On a System of Axioms Which Has no Recursively
Enumerable Arithmetic Model
By
A. Mostowski ‘(Warszawa)

According to a well-known result of Léwenheim, Skolem, and
Godel every consistent axiomatic system S based on the functional
calculus of the first order has an interpretation in the set of positive
integers !). Hence if 4 is the conjunction of the axioms of 8§32 and
R,,R,,..., R, are the predicates?®) which occur in 4, then there are relation

1) R, R,,.., R,

(with the. same number of arguments as the predicates R;) defined in
the set of positive integers which satisfy formula A in the domain of
positive integers )..

We shall denote by ¢,,¢,...,6, the numbers of arguments in rela-
tions (1). -

The ordered p-tuple (1) is called an arithmetic model of S. The mo-
del (1) is said to belong to the class P, (or to the class Q,) if

' R e P9 or K eQ9 for j=1,2,..,p%).

It has been proved by 8. C. Kleene®) that every consistent and
finitely axiomatizable system S possesses a model of class P,-Q,. The
aim of this paper is to construct a finitely axiomatizable system S which
possesses no model of class P,.

We shall obtain a required system suitably modifying the axiom-
atic system of set theory proposed by Bernays?). The modification
consists in allowing a far larger number of primitive notions.

') Cf. for instance [2], p. 182-189. Numbers in-square brackets refer to the biblio-
graphy at the end of this paper.

%) § is assumed to be finitely axiomatizable.

%) I assume that S does not contain symbols for mathematical functions bub ex-
clusively symbols for relations. Standard logical sings will be used in S and in the meta-
mathematical discussion of this system.

) The motion of satisfaction is meant in the sense of Tarski. Cf. [4].

#) Cf. [3] for the explanation of symbols used in this definition.

) Kleene [6], p. 394,

7) Cf [1].
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The primitive notions of § are:
"~ Sa) [a is a set],

Cla) [a is a class],

I{a,b) [sets @ and b arve identical],

J(a,b) [elasses a and b are identical],

E(a,b) [the set a belongs to the set b],

H(a,b) [the set a belongs to the class &],

Aqa) [a is a void set],

Ay(a,b,¢) [a arises from the set b by adjunction of the element ¢l,
dy(a,b,e)  [a is the ordered pair of sets b and cl,

dy(a,b,¢,d) [a is the ordered triple of sets b,e¢, and dJ,

By(a,b) [a is a class with- the single element b,

By(a) [a is the universal class],

By(a) [a is the class of all one-element sets],

By(a) [ais the class of all ordered pairs {x,y)> such that E(x,y)],

By(a,b) [a is the complement of the class b1,

Bi(a,b) [a is the class of ordered pairs (z,y> such that E(x,b)],

By(a,b) [a is the domain of 3],

By(a,b) [a is the converse class to b], :

Bg(a,b) [a is the class of triples which arise by “coupling to
the left" the triples which belong to b],

By(a;b,¢) [a is the union of b and c].

The axioms of § are those given by Bernays with obvious chan-
ges necessitated by our choice of primitive notions. For instance, in-
stead of Bernays’ single axiom IIIc(1) we have to assame the following
two axioms:

T C()D(Ha)[C(a) - By(a,b)],
By(a,0) D{H(x,a)=(Hy,2) [44(y,2,2) - H(y,b)]}.

In a similar way we adapt the remaining axioms of Bernays to
our choice of primitive notions.

We define now induetively a class C of formulae with one free va~
riable. The formulae of class C will be said to define classes.

(I) Formulae Bi(a), Bya), By(a) belong to C;

(II) I I'(a) belongs to C, then so do the formulae

(Ex)[Bi(a,r) - I'(x)] (f==4,5,6,7,8),
where z is any variable which does not oceur in I'(a);
(III) If I’(a) and A(a) belong to C, then so does the formula .
(Hmyy) [B9(a‘5m:'.7/) I'(.’D) : A(y)]:

where x and y are any variables not occurring in.}‘(a) and in 4(a).
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To every formula of class C we let correspond a sequence of in-
tegers. To formulae (I) correspond sequences consisting of single integers
1, 2, and 3. If a sequence
(2)

corresponds to a formula I'(a), then the sequences

Nyyeeey Mg

(?':475;67778)

Hygeeey Ngy )
eorrespond to the formulae (II). If sequences

Nyyoeny N3 My gy My

correspond to formulae I'(a) and (a), then the sequence
Npgemny Mgy My gy My, 9F 8

corresponds to the formula (ITI).

It is well known that it is possible to enumerate all finite sequen-
ces (2) in such a way that every integer g will be & number of exactly
one sequence (2) and s and n; (j=1,...,s) be primitive recursive funec-

tions of ¢+ ()
. 1-L(g)).

If the sequence (2) corresponds to a formula I'(a) of class C, then
the number of the sequence (2) is said to represent the formula I'(a)
. Let
(3) S,C,I,J,E,H,Ay,...,d3,B,..., By
be an arithmetic model of the system §. We write I'(n) (rvesp. —I7)
instead of: n satisfies I'(a) in the model (resp. I' is true in the model).
We put for arbitrary integers g and % 8)

s=L(g), w=g (i=1,2,..

