The Fredholm Theory of Linear Equations in Banach spaces
by
T. LEZANSKI (Warszawa).

In the first part of this paper?) we shall consider:

1. a fixed Banach space X;

2. a fized closed linear subspace 5 of the conjugate space X
of all linear?) functionals on X;

3. a fixed closed linear subspace & of the Banach space of
all linear operations transforming F into Z;

4. a fixed linear operation T'eR;

5. a fixed linear functional F defined on K.

We ghall use the following notations: If xeX and ¢eZ then
g is the value of the functional ¢ at the point . If K is a linear
operation of = into X (or: into Z), then Kp is the functional as-
sociated with ¢ by K (i. e. the value of the mapping K at the point ).
Consequently Koz is the value of the functional Kg at the point a.
Obviously, the expression Kgx can be interpreted as a bilinear
functional on the Cartesian product ZxX. Conversely, each bili-
near functional Koz on Ex X can be interpreted as a linear opera-
tion K of £ into X (in particular, into F). Subsequently we shall
always speak about linear operations of Z into Z, although these
operations will often be defined by expressions which are bilinear
functionals on. ExX. )

The superposition of two operations K,,K,e® will be denoted
by K, K,. Of course, the expression K, K,¢r should be read: (K,K,)¢s.

We shall suppose that the following conditions (K) and (F)
are satfisfied:

1) Presented to the State Institute of Mathematies in Warsaw (Group
of Functional Analysis) at May 1952.

2) The word “linear” always means “additive and continuous’.
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(K) The identical mapping I of Z into £ belongs to K. If
K,,K,e8, then K,K,eR. If Kef, and if 5,6 X and g,e = are fixed,
then the linear operation A,

Myy=EKyx, gy for yeX and yeE,
also belongs to &, and

(F) F(M)=ETqx,.

The condition (F) yields that in some cases the values of the
functional F are completely determined by T (see the example IV,
p. 268). However, in general, F' need not be uniquely determined
by T (see the example A and the footnote®) on p. 262). Conversely,
T always is completely determined by F.

Under hypotheses (K) and (F), we shall examine the linear
equation

(1) p-+ETp=1y,

where K e®, y,eZ. The solution ¢ should also be in 5.

We shall develop the theory of the equation (1) in a way com-
pletely analogous to the Fredholm theory of integral equations.
For instance, we shall define an expression D determined by K,T,
and F only, such that the equation (1) has a (necessarily unique)
solution for every y,eZ if and only if the number D is not equal
to 0. If D=0, then the homogeneous equation

{2 p+EKTp=0

has non-trivial solutions. We shall define a sequeuce of multilinear

funetionals
D,,(%""’%)
LyyeeosTp,

where @,...,p,€5, o,...,0,6 X, p=1,2,..., such that the (neces-
sarily finite) dimension of the space of all solutions of (2) is the
smallest integer p such that D, is not identically equal to 0. We
shall also determine under what conditions relating to ¢, the
equation (1) has a solution.

Clearly D should be called the determinant of the equation (1)
by analogy with the finitely dimensional case. The funectionals D,
are the analogue of the subdeterminants of the order p in the Fred-
holm theory of integral equations.
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Tn the second part of this paper we shall specialize the spaces
X and 5. The following cases will be under consideration:

X=14 I L, M, V, [, m,
and

E=L?, ', M, L, C, m, 1 (1/p +1/¢=1)
respectively.

In the cases of X=1I[m] and 5= m([l] the determinant D men-
tioned above is a generalization of Xoch’s determinant of an
infinite system of linear equations with infinitely many variables
(Kocr’s definitions®) are introduced under more restriciive condi-
tions). We shall also show that, in the cases mentioned above, the
determinant D=D(I+T) of the equation

3) (I+T)p=1,
is a multiplicative functional, i. e.
D(I+T)I+T"))=D{I+T)- D(I+1I").

This equation was earlier obtained by Koch under more res-
trictive conditions.

The infinite determinant D has also many other properties
of the usual finite determinants. In particular, a formula analogous
to the Cramer formula will be found for the solution of (3).

