The Structure of k-chromatic Graphs
By
G. A. Dirac (London)

The graphs considered in this paper are such that a node is never
joined to itself by an edge, and two nodes are never joined by more
than one edge. A graph has chromatic number %k, or is k-chrm;mtia if
there exists a smallest positive integer k such that the nodes of the graph
can be divided into % mutually disjoint (colonr) classes so that ne two
nodes in the same eclass are joined by an edge. There is a conjecture
the history of which I have not been able to trace, according to Whi(}];
a k-chromatic graph contains a subgraph which is homoeomorphic to
the complete k-graph. {Two graphs are homoeomorphic if they are iso-
morphic or if they can be made isomorphic by (repeatedly) dividing
edges into two through the insertion of nodes. A vompletd L-graph is
a graph with k nodes, every pair of distinet nodes being joinwvl by an
edge). The conjecture is trivial for k<3, and I have been able to prove
it for £=41). For k=5 the truth of the conjecture would clearly imply
the truth of the four-colour hypothesis, so that to prove it in fufl gener-
ality is at present quite hopeless. But it might be possible, with the help
of Theorem 3 of this paper, to prove something implied by the conjecture;
that a 6-chromatic graph always contains a subgraph x%fhi@h is homoeoj
morphic to the complete 5-graph. This would also constitute a new proof
f)f the five-colour theorem which would be almost entively combinatorial
in character. The results established in this paper arose %rom an investi-
gation of the conjecture in its general form. o

If a graph is disconnected, its chromatic number is the greatest
amm.lg the set of chromatic numbers of its connected compone;ts Ac-
cordingly, a graph of chromatic number & must have at least one. con-
necbgd component with the same chromatic number, o that if we wish
to find relations between the chromatic numbers of graphs and their
structure, we may confine ourselves to connected graphs. ’

o De Bruijn and Rado proved that if the chromatic number of every
finite subgraph of an infinite graph I" is less than or equal to k, the chro-
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matic number of I' is less than or equal to J?). This theorem shows that
the chromatic number of an infinite graph is determined by the chro-
matic numbers of its finite subgraphs. It follows from the theorem that
an infinite k-chromatic graph necessarily contains finite connected k-chro-
matic subgraph. One consequence of this is that the conjecture mentioned
above need only be proved for finite connected graphs.

A k-chromatic graph will be called eritical if it has no proper sub-
graph with chromatic number k. It follows from the preceding remarks
that a eritical graph is finite and connected. Further, we saw above that
any k-chromatic graph contains a finite connected k-chromatic subgraph.
Tt is easy to see that any finite connected k-chromatic graph contains
one or more critical k-chromatic subgraphs. Thus o k-chromatic graph
always contains a critical k-chromatic subgraph. )

This notion of critical graphs is useful because every general feature
of k-chromatic graphs is possessed also by critical k-chromatic graphs,
and a critical graph is more sharply defined and less arbitrary than a non-
critical one. ‘ .

Critical graphs ave finite and connected, and in addition have the
following two characteristics:

1. The degree of every node of a critical k-chromatic graph is at
least k& —1.

9. A critical graph has no isthmus. )

(An isthmus is a node of degree >2 such that it divides the graph
into two or more separate parts). )

The object of this paper is to generalize 1 and 2 in 2 gignificant
way. In the first part we will investigate the conmection between the
chromatic number of a graph and the way in which the subgraphs are
joined to the graph by edges. In the second part we will consider how
the graph may be split into disconnected components by isthmoids.

Netation. The nodes will be denoted by 1. e. letters a,b ete., pos-
sibly with suffixes, and the edges by (a,b) ete., where a==b and (a,b)=(b,a).

If I' is a graph, K(I") will denote its chromatic number.

If the nodes a and b are joined by an edge, we write aX b, if they
are not joined by an edge we write acb.

Tf the node a belongs to the graph I' (in symbols if a € I'), the graph
obtained from /' by deleting a and all edges incident in @, leaving all
other nodes and edges unchanged, will be denoted by I'— a. Similarly if
a,b,...,c e I' the graph obtained from I' by deleting @,b,...,¢ and all edges
incident with at least one of them will be denoted by I'—a—b—...—c¢.
Similarly if (@,e) e I’, the graph obtained from I' by deleting (d,e} will

» 2) N.G. De Bruijn and P. Erdds, A colour problem for infinite graphs and a prob-
lem in the theory of relations, Proc. Koninkl. Nederl. Akademie van Wetenschappen.
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be denoted by I'—(d,¢). The node a will be called a eritical node of I' it
K(I'~a)y=K(I')—1.