V [(§o=17)- Bi(k:)] - (h)l‘g’{ii [(Fnra=17) - Bjkag2)]V
8 - - ’ —_ = -
\/J_;lz [@rta=1) - By (kngr, k)1 V [(Fregr > 9) - Bo(kuga, gy 10, k)13

Lemma 1, If g represents a formula I'(a) of class C, then
FI(n) = (@ R) {{L(k) =L(g)] - TT(g, ) - [Feqny=n1}.

Proof. If I'(a) is the expression B,(a), then L(g)=1,7, =1. Assume
that By(n) and let k& be the number of a sequence containing the single
term n. Henee L(k)=1,k =n. Since #=1 and B(k,) and since the

®) 1 use the sign ¥ for alternations with finitely many terms.

(h)n is to be read:
for every h less than n. :
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second part of formula (4) is vacuously satisfied, we obtain 77(¢,%) whence
(3) (k) = L(g)] - TT(g, k) - [Frgy=n). -

Assume conversely that there exists an integer & satisfying (5
It follows from /7(g,%) and 7,=1 that By(k) and hen§e By(n) il.sefziulljl’((;;'
Thus the lemma is proved in the case for which I'(a) is the f:)rmu’la, B (a)~

The proof in the cases I'(a)=2B,(a) and I'(a)=By{a) is sim;]ar.

Assume now that the lemma holds for a formula I'(a) (represente(i
by the integer g) and let A(a) be the formula (IT) with j=4. Let i be
the integer representing 4(a). Hence .
L{f)=L(g) +1 y hi= Fi yees fL(g):gL(g)

(6)
fup=4.

Assume that A (m), i.e., that there is an integer 7 such that

I (n).

. It.; follows by the inductive assumption that there is an integer %
satisfying (5). Let t be the number of the sequence

(7) By(m,n) and

Fyy Bayeeny Frigy, m
It is easy to infer from (5), (6), and (7) that .
[L(t) :L(f)] N H(fyt) . [iL(r) = ﬂL].

Conversely, let us assume that there is an integer ¢ satistying the
formula (8). Define % as the number of the sequence )

(8)

b, izv--- ’ iL(i)~1'
It follows from (8) that
L(k)=L{g) and  Ii(g,k),

Whe_nee l?y the induetive assumption +T{kw). By (6) and (8) we obtain
Byt , lip—1) and hence the equation 7y, =l—'1_(k) gives By(iry , Frny)y
whence we obtain finally A{ty), i e, A (m). This proves the lemma
for formulae (IT) with j=4.
L The proof for the remaining formmulae (II) and for formulae (ITX)
is gimilar,
Let :
M,, M,,..

be & sequence of all formulae of § without free variables in which ex-
clusively quantifiers of the form

() [S(z) D ...] and (T 2)[8()...]
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occur. Formulae 3, are essentially what Bernays®) calls constitutive

expressions without free variables. We denote by £(j) the Godel number

of M;; it is known that £(j) is & primitive recursive function.
Analyzing the proof of the class-theorem of Bernays 10) we arrive

at the following )

Lemma 2. For every j there exists in C a formula [j(a) such that
the equivalence .
(T a) [(a) - Bya)] = M;

is provable in 8. The integer p(j) representing the formula I(a) is & pri-
mitive recursive function of j. :
From the general theory of models we obtain the following
Lenmuna 3. If (3) is an arithmetic model of 8, then formulae M,
for which
M
form a complete and consistent ewtension of 8.

In order to prove our theorem we assume that (3) is & model of 8

of class P,. The set
Z=E{\ (L a)[[}(a)  B(a)]}

belongs to the class PP. Indeed, by lemma 1
jeZ=(An) [+ Lin) - By(n)]
= (& n, k) {[Tk) = L(y())] - Ty (i) k) - [ = n] - Ba(n)}.

The formula enclosed in braces {} defines a relation of class P
because B, ¢ PO, relations L(k)=ZL(y(j)) and Frg=n are primitive
recursive, and 11(3 (j), k) as is evident from (4) defines a relation of class PO.

It follows that the set

T'=42)=EL(@))(£(G) =k) - (e Z)]

belongs to. PP and from lemmas 2 and 3 that 7 is the set of Godel
numbers of a complete and consistent extenzion of S.

Since S contains the arithmetic of non-negative integers, the exis-
tence of the set 7 ¢ PP with this property contradicts the well-known
result of Rosser™). Thus S has no model of class Py, q.e.d.

I have not succeeded in finding an example of a finitely axiomat-
izable system which has no model of class @Q,. On the other hand it does
not seem probable that the evaluation of the class.of models found by
Kleene can be amended. (See note on p. 61).

®) See 1. ¢, p. 71L. f
19) See 1. ¢, p. 72-76.
) Cf. [5], theorem II, p. 89.
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Note added reading the proofs. The problem mentioned at hottom of p.60 has
been meanwhile solved: There exist finitely axiomatizable systems which have no
models of class P and no models of class Q. One such system will be exhibited in
my next paper forthcoming in Fundamenta Mathematicae,


GUEST