The existence of the functional ¥ satisfying the condition (F)
plays the fundamental part in our theory of linear equations. The
functional F may be conceived as a generalization of the trace of
2 square matrix. In fact, in the case of X=I[m], E=m[l], linear
operations K ,T can be interpreted as certain infinite matrices,
and F(K) is then the trace of the matrix KT.

The restrietion that we shall examine linear equations in con-
jugate spaces is not essential since each Banach space X can be
interpreted as a closed subset of the space X conjugate to X.

A similar Fredholm theory of linear equations in Banach
spaces was developed by A. F. Ruston®). The theory of Ruston

*) H. v. Koch, Sur la convergence des déierminants infinis, Rendiconti
del Circolo Mathematico di Palermo 28 (1909), p. 255-266.

*) Proc. London Math. Soc. 2 (1951), p. 109-124, and (3) 1 (1951),
D. 327-384.
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makes use of the notion of cross-spaces, which does not appear
in my paper.

I. The general Fredholm theory.

In this part X, 5,R,T7,F wil have the meaning mentioned
in the introduction. We suppose that conditions (K) and (F) are
satisfied.

We adopt the following convenient notation. If

B(¢1v-~'7¢n7‘r17“-71‘n)

is & functional (@y,...,¢n €5, &,...,0,€X) such that, for some fixed
Brye ooy Pi1yPigty-e-sPryLrye oy TptyTygase -y Ln, Hh linear operation M,

M‘Pizj:B(‘Pla"- 1Py Trs-- -3 Tp)y

belongs to &, then F, . {B(g1,.-.,Pn, @y, &,)] Will denote thenumber
F(M). Obviously FW_E,[B(%,‘..,%,%,“.,xn)} is, in general, a fune-
tion of variables

Pryee oy Pi1rPitrse - 1 Pn €S and 1’1,...,33;_1,1'5_1.1,...,15”5X;

however it does not depend on g; and z; which are bound variables
and can be replaced by other letters different from the remaining ¢
and z (compare e. g. the bound variable ¢ in the expression f f(t) dt)-

Obviously

(1) |F

¢

[B(@ry s Py Tase e @)1= [F (M) |IFI| - 1 2]}

=||F| - sup sup \B((Pl:-“:tpuymlr'ﬂ'rn)]-
fledl <1 o<

The condition (F) can now be formulated as follows:

(F" Fw,ﬂ{me-qpy}:KTqﬂx.

\

It follows from (F') that
(i) If E,,K.eR, then for arbitrarily fized pe 5, xe X, the linear
operation M,

Myy=Kyx- E,py  for pel, yeX,

belongs to K and the linear operation L=F(M), 1. e.
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anac:Fw,y{Kﬂpm-Kzzpy} for ¢eZ, zeX,
satisfies the equation L=K,TK,. Consequenily, LeR also.
Let @,=HK,p. We have
Myy=Kypo - Kypy =Ko+ piy.

Hence, for fixed z and ¢, MeR by (K) and F(M)=K, Tz
by (F), i. e.
Lon=KE,Tpx=K,TK,¢z.

We infer that L=K,TK,e8 by (K).

(ili) If KeR and m,m,,...,m, i a permutation of the sequence
1,2,...,p, then the expression (where q<p)

»
B 7= F”’q’ua F‘”q—l-”q—l T F'Fv?/l {71___—11 K(p"i %}

is well defined and independent of the ordering of the sequence of
operators F o ..., Fyy,.

m-times
Let K™= (KT)(KT)...(ET), Kef We have K=K and
by (ii)
K‘m)tpm= Fvw { K" P K@ 9’?/}
if m=r+s+1, r,s>0.

First we shall prove by induetion with respect to ¢ (¢=0,...,p)
that B, is well defined and

(4) B, =aqfl=-I1K i Ys; Yqt1s

where s,,...,8, , is a permutation of the integers ¢41,...,p, at
is a consbant, and m,,...,m, ,is a sequence of non-negative inte-
gers.

The formula (4) holds, of course, if g=0. Suppose it is true
for ¢-(0<<Lg<p).