A colouring of the nodes of I' using at most & colours, or a k-co-
louring, is a function' ¢ defined over the nodes of I" and taking one of
the values 1,2,..,k at each node, with the condition that O(x) == CO(y)
if  and y are joined by an edge.

1. The following definitions will provide a precise terminology:

Suppose Iy’ and 1, are two mutually disjoint graphs and I" is a graph
whose nodes are the nodes of I'y and of I', and whose edges are the edges
of I, and T, together with some edges joining nodes of I, to nodes of I,
(i. e. I consists of I', and T, and edges joining nodes of I'; to nodes of Iy).

- The number of edges joining nodes of I'; to nodes of I, will be cal-
led the adjoint number of Iy and T.

Nodes in Iy joined to nodes in I, and nodes in Iy joined to nodes
in Iy will be called elasp-nodes. The number of clasp-nodes in I, will be
called the clasp-number of I and the number of clasp-nodes in Iy will
be called the clasp-number of I,.

These definitions are framed so that I' can be regarded as the com-
plete graph, either Iy or I, as the subgraph and the other as the com-
plementary subgraph.

In what follows we shall denote by k;,k, and & the chromatic nam-
bers of I,I%, and I' respectively, y, will denote the clasp-number of I
and 'y, the clasp-number of I}.

The following simple inequality applies to all graphs:

1) If b=k, then k<Chy+v,.

Proof. Iy may be coloured by k, colours, and the y, nodes of [,
which are joined to nodes of I'; require at most ye additional colours
to ensure that no two nodes joined by an edge are coloured the same.
Since k, <%, the remaining nodes of I, may now be coloured with the ky
colours which were used to colour Iy, Thus I may be coloured using
ky+y, colours and the result follows.

It is easy to see that the above inequality is best-possible. For,
suppose I' is the complete k-graph (81,80, Ty is the complete
k—1-graph [a,,a,,...,a,,] and I is the node . Then ky=—Fk—1, k=1
s0 that & >y, and k=, -+ py. T

A more precise result, expressed in the above notation

. , is the fol-
lowing:

(2) : k<< max (ky, ko, p; +9,).
Proof. If k=k, or if k=Fk, the theorem is trivial, 5o we neec con-

'sider .only the case in which k<% and ky<<k. Suppose the theorem fails
in this case, so that for the graph to be considered Y1ty <k—1.
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If y;+y,<k—1, we shall show how I’ can be coloured using at
most k—1 colours 1,2,...,k—1. We are given that k<<k—1 so that I}
can be coloured using at most t—1 colours 1,2,3,...,k—1. In such a co-
louring the y, clasp-nodes of I will receive at most y, different colours.
Similarly k,<{k—1 so that I, can be coloured using at most 2—1 co-
lours 1,2,3,...,k—1 and in such a colouring the y, clasp-nodes of I, will
receive at most y, different colours. If y;+y,<k—1 we can obviously
colour Iy and 7, with these k—1 colours in such a way that no clasp-
node of I', has the same colour as a clasp-node of 7. But then this co-
louring of I} and I is clearly also a permissible colouring of I" using at
most k—1 colours, which contradicts the assumption that K(I")=k.
This proves the theorem.

An argument very similar to the one just given yields the following:
(3) If ky<k and k,<k then k<k -+y, and E<ly+ .

Proof. Suppose on the contrary that e. g. &, +~y, <k—1. We can
colour I using only the colours 1,2,...,4; and we can colour 7/, using
only the colours 1,2,...,k—1 in such a way that the clasp-nodes of I,
receive colours from among % +1,k -+ 2,..., &+ 7., since by +y,<<k—1.
But this colouring of Il and I3, is clearly also a permissible colouring
of I' using at most k—1 colours, which contradicts the datum that
K(I')=Fk. Hence k<k;+y,, and by a change of notation k<k,+y;.

The example given after the proof of (1) shows that both (2) and (3)
state best-possible results.

The next theorem is concerned with the adjoint number of I'; and I},
and is a generalization of the fact that a critical node of a k-chromatic
graph must be of degree >k—1.

Theovem 1. If ki<k and ky,<k the adjoint number of I'y and Iy
is ot least k—1.

Proof. The number of nodes of I, to which a clasp-node ¢ of Iy
is joined by an edge will be called the multiplicity of ¢. The number of
clasp-nodes of I', each counted according to its multiplicity, is equal
to the adjoint number of Iy and I', which we denote by 4. Now suppose
that the theorem iz false so that for some graph I" and its subgraphs [}
and I, we have &k, <k—1,k <k—1 and the adjoint number 4 of I} and Iy
is €k—2. Then the number of clasp-nodes of I} each counted according
to its multiplicity is equal to 4 and so <<k—2.

