D,)-P(Dy)-...5=0, which,
together with (5), implies (4).

Next, we shall prove in (i) the assumption of the compactness of »
is essential.

(ii) There are two measures p and v and their product i, such that
u and v are countably additive and 2 is mot?®).

Let m and m, denote the Lebesgue measure and the Lebesglfe
outer measure in the unit interval I. Let I denote the measure in the unit
square I x I, defined as follows:

UC¢)=m{E[(X,X)eC]} for every Borel set CCIXL

Let us denote by D the set of all points (z,#)eIx I and let us con-
gider a decomposition I=2-+Z', where
(6) m(Z)=m %) =1 and ZZ'=0.

Further, we denote by M and N the classes of all sets of the form ‘
BZ and BZ', where B runs over the field of Borel subsets of I, and by
p and », the measures in M and N defined by the formulae

w(BZ)=m(B), »BZ')= m(B).

3) The idea of the proof iz that of Sparre-Andersen-and Jessen {1]. 'f. :?Isa
Halmos [2], p. 214, (3).
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. For covery set C(ZxZ'), where (¢ is of the form O=(4;XB,)
+..+(4,%B,) and 4; and B; are Borel subsets of I, we set

(7) HOZ X Z')] = 0).

It follows easily from (6) that the measures u, » and A are uniquely
defined and that 2 is a product of x and ». Of course, x and » are coun-
tably additive.

Let us suppose 1 countably additive and denote by x» the minimal
c-extension of A. It follows easily from (7) and from the o-additivity
of » and ! that the class of all sets CCI x 1, such that

2 O(ZxZ")]=1UC),
contains all Borel subsets of IX I, which leads to the contradiction:
0=x(0)=2ux[DNZxZ')]=UD)=1.

2. Inner measure in Cartesian products. The minimal o-ex-
tension of any product of two measures u and v is called o-product of
1 and v,

(i) If 2 is a o-product of a c-measure y in X and a compact o-mea-
sure v in Y, then, for every ECX,
(B xY)=u,(E).

Let us denote by .M, N and L the o-fields in which the o-measures
u, v and A are defined, and by F a compact subelass of N which appro-
ximates N with respect to » (such a class exists in virtue of C 4 (iif)).
Further let G denote the class of all sets A xB where 4¢M and BeXN,
and let H denote the class of all sets 4 XP where 4 ¢ M and PeF.

It is easy to prove that L(E X Y)>(F) and in order to establish
the opposite inequality it is enough to prove that for every 5 >0 there
is a set A e M such that

(8) ACE,  n(4)>u(ExXY)—y.

It follows from the hypotheses that for every Be N and n>0
there exists PeF such that

PCB, M{B—P) <y
whence, for every 4 eM,
AXPCAXB, MAXB—A X P)<KAX x (B—P)]< .
Consequently, for every (e Gy we have

(9) AC)=supi(D), where DCC, DeH,.

2 ;
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The class G is a field and, obviously, 4 is the minimal o-extension
of 21G,, whence for every CeL we have '

HC) =1inf A(D), where DDC, DeG,,

Since the complement of any set belonging to .=, belongs
to Gy, we obtain for every Ce L:

A(0)=sup A(D), where DCC, DeGy
whence, by (9),
AC)=sup (D), where DCC, DeH,.

Thus, for every n>0, there is De Hg, such that
(10) DCEXY, MD)>(EXXY)—n.

Since the class F is compact, the projection 4 of D on X belongs
to the class My;=M (in virtue of theorem proved in P) and the rela-
tions (10) and u(4)>=A(D) imply (8), gq. e. d.

Next, we shall prove that in (i) the assumption of compactness
in (i) is essential.

(ii) There are two o-measures i in X and v in Y, a 6-product i of u
and v, and a set ECX such that p,(B)y=0 and Z{(EXY)=1.

Let X denote the unit interval and x the Lebesgue measure in
the field of Borel subsets of X. Let ¥ denote a subset of X such that
the outer Lebesgue measure of ¥ and X—Y is equal to 1. Let » denote
the outer Lebesgue measure in the field of relatively borelian subsets
of ¥. For each relatively borelian subset Z of Y XY we set

WZy=» F(y,y) e 2}].

It i3 easy to see that x and » are c-measures and that Z is a o-pro-
duct of ¢ and r. Setting D=(X x7Y) ‘( E){m: y1, we obtain
(x,3)

WMIXY)ZUD)=2T) =1,
while, on the other hand, u,{(Y)=0.