If s,=¢+1; the operation F {B,} is feasible and

Por1¥esa

p—q
— — {m,
By —FV’¢+P”.+1 [B a}_ q+1j£{ K I)"/’sy?/q+:i ’

where aq+,:aqF(K(’"1)). Hence B, iy also of the form (4).
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If g+1=s,, rs1, then the operation F |B,) is also

feasible and
B

g1 =1 wmyﬁl{ Bq}

Yervlei1

[K('m'] Wq—:—l yq-i—r - K(ml) QPBI 'yq+1} H K(m” TP‘gi yq-!-)‘

=2

=ag1" F Yor1Ygr1
j#r
1 ()
(My+ M1+ ) .
g KOy T] K .
j=2
j#Er

Thus B,,, is also of the form (4).
Now we shall prove that

#" P vﬁ,.vﬁ_gF w,ﬂ.vﬂl{B q}=F V,H.V,HF vﬁg.vﬂg{Bq} .

The following seven cases should be eonsidered:
(@) g+1=s, and ¢+2=s,. Then hoth sides of (4') are equal
to the number
4
aqF( K(m!)) - B K(vie)) H K™ y’siyq-i-i'
i=3

(b) g+1=s, and g¢+2=s,, r>2. Then hoth sides of (4') are
equal to
— P i
aqF(K(ml)) .K(ﬂu,mﬁl)%ﬂyq“. 11]{( !wsiqu .
i
() g-+1=s, and ¢+2=s;. Then both sides of (4') are
equal to
. P
aqF(_K(m1+""‘T')) . H Ko Vo, Yari
j=3

(d) g+1=s, and g-+2==5,, r>2. Then both sides of (4') are

equal to
+mat 2 7 ()
aqK(mh—m-.—ma-x-z)%lyqﬁ. L‘Is K PoyYgsin
=

(e) g+1=s,, r>2, and g¢+2=s. The proof is the same
as that of (d).

&) g+l=s,, r>2, and g+2=%,. The proof is the same
as that of (b).
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(8) g+1=s,, ¢+2=s;,, 7,t>2. Then both sides of (4') are

equal to

4 et 1) ¥

Notice moreover that

p—g
9 1 |
Yyir . tmat it )?/’s,_,?/,ﬁt‘jns K (ma) Vo Ygase

r#EIFEL

(i) Foo(F,, (Kyo- Kty - pel|=F,, [Kyx- F(Ky - g2},

(iii")

F,, {Fw,y{Kw.lf- Kix' - Ko'y - (pz}}

=F,,{Kyx - P, {Ktx' - Kg'y - pl}).

In fact both sides of (iii’) are equal to KTKTex by (ii). Analog-
ously both sides of (iii”) are equal to K7 K¢'z- KTz’

We shall now examine the equation (1) which, of course, can
be written in the form

(1) pt+dp=y, or (I+A)p=y,

where A=KT, Ke®,

yy€ 2. The solution ¢ should also be in 5.

We introduce the following mnotations, analogous to those in
the Fredholm theory of integral equations:

(5) K(‘Plr--r‘»vq
Liyeeey®,

) Epz, ... Ko,

4 Ko,z ... Ko,z

1 o
(6) ag=1, a,= E’— F'P]-ylF'l'g"yg .. qu,uq {K(wh . :7/’41)},

Yiy--3Yq
(M 4,=A4, Aq‘-—t an—AAq“l,
(8) K":K’ qupﬂ}:a«qK(p.'I}—me{K'lpw ) Kq—-l ‘Py} ’

where ¢=1,2,...

Clearly K, eR. We shall prove that

. 1
(iv). K, pr= E'—F%yl ... Fw., ”e {K (q?, Yryeeey Wq)} .

TyY1yee sy

The proof is by induction with respect to q¢. The case ¢=0 is

obvious. Suppose (iv)
is true for g¢.

is true for ¢—1>>0. We shall prove that (iv)
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We have

K((}”“Pl@"""pq):K(FJ.,K(’PM""
xiyh-“’yq yl,“-v

%)
Yq

7 N .
i - (¥ ¢‘u-~-:%_1,%+1,--~,%)
+ —1)'Kyx- K
2;1‘( ) * (

Ca
=Kq):17'K(%"“’%)—ZK1pir
Yis-s¥Yql =1

yhyh-"ay’h y’i—:—ly"'iyq

_K(‘%V’zr--:"]’t—l:"l’i+17--'ﬂ}’q) .
| yisy13"'1y¢—15yi+17---7?/(;