Let @ be a clasp-node of I'; joined to the nodes a;,as,...,a 0f I%.
Colour I, using the colours 1,2,...,%, so that a is coloured 1. Colour I
using the colonrs 1,2,...,k, so that a, is coloured 2. If these colourings
of I', and I, are denoted by ¢ and O, respectively, we require that C{a)=1
and Cy(a,) = 2.
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If now O (a,) =2 leave the colouring, if Ci{a;)==2 define a new
(k—1)-colouring Ci of Iy as follows: If Cy(x)=Ci(ay) and Cy(x)s=3 then
Cy(z)= Ci(@), if Oyw)=0,(a;) then Ci(x)=3 and if Oy(x)=3 then Cy(x)
=0, (a). Now Cifa)=2 and Ci(a;)=3. This operation consists simply
of interchanging the colours Cy(a,) and 3 in I', and leaving all other co-
Jours undisturbed. It is obviously a permissible re-colouring, and in
future when we make such an interchange we shall deseribe it in this
way and not use the functional symbol each time. Of course if Ci(a,)=3,
no change is made. : :

If in the new colouring a; is coloured 2 or 3, leave it, otherwise
interchange the eolours Ci{e;) and 4 in the same way as above,-to obtain
a new (k—1)-colouring Gy of I, in which Cf(a;)=4. We proceed in this
way until we reach a,. In any re-colouring associated with a; (i<Cs) the
colours given to the nodes a;,a,,...,a, are left undisturbed and different
from 1, and finally none of the nodes a,,a,,...,a, will have the colour 1.

The number of colours needed to carry out these operations is at most

s-+1 (the extreme case is when «; is coloured 741 for 1< i <s) and since
§ <k—2 by hypothesis, s + 1<k—1, so that we need at most k—1 colours.

If  is the only clasp-node of I the above colouring is clearly also
a permissible colouring of I" using at most k—1 colours, which contra-
dicts the datum that K(I')=%. If a is not the only clasp-node.of /7, let
be another, having multiplicity #, joined to the nodes b;,b,,...,0, of I,
The sets of nodes {a;,8,,...,as} and {by,bs,...,b} need not be disjoint but
may overlap. Now let I'; be coloured so that ¢ has the colour 1 and b
has the colour 1 or 2. We can now proceed in exactly the same way with
byybyy..e b as we did with ay,a,,...,a:: If b; has the same colour as a or b,
or if it has a colour >s+ 3, interchange this colour and the colomr s+ 2,
otherwise leave the colouring unchanged, and so on for b,,...,b,. After
an exchange connected with b; all the preceding nodes a,,a,,...,a, and
byybyy... by €ither retain their colour (if the node J; is not also one of
{a@y,...,as}) or receive the colour to which we change b; (if the node ¥
is also one of {a,...,a,}), and this colour is certainly different from the
colours assigned to those nodes among a,,...,a, and by,...,b_; which are
different from b;. The number of colours needed to carry out these ope-
rations is at most s-+1+1 and since s+t<<hk—2, s+ t-+1<k—1 so that
we need at most k—1 colours. At the end clearly neither a nor b is joined
to a clasp-node of I'; having the same colour.

‘We can proceed in this way with all the clasp-nodes of /7, and the
total number of colours needed is at most one greater than the num-
ber of clasp-nodes of I'y each counted according to its multiplicity, <.e.
it is atmost 4 1. Now by hypothesis A<k—2 sothat 4 +1<k—1. Bub
when we have completed these processes for all the clasp-nodes of Iy
we clearly obtain a colouring of I' using at most k—1 colours, in con-
tradiction to the datum that K(I')=k. The assumption that the theo-
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rem is false therefore leads to a contradiction, and so the theorem is
proved. '

The result obtained is again best possible. A simple example show-
ing this is the case of the complete k-graph given just after the proof
of (1). A less trivial example in which .

Iy is not just a node by itself is /\or, 3 Pl
given in the Fig. 1. Here & =%k, =2, - -
k=3 and the adjoint number of I} b

and I is 2. Fig. 1.

2. We now go on to the second part of this paper, in which we
will consider the isthmoids of a graph. An isthmoid is a simple extension
of the idea of an isthmus defined earlier, and its precise meaning is given
in the following

Definition. Let I' be a connected graph. The set of nodes
S={a,b,c,...,d} of I' is said to be an isthmoid of I if

(i) I'—S is a graph having more than one connected component,

(i) If 8" is any proper subset of §, the number of connected com-
ponents of /'—8’ is less than the number of connected components of I'—S.

