On the convergence of functionals representable as
integrals over some classes of bounded functions
by
W. ORLICZ (Poznan)Y).

1. We will denote by 3 (4) the Banach space composed of the
bounded functions x=wx(f) in an interval 4; this interval 4 may
be closed or open, finite or not, addition and multiplication by num-
bers are defined in M(4) as usual, and the norm is

&y Ilmll:SBD Jae(t)].

We shall be concerned with following linear sets in M (4):

(H;) — the class of functions bounded in 4=<{a,b>, continuous
everywhere in (a,b) except at f, (a fixed point in (a,d)), and
vanishing at ?,;

(H,) — the class of bounded and continuous functions in
A=(—o00, co);

(K ;) — the class of bounded functions in A=={a,b>, which
vanish at #, (a fixed point in (a,b)), and are of finite variation in
every inferval {a,t,—eD, (fp+e,b);

(K,) — the class of bounded functions in 4={—co, oo), which
are of finite variation in every finite interval.

The above classes are subspaces of the space M (4).

By (K7) will be denoted the (non-linear) class of bounded funec-
tions in (a,b), discontinuous at one point at most.

Let X be a linear space in which two norms || || and I 1* are
defined, the first being of B- and the second of B- or F-type. By
X, we shall denote the metric space composed of those elements
of X for which |#||<1, the distance being defined as

Az, y)=lz—y|*.

l).The contents of this paper were presented to the Polish Mathemati-
cal Society, Warsaw Section, on the 9t May 1952.
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It X, is a complete space, it is called the Saks space. We shall
consider the Saks spaces satisfying the following condition:

() If zeX,, p0>0, then there exists a 6>0 such that
{lz|" <6 implies p=u;—z, where ;e X,,|a,—xl* <o, ||22— i) <o

The functional £(z) in X, is called linear if it is continuous
and distributive, i. e. if Aw+ 2,0 e X, where 2,26 X, and 4,74,
are rational, implies

E(Ay 2+ Aoy) = A, £(1) A0 £ (25).

The following theorems are true in the Saks spaces satisfying
the condition (%,):

Theorem A. If &,(x) is a sequence of linear functionals in X,
bounded in a set of the second category, there exists a constant M such
that &, ()| <M for n=1,2,..., xe X,.

Theorem B. If the sequence &,(x) of linear functionals in X
converges in a set of the second category, it converges in the whole of
X, dts limit is a linear functional, and d{x,,0)—0, r, e X; implies
En () >0 2).

Theorem A implies that the set of points of unboundedness
for the sequence &,(x) is either residual or empty, and by Theorem
B the set of points of divergence shares this property.

Choosing as X the class (K;) or (K,) respectively we can obtain
Naks spaces, defining the norm || || by the formula (1), and the norm
11 by

0

1
Il =Y = l@lh;

n=1 <
here || ||, is a sequence of pseudonorms defined as follows:
(a) In the case of the space (K;), choosing t,, , so that

A<l <ty <l <t <b, By, Ey,
we seb

(2) l2ll= sup lz(®)]+ sup |2(1)].
<at) <Ly

(b) In the case of the space (K,) we choose two monotone se-
quences t,—> —oo, f,—-+oo and set

(3) l2lly= sup |z(t).
[E A0
2) See W. Orlicsz, Linear operations in Saks spaces (I}, to appear in
Studia Mathematica 14.

Studia Mathematica. T. XIII. 14
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The Saks space defined above we shall denote respectively
by (*(a,b) and (°(—oo, +oo). The space (°(a,b) satisties the con-
dition (I,); this is shown in an another paper®). A similar proof
can be applied to the space (°*(—o0, +oo).

Choosing as X the class (K,) and (K,) respectively we can ob-
tain Saks spaces defining the norm || | by the formula (1), and the
norm || |¥ by

P S (o
W= 2 3 T
The pseudonorms |z, are defined in the case of the space
(Ks) by
|2l =lr(a)| +|2(b) |+ var (f)+ var (i),
Calyy by
#, and ¢, having the same meaning as in (a). In the case of the space
(K,) we define )
lzl,= var (&) z(0)],
[
¢, and #, having the same meaning as in (b) moreover 1,<< 0,1, >0.
These Saks spaces will be denoted by V°(a,d) and Vo(—o0, 4+00)
respectively; they satisfy the condition (2y).

2. We shall be concerned with the following problem:

Tf the functions f,(f) are integrable in (a,b), what are the necess-
ary and sufficient conditions for the convergence of the sequence

b
) [ falt)2(t)dt

for every xe (K,), 1=1,2,3,4?

The theorems obtained below for the integrals (4) can be
proved also for Stieltjes integrals. We will return %o this
guestion in an another paper.

In the formula (4) a,b are finite when ze(K,),(K;), and infi-
nite as ze(K,),(K,). The integrals (4) are linear functionals over
the spaces C°(a,b), V°(a,b).