Hence, by the additivity, homogenity and commutativity
(see (iii)) of the operators F,, we obtain

Foyne-- FM{K (‘P"/’n- - wq)} — Ko

LyY1s---3 Yy

X

) . Prse--2 ¥y
F‘”r”l' o F"’w'"g {K(yly- .. 7yQ)}

]
—gl F%{K.pim Py Ty | F

Vol ” " "1"’1}

{Ir 9971/’1,"w‘PL—ly’l’i-&h"‘i“Pq)}_
48
YisYrye-s¥i1sYit1y---1Yg

Consequently, by the induction hypothesis,
PsPry--s Yy l
Fogy T, {K(M/n e ,yq)i

' a
=qla, Kgxr— F,!,pui{K’gt'i.T < {g—1) Kq__lvpyi}
q=1

)

. aq
=qla,Kgz—(q—1)! ) F, (Kyz- K, oy}
=1

=q!(a, Egx—F, | Kyz -

Now we prove
o+l

1) 2
annQ%—’

In fact, by (iv) and (i),

K, 19y}) =g K p.

1) - R
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1
&l = sup sup |K gzl =— sup sup |F,, qu’y {I((q”%"“’%)}

gl <1 flmli<1 7 gn<t i<t TyY1s--+1Yqg

P, ..F “K("””f’l""”/’amg

Vo, U YU, -
2V oY |\ 2,y

121

<~—‘— sup sup sup Ssup
95 nell<t Yl flwlI<1 i<t

H I
[~ SUD SUP SUp SUp ... sup sup
90 et sl llwylI<Tlipli<t N i< [y i<t

K(‘Py"/’ly-'v'/"q) ,
ByY1s--2Yy

and, by the Hadamard theorem,

tK(Wﬂ/’u )Wq)

<K
Byyre ey S I q+1)

el <1, el <1, lpll <1, [lzl<1 (¢=1,2,...,9), since all terms of
the determinant .

K(¢1¢17-~-:Wq) R

mi”./l.}"*:?/q
are <Kl
By an analogous argumentation
. qﬂlq
(vi) LARS ’ 1 - K.

‘We prove by an easy induction with respect to ¢ that (see (ii))
(vii) : A,=K,T.
Hence, by (v),

a+1

(viii) ||Aq||<—qiqu 122 - e - 1.

It follows from (vi) and (viii) that

(ix) The series

and
24412,
g=0

are wniformly convergent im each interval ;1'< A,
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Now let
Piy--3Pp) _ (P11 FprPry---r Y
Vq(m 'a‘)_F%”l"'F%’”«{K(r ey, )
13+ 3Tp Ly eee3¥pyY1y--9 Yy

V, is a functional linear with respect to each variable @u,...,95;
Zy,...,2p tumning through £ and X respectively. The norm of Ve

is
|
V= sup Vq(""*"“"’”ﬂ)n (p+0)® - IF- KT
Hedl<y, Hlz i<l Lry--3Tp i
i=12,...,0

by an argumentation analogous to that in the proof of (v).

Hence
® o)
g . l
<(p+a) T - IFIE Bl - - Tl - - - - gl

This implies that
(xi) The series

') Pryeens®
Dp,l(%, ’ p)__( l)p), Vd(;z;;. 7;)

is am integral function of A and a functional linear with respect to each
variable @i,...,@p€8, &y,..., 0, X (p>0).
(xii) For every A, there is an integer p>0 such that D,,#0 (i.
D, , is not identically equal to 0).

Suppose the converse, i. e.

DP.’-.,:O (p=0,1,2,...)

for a number 4,. Since
ar N A (P
ZﬁD()J:F‘vaL'"F"VEp{ 2 q! Vq (Zﬂl,...,fbp ’
we obtain that
(dpl}.,,z) —o
aie 1=10~ ’

i. e. Dy,;=0 identically. This is impossible since Dyo=a,=1.