(I'—=8 denotes I'—a—b—e—...—d, I'—8" is defined similarly).

The order of an isthmoid is the number of nodes which it contains.

An isthmus is an isthmoid consisting of only one node, i.e. an
isthmoid of order 1. .

We shall prove a theorem which connects the structure of the isth-
moid with the chromatic numbers of the whole graph and the connected
components into which it is split by removing the isthmoid.

Suppose T=1{¢;,Ca;s...,Cny--., ¢} is an isthmoid of order ¢ of the graph I”
in which the nodes ¢,6,,...,¢, (n>>1) together with the edges connecting
them in I" form a complete n-graph and no nodes of I form a complete
m-graph in I' with m >n. By removing the nodes of I and all edges in-
cident with them from I’ we obtain two or more mutually disjoint con-
nected subgraphs of I. In case I'—I consists of more than two con-
nected components, we subdivide them in any way into two non-empty
sets, and regard those in one set as forming together the graph I, those
in the other the graph I'; in case I'—I consists of two connected compo-
nents we call one I',, the other I';. Such a division will be supposed to
have been carried out in what follows. We shall denote I, also by
[@1, gy ..., 05] and Ty bY [b1,bs,...,5]. It is to be noted that either I, or I
may consist entirely of ome of the connected components of I'—I.

The graph I'—b,—by—...—b, (i. e. the graph obtained from I" by
deleting the nodes of I, and all edges incident with them) will be de-
noted by I and also by [y, da, ..., G5, €1, Cay -, €], the graph I'—ay —dy—... — a5

will be denoted by I'”" and also by [by,bsy..cybe,01562,...,6:]. In each case
the nodes enumerated in the square brackets are precisely all the nodes
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of the graph concerned. In what follows we shall denote by %,%" and %"
the chromatic numbers of I',I"" and I'" respectively. With thls notation
we now prove the following

Theorem 2. If I'<k and kE''<<k then k<k'+i—n and k<E" 4 i—n.

Proof. If ¢’ is a colouring of I"' using at most the colours 1,2,...,%
and if ¢ is a colowring of I using at most the colours 1,2,..,k
and if in addition C'(¢))= C"(¢) for 1< j<i, then the colouring C de-

fined by
Cla,)= (aa) 1<a<s;
O(bs) = C"'(bg), 1B
C(C’) C(er) 0”(031)7 1<V<i

is clearly a permissible colouring of I' using only the colours 1,2,..,k.
To prove the theorem it is obviously sufficient to prove that k<&’ +i—n
assuming that &'<<%"’. We shall do this by showing how two colourings
0’ and € of I"" and I’ respectively may be obtained with C'(¢)=C"(¢)
for 1< 7<% using at most the colours 1,2,...,% +i—n. It will then fol-
low that I' itself can be coloured using at most k'~+i—n colours, and
therefore that k<%’ +i— n.

We consider first the case k'=%"". Let C; and €7
of I and I'”” respectively using only the colours 1,2,...,k” and such that
Ci(g)=Cy(¢;) for 1<j<<n. This is obviously always possible because
C1403y...,0, form a complete n-graph in I and in I, It now remains to
adjust the colourings so that they agree over the remaining nodes of
the isthmoid as required. We now introduce ¢—n new colours,
K41, +2,..,%+i—n and define new colourings ¢’ and ¢ of I
and I'"' respectively as follows:

denote colourings

Cl(é’leh)zk’+ I for 1<h <i-—’)17
C'(a,)=Oy(a,) for 1<a<s
and
C/(C’i) = Oi(cj) for 1<i<<n;
CCrsn) =K +h for 1<h<i—n,
C"'(bg) = C7(bg) for 1<p<t
and
G”({’j) = C:’LI(CJ') for 1<i<n

(i. e. we give a new colour to each of the nodes ¢,i1,¢ura,...,¢; of the
isthmoid, and leave the colours of all other nodes unchanged).

The colourings ¢’ and C"” now agree over all the nodes of the isth-
moid, so that we can certainly colour I" using at most k' +i—n colours.
Henece if &'=F%"”, then k<k +i—n.

It remains to show that if &'<%” then k <k +i—n. We shall first
show that we can find colourings of I' and I' wsing only the colours
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1,2,...,k"” which agree over the nodes ¢;,¢s,...,6u,...,Crps—sr Of the isth-
m01d Then as before we can if necessary give a new colour to each of
the remaining i—(n+ %' —%') nodes of the isthmoid and after this the
two colourings will agree over all the nodes of the isthmoid. The total
number of colours used is E'+i—(n+k"—k)=F+i—mn; so that
E<LE +i—n.