Theorem 1. The sequence (4) is convergent for every xe (K)
if and only if

3) ' W. Orlicz, Linear operations in.Saks spaces (I), Studia Mathematica
11 (1950), p. 237-272.
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b
(x) lm [ if,(t)idi< oo,

LS
0 Wa

(B) the functions
i

d)n(t) = I Efn(T)ZdT

. . 1
are equicontinuous at i,

(y) the funections
:

Fo(t) = [ fu(v)dz
a
converge asymplotically in {a,b>,
(3) the sequence F,(b) converges.

P.rooji. Necessity. Suppose the sequence (4) to be conver-
g}:ent in (K,); then by Theorem A there exists a constant M such
that

b
() ) 2@ an <
for everylx(t) € (K,)s. Now, if 2(t) is continuous in <{a,b> and }|z||<1,
there exists a sequence x,¢ (K;) such thab x,(t)— 2(t) for ¢4, and

[ (8} << |2 (£)|; hence (5) is satisfied for every eontinuous function
and this implies '

b
[ hmia<ar.

Let f, be an arbitrary inereasing sequence tending to f,, tz

a decreasing sequence tending to ¢, and a‘<§,'¢<t';;< b. It is easy
to show that there exist continuous functions =z,(t) belonging to
(K,), such that

(6" =0 for a<i<i, and f,<t<b,

Z i
(6) | hn@a] > [ faid——.
P ¢ M n
i [
Since |z, (t)*—0, Theorem B implies
A

J at)ide =@, (1)~ ,(1;) >0,

14*
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and the condition (B) is satisfied. The condition (8) is satisfied
too, for the sequence (4) converges if

l] for i1,
ax(t)=

—l() for t:tu-
Let
l for a<{r<l,
lT t for t<<v<h.
Since
b K .
M (U ful)Ar == Fu(b) — [ Fo()dz,
A 14

and since the sequence on the left hand side of (7) converges by
hypothesis, (3) implies that the sequence

j F,(r)dr .
t
converges in {a,b) to a function h(¢). The sequence F,(t) is boun-
ded by («) and the variations of F,(t) are bounded, hence we can
extract a sequence Fn(f) convergent to a function G(f) of bounded
variation. Similarly, we can exfract from every sequence Fp(i)
a subsequence F, ,(t) ) such that F(f) converges to a function G(t)

of bounded va,ma,mon. Since for every ¢

b b
[ Pu()ds— [ @(x)dx,
t t

b b
fzﬂ () dv— J‘z;‘(r)dr,
i 13

G(t) must be equal to G(¢) at every point of continuity of both func-
tions, i. e. everywhere except a denumerable set. Thus we have
proved that every subsequence Fp (f) contains a sequence conver-
gent almost everywhere to G(t), hence F,(f) converges asymptot-
ically to G{t) 4).

%) Compare G. Fichtenholz, Sur les opérations lindaires dans I'espace
des fonctions continues, Bulletin de I’Académie Royale de Belgique 22 (1936),
. 26-33.
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Sufficiency. By (o), (v), (3) and (7) the sequence (1) conver-
ges for every polygonal function. Since these functions compose
a dense set in the space of continuous functions, the sequence con-
verges for every continuous function by («). Now, if x,(t) is an ar-
bitrary function of (K;) such that ||r!|<1, we can choose in virtue
of (B) a 6>0 sueh that

. Z,‘T&
(8) ‘ fult)ldr<<e  for n=1,2,...
f,—o

The function z(f) equal to 0 for {,—8/2<t<Cl+6/2, equal to
ao(t) for a<<i<i—o and t+0<<t<b, and linear in the intervals
{y— 6,80 — 0/2), g+ 6/2,8,+6> is continuous, and the funchion
y(t) =y (t) —=2(t) satisfies by (8) the inequality

b
| [v@nma <2 for a=1,2,...
a

Since the sequence (4) converges for x(f)=z(t), then, for suf-
ficiently large m and n,
b

‘ 'rD [fn fm(t)}(lt

@

b
— fm()1dt|+ | [ 20

b
< [y [Fult) —f(0)1d2| < tete=5g;

hence the sequence (4) converges for every xo(t)e(X,).

In a similar way we can prove

Theorem 2. Let a=—oo, b=-oc. The sequence (4) conver-
ges for every x(t ) K,) if and only if

(') lim j [fn (T} dT < 00,
N—r00 _
(8")  for every e>0 there is an r>0 such that
o
[ atldt<e,
M

wnd

jlfn Ndt<e for m=1,2,...,
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(Y") the functions F, () converge asymptotically in every finite
interval,

(8) the sequence F,(t) converges at the point t=oc.

Theorem 3. The sequence (4) converges for every x(t) e (K7) if
and only if the condition () and the following conditions are salisfied :

(8”) the functions @,(t) are equicontinuous in {a,b,

(v"") the sequence F,(t) converges uniformly in {a,b).

Proof. The equicontinuity of @,(¢) in (a,b) is implied by Theo-
rem 1. Since bounded functions, continnous except at @ or b, belong
to the class (A7) one can prove in the same way as in Theorem 1
that the functions @,(t) are also equicontinuous at the boundary
points of the interval. The inequality

trh
(=PI | 1fulr)l dv= By (t41) — By (1)
i
implies equicontinnity in {a,b> of the functions #,(t). Hence, as
the functions F,(t) converge asymptotically to a funection G(f),
we infer that the funections must converge uniformly in <{a,b> to
a continuous function G(t) equivalent to G(t), and this implies (vy').