GUEST


5]

54 T. Lezafiski

We shall write, for simplicity, D, instead of D, and D in-
stead of Dy=D,,. Hence

(o]
D=D,= D a,,
g=0
31
1P| 1 ST ((pl,...;‘i’p) for p=1,2,...
D”(Jcl,...,x,,) ( ),,:Zo’m CAU S 4
‘We have

@yPryee-1Pp = —Kox- D Py ,‘Pp)
“(w,ml, .Z) ? Tyy-eey,

D - Ty
»
_ 1) Koz~ D Pry v o v e ,rpp)
(xiii) igl’( 1) Kep ($ Byyenes @i g3 Biprye ey Bp
| PPy Pp)
_Fw,w\Dm—l By ey Koy ¢
Hence
PyPrye s, Pryee ey Py
D, ?)=—Koz- D, ( )
p+l(m1wl7'-'1mp) ¢ PA\Byy-ey By
3 .
. N K @sPry-e s Pi19Pit1se 3 %Pp
(xiv) ‘ —i=1( 1 Kp Dp(wl, .......... ,wp)
_, {wa D, (%%, ,qap)}_
YylryenyTp

Expand the determinant

K(?’:%:"':‘Ppy‘l)u“'ﬂ/’g)

TS A A
on the first row: .

K(«P,tpn---,t;v,,,wl,---ywq)

LyBryeeey@pyY1yeees Yq

—K(p(ﬂ K((Ph :‘Ppﬂﬂu---,%)
Lygeeey@pyYrseeorly

i
i Ply = o v v e e 2Py Wiy Y,
+ Y (-1} K w~-K( p a)
igll.( i m:mls“'rwi——lywi+1)~'-;mp)yly-"7.'l/q

(pl)(PZ) ’w b "/)1111”2} L 71/"
4 M (1) ”'HK i * K( i q)
2 7 L yByyeensBp 13Ty Yryee vy YirsYiv1r-- 1Yy
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&
(=1

=Ko K(%’ ,%,1,01,..‘,1}’,1)

LyyeeesTys Yryeearly

_}__Zp!( 1)1,1199‘[ L(¢1’ --------- S(pp7w17"'5wq)

i=1 Lyye.- ‘rl,-vla'l‘ivlr“)‘rpsyl’“'7yq

Z‘K‘p?h (%%w 1 PpyPryes 7?"—17?‘1’4—13'":1}’4)
1= Ly &y ? Jﬂ Yiy- o Yias yi*l%"')yq

Apply the operator
F F

L S
to both sides of the above equation. By the commutativity of

F,, (see (iii)) we obtain
Vq((p’%’ 9‘?;:) =Kgz- V, (‘?’17 ’¢p)

LyTyyeeey Ty L1y Ty
+Z 114}-7'1 v (q:l, .......... +Pp
R ERTE . B PL L ¥ PRRTPLLY

4 .
- Fs«pv;{K‘Pyi' Ve (1,01,991,... ’%)}'
|

By TLyynenyidy

Replace y;,y; by v,y respectively. Consequently

v (%%r-a%) sz.r Vv (‘pla 7¢p)

Nzyzy,..y Tyyeey Tp
D
. » 4 Pry o ov e 1P
+ X (—1PEez;- ¥
1-:1 x ‘l'lu..,l',,_],-fz 13- 7rp

&y Ly ynen By

_‘ZFV,V{KW/' Y., ('P;‘PI:"W‘PJJ)\_

This implies immediately the equation (xiii). The proof of
(xiv) is analogous. We should now expand the determinant

K(%%---,%,%,u-,%)
Ly Lryeenylps Yra-eeslyg
on the first column.

Replace now ¢ by ¢ in the equations (xiii) and (xiv), multiply
both sides of these equations by ¢z and apply the operator F,,.
We obtain by (iii’) and (iii"’)
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(xv) Ft,z{Dp+l(§7‘p1’ 7%;) } —Ft,z{Kéx‘(Pz}'Dp((pn”"(pp)

Tyl Byyeeryy
PPy
'—Fw,y{le(m:xl:” ) L By - 2 }}
2 ; Pry o e ,(pp)
— —1)F, (K, - g2|.D . .
1;5';( 1) E’Z{ g ' 1}7} ( ’wl,"',xi—17m’i+l7"‘7wp

. Y PRREPL ™ W B to-gz)- D [T Pe
(XVI) F;‘,g{Dp—i-l(w’m“.“’mp 7= FC,?:[K(’% (pz] ’ DByy-eeyp
(§7¢1""a¢p),¢z\}
Yoyyeony@pl =)

K(pll' F;,a{ (il’?l_,:“_,?i._lj(’ii—l:li.:.:(:;:).‘pzl.