Using the colours 1,2,...,%k for I'" and 1,2,...,k" for I'"" we can
certainly colour them so that the colours given to e,¢,,...,6, agree in
the two colourings. Now suppose that (; denotes a colouring of I using
at most the colours 1,2,..,% +r, where O0<r<k"—%—1, and Of
denotes a colouring of I'” using only the colours 1,2,..,%k” and sup-
pose that Oi(¢) = C{(¢) for 1<j<n-+r (we can, by the preceding re-
mark, certainly realise this situation with »=0). We shall show how to
construct a colouring Cs of I'’ using at most the colours 1,2,..., k' +7+1
and a k”-colouring O3 of I'” such that Cj(¢;)= Oi{g) for 1<j<n+r+1.

‘We may obviously assume that Ci(¢)= Ci(g)=j for 1<j<n and
that Oi(g)=C7(g)<j for n<j<n+r. If possible let Oy be chosen so
that in addition to the conditions just preceding, Cf(C.rt+1)C1(e)
for 1<<j<<n-+r, then we construct Oy from ;' by interchanging the
colours Cf(Cntr41) and % +r-+1. This will not affect the colours given
t0 €,Cs...,0tr because obviously k'>n. We now construct C: from Of
by making Cs(¢.+r+1) =%"+7r+1 and leaving the colours of all the other
nodes unchanged. Then C; is a colouring of /' using at most the colours
1,2,3,..,k +r+1, € is a colouring of I'’" using the colours 1,2,...,%"
and Ci{¢))=C:(¢) for 1<j<m-+r+1. Further, by interchanging the
colours %' +7-+1 and e g. n+r-1 if necessary, we can arrange that
for 1<<j<<n-+r+1 the colour assigned to ¢; should have a pumber not
exceeding j.

If on the other hand (i cannot be chosen §0 that Of(Cyyri1) 7 C1(6)
for 1<j<<n+r then we know that Ci(cst,+1) <k +r. (We have assumed
that Ci(¢) = C1(¢) <7 for 1<j<<n+r and obviously n<{k'). In this case
we construct C; and Ci as follows: Ci' is obtained from Ci by inter-
changing the colours %'+r+1 and Cy(c,i1r4) and leaving everything
else unchanged, so that Cy(Citrt1)=k +r+1. O; is obtained from (7
by giving to ¢ the colour k' +r+1 if Ci(¢)=%k"-+r-1, and leaving
the colours of all the other nodes unchanged. This is a permissible co-
louring of I’ because the colour k’--r+1 does not oceur in (i, so that
the only obstacle would be if two nodes joined by an edge in I both
received the same colour %'--r-1. This cannot happen because the two
nodes receive the colour %' +r+1 only if they receive this colour in €,
so that they cannot be joined by an edge in I'” and therefore cannot
be joined by an edge in I'' either (see the definitions of I'' and I'").
So O, is a colouring of I'” using at most the colomrs 1,2,..., k" +r+1,
C: is a colouring of I' using the colours 1,2,...,k” and 02(0, C3(¢)
Fundamenta Mathematicae. T, XL. 4
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for 1<j<n+r+1. Further, by interchanging colours if ne.cessa,ry, we
can clearly arrange that for 1<Cj<<n-+r+1 the colour assigned to ¢
should have a number not exceeding j.

I 0<r<k'—Fk —1 then k' +7+1<k", and so this process can
be carried through for r=0,1,...,5"”" —k'—1. Hence I and I’ can be
coloured using the colours 1,2,...,%” in such a way that tht? colours of
C1yCoyennyCurrge agree in the two colourings. The two colourl-ngs czmn?t
agree over all the nodes of the isthmoid though, because if they dl.d
agree then we should have a colouring of I" using k'’ colours, and this
would contradict the assumption that k”<k. Accordingly we can say
that using % colours, 1,2,...,k"”, we can colour IV and I and secure
agreement in the colourings over the nodes where
n+k"—k'<f<<Li~1. There remain i—g8(>1) nodes over which agree-
ment has not been secured. If we give to each of these nodes a new co-
lour, then we shall obtain a colouring of I' itself. The total number of
colours used in this is k''+i—p, which is <&’ -+-i—(n+k"—Fk') since
pzut+k'—k, and B'+i—(n+k"'—k)=k +i—n. Hence &k <k +i—n.