3. Non-atomic and purely atomic measures. If n is 2 mea-
sure in a field B, then 4 M is called an atom of y, if u(4) and if for
each Bel such that BCA we have either u(d)=u(B) or u(B)=0.
If there is no atom, then u is called non-atomic. If the space is the sum
of a sequence, at most denumerable, of atoms, then u is said to be purely
atomic.

(i) If u is a non-atomic compact measure in a field M, then every
set BeM with u(H)>0 contains such a set N of the power of the conti=
nuwm that po(N)=04%).

4) This is a generalization of theorem C7 (iid).
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The proof is based upon the following lemma:

Let F be a compact class which approximates M with respect to .
Then, for every EeM with w(E)>0 there exist sets Py, P;eF and
By, E, e M such that

B,CP,CE, E,CP,CE, PP,=0,
#(Bo) >0, w(Ey) >0, W By +B)<FulB).

This lemma permits us to obtain the required set N by the known
dyadie construction. The compactness of & guarantees that the power
of the obtained set is really that of the confinuum.

(i) 4 purely atomic o-measure u s compact.

Let X=A,+4,+... be the decomposition of X into disjoint atoms.
It is easy to see that the sets of the form -Ak1+Ak2+---+-Ak,,—‘27 where
#(Z)=0, constitute a compact class F which approximates M with re-
spect to u.

4. Minimal s-extensions. The minimal o-extension of a compact
measure is also compact (C4 (ii)). We shall prove that
(i) There is a non-atomic and non compact measure the minimal
g-extension of which is purely atomic and consequently compact.
~ Let X=(ry,1s,...) be the set of all rational numbers of the interval
(V2,1+2), and let M denote the field spanned on the class of all inter-
vals of the set X with irrational extremities. For every Fe M put

1 1

S+
oM 972

(11) n(B) =

where 1y, ,7,,,..- i8 the sequence of all 7, E.

It follows from 3(i) that x is non compact. On the other hand,
p hag the g-extension to Mp, namely the measure defined by the for-
mula (11) for every FCX. Obviously this o-extension is purely atomic
(with the atoms (ry),(rs),...) and, by 3(ii), compact.
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Sur une propriété des ensembles analvtiques linéaires
(solution d’'un prabléme de E. Marczewski)
Par

W. Sierpinski (Warszawa)

Soit F' la famille de tous les ensembles plans gui sont de la forme
H,H,..., ot H, (n==1,2,...) est une somme d*on nombre fini de rectangles
aux cdtés paralléles aux axes des coordonnées. Le but de cette note est
de démontrer un théoréme qui représente la solution d’un probléme
que m’a posé E. Marczewski. Le voici:

Théoréme. Tout ensemble analytique linéaire borné est la projection
orthogonale d’un ensemble plan de la famille F.

Démounstration. Soit ¥ un ensemble analytique linéaire borné;
il est done situé & lintérienr d’un intervalle fini (a,b). Comme on le sait,
il existe une fonection f(x) définie et continue dans I’ensemble N de tous
les nombres irrationnels de Iintervalle (0,1). Soit I 'image géométrique
de la fonction f, c’est-a-dire ’ensemble de tous les points (x,f(x)) du’
plan, ot z est un nombre irrationnel de Pintervalle (0,1). Sofent I la
fermeture de ensemble I, et » un nombre naturel. Faisons correspondre
4 chaque point p de I Vintérieur d*un carré dont p en est le centre et
dont le coté est égal & 1/n. D’aprés le théoréme de Borel, il existe un
nombre fini de tels carrés dont la somme P, recouvre ’ensemble (fermé
et borné) 7. Comme on peut le démontrer sans peine, on a I=PP,..

Soit 7,,%,... une suite infinie formée de tous les nombres rationnels
intérieurs & Pintervalle (0,1). Soient ¢, Pintérieur du rectangle aux cdtés
gituds sur les droites =0, z=7r,, y=a, y=>, et R, l'intérieur du re-
ctangle formé par les droites r=r,, =1, y=a, y=2>.

La fonction f(x) étant continue dans l’ensemble N, on démontre
sans peine que

I= Q P, (Qn+Ry);

Tensemble I est done un ensemble de la famille F. L'ensemble E étant
la projection orthogenale de I sur Paxe d’ordonnées, le théoréme se
trouve démontré. ;

Le théoréme inverse est vrai aussi, vu que la projection d’un en-
semble G est un ensemble analytique. Done, pour qu’un ensemble linéaire
borné soit analytique, il faut et il suffit qu’il soit la projection d'un ensemble
plan de la famille F'.
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