To prove that the conditions are sufficient we apply Theorem 1,
and in the case of functions discontinuous at a boundary point
of <a,b>, we prove the convergence of the sequence (4) in the same
way as in the proof of Theorem 1.

Theorem 4. The sequence (4) converges for every x(t)e(K,) if
and only if the condition (8) and the following are satisfied :

(») lim max |F,(t)]| <oco,

n—soo {a,b)

() the functions F,(t) converge in the interval {a,b>.

Proof. Necessity. If the sequence (4) is convergent for every
x(t) e(K,), it converges for every function x(f) of finite variation
in {a,b)>; then we have (3) and (p) by a well known theorem of
Lebesgue®). In the same way as in the proof of Theorem. 1 we can
ehoose such funchions a,(t) e (K,;), that the conditions (6”) and (6"')
are satisfied and arguing as in that case we obtain (B).

5) H. Lebesgue, Sur les intégrales singuliéres, Annales de Toulouse 1
(1909), p. 25-117.
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Sufficieney. Given xy(t) e (K,), 7Il< 1, choose 6>>0 so thati (8)
is satisfied and consider the funetion z(f) defined asin the proof of
Theorem 1. Plainly z(t)e (K)s, thus by (), () and the theorem of Le-
besgue we see that the sequence (4) converges for x(t)==z(t). We
finish the proof arguing in the same way as in the proof of Theo-
rem 1.

Similarly one can prove

Theorem 5. Let a=—oc, h=-occ. The sequence (4) conver-
ges for every x(t)e(K,) if and only if the conditions (8') and the fol-
lowing are satisfied :

(x)  lm sup [F,(t)|<oo,

N> 00 (—00,00)
(w) the functions Fy(t) converge everywhere.
3. Now, we shall present some applications of the preceding
theorems.
Theorem 6. Let the functions K,(s,t) be integrable in {a,b>
jor every se<a,b> and let us write
b
(9) Sulz,8)= J _Kn(S,t).l‘('f)ﬂt,
a
where x(t)e M(4) and is measurable. Assume that x(t) e M(4) (x(t)
being measwurable) implies

(10) S,l(x,s)ﬁ x(s).
Then there exists a set AC{a,b) of mesure b—a such that :

(a) for every soed there erists a bounded function x(i), conti-
nuous except at most at sy, for which the sequence S,(x,So) diverges;

(b) for every sequence s;e A there exists a bounded function x(t),
continuous except at most at §;, and such that the sequence Sp(,8;)
diverges for i=1,2,...;

(¢') the fumetions x(t) considered in (a) compose @ vesidual set
in the Saks space C°(a,b) (if we choose fo==s);

(¢'’) the funmctions considered in (b) ecompose a residual set mn
the Banach space M*(A) consisting of the functions bounded ind4=<a,b>,
continuous except at the points s;e A (s; being fixed), with norm defi-
ned by (1).
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Proof. By (10) we infer that for every measurable x(f)e M (A}
there is a sequence of indices #; such that

Sng(‘[" ) S)»—%l'(&‘)

almost everywhere. Then there exists a set 4C {a,b) of measure
b—a and such a sequence m; of indices that, for s,e A4 and for every
rational ¢,d such that e<sy,<<d, we have

a
[ Eopyls0,t)dt 1.

c

Hence the condition () of Theorem 1 is not satisfied for sje 4 and
this implies (a), and implies in turn (¢) in virtue of the remark made
with regard to Theorem A and B.

The sequence S,(z,s) may be considered as a sequence of li-
near functionals in the Banach space M*(4), divergent in virtue
of (a) in a non-empty set of elements in M*(4) if s=s;¢ A. Hence
the set of divergence of this sequence is residual if s=s;. Hence
we get (¢”’) and this implies (b).

Remark. Replacing in Theorem 6 the hypothesis (10) by the
assumption that S, (x,s)—x(s) in <{a,b> for every function conti-
nuous in {a,b), we can state that 4 =<Ja,b}.

Theorem 6 and the above remark show that the problem of
local divergence of classical singular integrals of several types be-
comes trivial if the functions considered are allowed to be discon-
tinuous even at one point.

Theorem 7. Let Pg;(t)] be an orthonormal system in {a,bd,
complete in L, and let denote by S,(x,s) the n-th sum of the corres-
ponding development of the function x(t). Then there exists a set
ACLa,b) of measure b—a such that the statements (a)-(¢'") of Theo-
rem 6 are satisfied.

An analogous statement holds if we replace the sums S,(x,s) by
their transforms corresponding to a row-finite Toeplitz method of sum-
mation.

Proof. We observe that if we write

Kn.(x:t): 2 Pi(s) ®i(t),

=

-

icm

[
—
~1

On the convergence of functionals.
8,{x,s) is represented by the formula (9), the completeness of the
system @ in L® implies that
HAS'“(‘P,S)—.I'(-S‘)IE—%U

for every measurable function r(t)e M(A), and this implies al-
ready (10).

( Recu par la Rédaction le 25. G. 1952)
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