We have shown that it ¥'<{k'"<Fk, then k<K 4i—n, this proves
the theorem.

As we have explained just before Theorem 2, if the isthmoid splits
the graph into more than two connected components, the graphs I,
and T, and consequently also I' and I" can be constructed in various
ways. If we label the possible choices for I as Iy,T%,...,I% and denote
their chromatic numbers by %i,%3,...,k; respectively then we can deduce
from the theorem just proved that

(4) k<<i—n+%k, for
From Theorem 2 we conclude at once that (in the above notation)
(5) if ¥<k'<k then i—nzk—k>1.

The condition that k< & and k"'<k is always satisfied for a ecritical
graph so that:

An isthmoid of a critical graph.must contain two nodes which are
(6) not joined by an edge. ‘
That a ecritical graph cannot have an isthmus, is a special case of
this more general result.

We can deduce a result concerning isthmoids of order 2; we use
the notation introduced previously: ’ ;

Theorem 3. Let I" be a critical graph and let the nodes ¢; and c, form
an 1sthmoid. Then
@) ¢ and e, are not connected by an edge,

(i) by removing ¢, and ¢, I' is split into ewactly two connected com-
ponents I, and I,

(i) I'" and I'"" have chromatic number k—1.

O1yCeyeeesCy

1<o<y.

icm

The Structure of k-chromatic Graphs 51

The proof is straightforward. Suppose on the contrary that the
graph is split into more than two connected components by the isth-
moid, which we label by Iy Ty,... Iy with 3. We denote by Iy the
graph obtained by deleting from I" the nodes of Isy...,I7, in symbols
T{=I—5I; we define I},...,T, 7 similarly. Then ¢, and ¢, belong to each
of I, I%,...,I}. The chromatic numbers of Iy, Iy,..., I are equal to k—1.
For e. g. ki<<k—1 since I is critical, and E<<ki+i—n by Theorem 2.
But i—»<1 so that we must have i—n=1 and k=K +1.

It we could colour IN,Ts,...,I} using the colours 1,2,..,k—1 so
that these colourings all agree over the nodes ¢; and ¢, we should be
able to colour I itself with k—1 colours, and this we know is not pos-
sible. It follows that there must be two of Iy, Iy, T7, T and Ti(i4),
such that we cannot colour them both using the colours 1,2,..,k—1
only in such a way that the colourings agree over ¢, and 6. To colour
these two in such a way as to obtain agreement over ¢; and ¢, needs &
colours. But by hypothesis f=38, so that I must have g k-chromatic
proper subgraph, obtained by deleting from I" all nodes (and edges in-
cident with them) except those in I or Iy. This contradicts the datum
that I" is critical.

We have therefore proved (ii). Part (i) is an immediate consequence
of (6) and part (iii) follows from the inequality k<{k'+i—n since i—n=1.

We may observe that Theorem 3 has been proved from Theorem 2
for the special case {=2. The proof of Theorem 2 itself in this special
case is of course very simple, the argument is almost obvious. It is very
easy to see also that after colouring I and I'” each with the colours
1,2,...,%k—1, and giving ¢, the colour 1 in each colouring, we may obtain
a colouring of [ itself either by giving ¢, and ¢, both a new colour %
(ei2 ) or by giving ¢, alone the new colour %. Hence I' can be coloured
using k colours, and the two nodes of the isthmoid may both be given the
same colour, or they may be given different colours. '

We shall now obtain another result for critical graphs having
an isthmoid of order 2. This result will concern the degrees of the nodes
forming the isthmoid. First we observe that if the critical graph I' ig
split as before by an isthmoid of order 2 into two connected components,
and I'" and I"” are the same two (k—1)-chromatic subgraphs as before,
then each of I and I can be coloured using the colours 1,2 g b—1,
but these colourings cannot be so chosen that they agree over the nodes
¢, and ¢. In symbols, if €' and G” denote colourings of I'’ and I'*" re-
spectively using the colours 1,2,...,k—1 and if C'(e)=C"(¢,) then
C'(6)5= 0" (). It follows that either C'(e))= C’(6) and C"(e,)s& 0" (e,) for
all possible colourings ¢’ and C”y or C'(e)50'(¢c,) and C"(e)= C"(ey)
for all possible colourings ¢’ and . Expressed in words this means
that either in any colouring of I’ using ¥—1 colours ¢ and ¢, are bound

4%
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to have the same colour and in any colouring of I’ using k—1 colours
¢, and ¢, are bound to have different colours or in any colouring of I'*
using k—1 colours ¢; and ¢, are bound to have different colours and in
any colouring of I'" using k—1 colours ¢; and ¢, are bound to have the
same colour. In what follows, we may assume without loss of generality
that the first of these two alternatives is the case.

Let d(e,,I'); d(ey, I"), d(ey, I''") denote the degrees of ¢, in I, I and I’
respectively (i. e. the number of nodes in I, " and I’ to which ¢ is
joined by an edge) with a similar notation for ¢,. Clearly d(e,I")=d(e;,I"")
" +d(e,, ") and analogously for c,.

Since ¢; and ¢, must have the same colour in any colouring of I
using k—1 colours it follows that: :

(7) Ae, T2 k—2;  d(ee,]") >k—2.

For otherwise, if e. g. d(c,I")<<k—2 then in any colouring of /"
using £—1 colours we could change the colour of ¢, leaving the colours
of all other nodes unchanged and so ¢ could receive a colour different
from the colour of ¢,, which contradicts our hypothesis.

We can also prove that:

(8) d{en ™)+ d(es, ") 2 k—1.

We assumed that ¢, and ¢, must receive different colours in any
colouring of I'’’ using k—1 colours.

It d(e,, I'"") or d(e,,I""") is greater than k—2, there is nothing to prove.

We may therefore suppose that d(e, I"')<k—2 and d(c,, """ )< k—2.
Consider any colouring of I'”” using k—1 colours. Taking the colours
agsigned to all nodes of I’ except ¢, and ¢, as fixed, we clearly have
& choiee of at least k—1—d(c,,I""’) colours for the colour of ¢, and a choice
of at least k—1—d(c,,I""’) colours for the colour of c,. If the sum of the
number of possible choices for ¢ and ¢, ewceeded k—1, there would be at
least ome possible choice in which ¢, and o, received the same colowr. By
hypothesis this is impossible, so that:

k—1—d(e, ")+ k—1—d(e, ') <k—1
hence

E—1<<d(e, ")+ d(ey,I");
this proves (8).

Remembering that
(e, I) +d(al’f"')=d(cl,l‘)
and similarly for ¢,, we obtain from (7) that
d(cy, I")+ d(ey, Y =2k —4
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and adding this equation to (8) we have that
d(ey, ") 4-d{ey, 7Y - d{eg Iy —d{es, I ) 2 3k—5,

9) ey )~ diea, ) >3k —5.

We express this result in the following

Theorem L. If two nodes form an isthmoid of a k-chromatic critical
graph, the sum of their degrees in the graph is at least 3k—5.

Both the inequalities (7) and (8) and Theorem 4 are hest possible,
the following simple example illustrates this:

Let I'" consist of the complete (k—2)-graph [a;,a,,..., ax_.] and the
two nodes ¢, and ¢, each of them being joined by an edge to each of
@y, 8y, ... 0x—s. Then I is &—1 chromatie, in any colouring of I'’ uging
k—1 colours ¢; and ¢, must be given the same colour and d(e,I")
= d(cy, I"")=k—2. This shows that (7) is best-possible.

Let I'" consist of the complete (k-—1)-graph [;,b,....,0r—4] and
the two nodes ¢, and ¢,, where ¢ X b;, and 6,0 bs, ¢ < by,...
and ¢, X by, €y X bgy.eeyCs X br—y. Then I'" is (k—1)-chromatic, in any co-
louring of I"" using k—1 colours ¢; and ¢, must be given different eo-
lours, and d(c, I""") +d(cs,I"")=k—1. This shows that (8) is best-possible.

The graph I" whose isthmoids are ¢, and ¢,, and whose components
are I and I'”" is k-chromatic and critical (as may easily be seen) and
the degrees of ¢; and ¢, are k—1 and 2k—4 respectively, the sum of their
degrees is 3k—35; this shows that Theorem 4 is best-possible.

In the Fig. 2 the preceding graph is illustrated with k=5.

We also give in Fig. 3 an illustration for k=3.

,01° bk_,1; Cg© bl

[ &
¢ c o b,
o g,
a, z, &, N < &;
Fig. 2. Fig. 3.

(N. B. We are not concerned with 2-chromatic graphs, because the
only 2-chromatic critical graph is the complete 2-graph which has no
isthmoid. Thus the case k=2 is excluded from our theorems). '

We shall now deduce a specialised result concerning 6-chromatic
graphs, using the inequalities which have just been established.

Suppose I is a critical 6-chromatic graph and C is any one of its
longest circuits whose nodes are d;,ds,...,o,a, in cyclic order round C.
(By considering one of the longest ways in the graph it is easy to see
that n>=>6). .
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A way between two non-neighbouring nodes of C having only its
two end-nodes in common with C will be called a chord of . We shall
call a chord simple if it is an edge by itself, otherwise we shall call it
composite. Using this terminology we prove ’

Theorem &. (i) Any node a; of C is connected by a chord to at leas
one non-neighbouring node of C. (i) If it is connected by a chord to onet
node a; only, then it is not connected to a; by an edge, and a; is connected
by a chord to at least one other node of C besides a;. Further the sum of the
degrees of a; and o; is af least 13. :

Because I' is critical and 6-chromatic the degree of every node is
at least five, so that each of the nodes in C is joined to at least three
other nodes of I" besides its two neighbours in C.

Part (i) follows easily from the fact that I, being critical, contains
no isthmus. Suppose on the contrary that one of the nodes of C,a; say,
is not connected by a chord to any node of C.  has two neighbours
on € which we denote by @ and a;44, with the convention that it /= 1
we understand a; 4 to mean a, and if i=n we understand @:13 t0 mean a,.
By hypothesis a; is not joined by an edge to any nodes of C except ;4
and a4, 8o it is joined to & node b; which is not a node of C. Every way
from b; to a;_; passes through a;, hence a; is an isthmus of I For sup-
Dose & way from J does not pass through a, Iet w denote this way.
Starting from 5 and going towards a; ; along w let a, be the first node
which % has in common with €. Then x={ by hypothesis and x==7i—1
and 2+7+1 because C is one of the longest circuits in 7. Hence the
portion of w connecting ; and a, together with the edge (a;,b;) forms
a chord of C connecting a; and ay, which contradiets the hypothesis
that «; is not connected by a chord to any node of b. But [ is critical
and therefore has no isthmus. This contradiction proves (i).

Suppose that only one node of ¢, a; say,is connected to a; by a chord.
(C is one of the longest circuits of the graph so that @aq, aayy).
Then the two nodes a; and a form an isthmoid of the graph I, which
splits I" into two components I, and I I', contains all those nodes
which can be reached from g; by ways which have no nodes except the
starting node ¢; in common with C, T, contains all other nodes of the
graph, except of course ¢; and @, in particular it contains all the nodes
of C except a; and 4. In the same way we denote by I and I the graphs
obtained from, I" by deleting the nodes (and edges incident with them)
of I, and I, respectively. )

By Theorem 3 g; and a; cannot be joined by an edge in I". By (7)
and (8) (with k=6) we have that: either

dar, Iy 24 and  dla,I")>4
or

d(a;, ')+ d{a;, ") = 5.
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The first alternative is the case if ¢; and a; are bound to have the
same colour in any colouring of I with 5 ecolours, the second is the
case if @; and ¢; are bound to have different colours in any colouring
of I'”" with 5 colours. It follows that which ever of these alternatives
is the case, either d(a;,I""")>3 or d(a;,"""}>3.

By the definition of I'" and I'” any node of I'” joined by an edge
t0 a; is a node of C; and if ¢; is joined by an edge to a third node of I"'*
besides its two neighbours ¢;_; and q;., on € then @; is joined to a node
a; of C (ay==a; or a; ;5 or a;-4) by a simple or a composite chord.

(Proof. The first part of this statement follows immediately from
the definition of I'’ and I'". If g; is joined by an edge to a third node
of I'" besides its two neighbours a; ; and a,.; on C, this node cannot
be a; since by Theorem 3 a;cq; in I, If a; % a; there is nothing to prove,
50 suppose that a; x3;,b; not being among the nodes of C. Now b is by
hypothesis a. node of I'” so that it cannot.be reached from «; by a way
having no node except a; in common with C. If every way from ¥ to a;
had to pass through 4;,a; would be an isthmus of I', which is impossible
by Theorem 2 sinee I” is critical. There is therefore a way from b to a;
which does not pass through g;, this way must have an intermediate
node in common with C, let the first of these nodes be a;. The node ay
may depend on the way we have chosen, but az==a;_; and a,= a;1; since
otherwise C would not be one of the longest circuits of I". Then the way
from b; to a, together with the edge (a;,b;) forms a composite chord
linking a; and a; as required).

Since d(ayI'"')=3 or d(a,I"')>=3 either ¢ or a; must be joined
by an edge to a third node of I besides its two neighbouring nodes
on C. Utilizing the above statement, we deduce that a; is connected by
a chord to another node of C besides a;.

The-last part follows at once from Theorem 4 on substituting k=6
since a; and 4; form an isthmoid of I' in the case contemplated.
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