_._F,,,’ {K’([).T:‘ F:zl

Ms

-

i=

We introduce now the following notations, where p, @y,...,p,€Z

and @,...,2,6 X are fixed:

ﬁq;x:F;,z{Derl (Q: P1y- .-yq’p) ‘975}7

U,
Ly Byyneey Ty

%w:Fc,s{Dﬂ (ilijpn .',ﬂl"«'—‘1i9"i+'17' . 1%) ¢~[,

U Pry + « o e e e e
g:z=(—1)D, p) :
Ly Lyyeesy Wi 13 Liqaye- %y

pio=(—1) Kgz,

¢i¢=A‘P¢i:
6 ‘—.D (‘p].) 7(p11)
Tyyene sy,

where peS, xeX, and i=1,...
@;, ©; are not defined, and

Uypr=F,, {Dl (i) . <pz} .

Clearly, g;,p;:€Z, U, is a linear operation of Z into &, and ¥,
@; are linear functlonals on &.

,p. If p=0, the expressions ¥;, ¢,
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The equations (xv) and (xvi) can be written as follows (3%

(F):

e v b d

(xvii) l‘p¢1=~6pA¢—UpA¢ _i;; D g;,
7

(xviii) qug:_apAq;_AUp(pHglyfiq,.@i_

The operation I-+A4 issaid to be of an order p if D,#0 and
D,=0 for all r<p (r=0).

(xix) Suppose the order of I+A is p>0. Then P;g;=—06;0, and
Wi p;=—0;6,, where 06y is the Kromecker symbol.

In fact, from (xiv) where p is replaced by p—1 we obtain

9 D 9911-"9%9):_}1 {K.Z‘,D Fry o0 - 1P }
©) p(rl,.,.,mp vy ) P Y Yy &ayeeny¥p
Replace now x; by x, and conversely. We obtain

i Frye-r @,
—1%'D. 'p
(=1 ”(.rl,...,.rp)

—=_F Kuwzx: - D. ((pl’ """"" ?‘pﬂ)}
m’{ ¥ ? y’mlr-*v‘ti—-umi-;—lv---;xp '

i. e, by the definition of @; and g; (see (F"),

(10)

—0p=034;.

Replace z; by z; (4%7) in the formula (10). The left side is
equal to 0, and the other is equal to ®;(g;). This proves the first
equation in (xix). The proof of the second is analogous (see (Xiv)).

Subsequently we shall suppose that I-4-4 is of the order p=>0 -
and (in the case of p>0) that

GryeeoyPp€E, Xy, dpeX

are so chosen that
5p=.D (‘Pl: 7‘Pp)¢0

Ly geenyilp
Under these hypotheses, it follows immediately from (xix) that

Studia Mathematica. T. XIIT. 17


GUEST


258 T. Lezafhski

(xx) If I+A is of order p>0, then the functionals gy,...,9,
are linearly independent. Analogously, the functionals ¥y,...,W, are
linearly independent.

Theorem 1. If the operation I+ A has the order p>0, then the

sequence gy,.-.,Jp is the basis of the linear space of all ¢ which are
solutions of the homogeneous equation
(11) ¢+ Adp=0

2

(5. e. @ satisfies (11) 4f and only if @=2 wg).
i=1
If we replace #;, by » in (9) we obtain

D P1yP2y---3Pp F {K z-D (‘Pl:%’ 3 Pp }=0
ﬂ(m:mm <3 Tp + ¥ YsZoye ooy Pp ’

¢+ F, [Kyz-giy}=0.
By (F’) this equation can be written in the form
g+ ETg,=0.
Thus ¢, is a solution of (11). The proof that g,...,q, are also
solutions of (11) is analogous.
Suppose now that ¢ is a solution of (11). It follows from (xvii)
and (11) that
»
Uw=5¢+Um¢—Zl¢¢cv'gi-
i=

Hence
»

Z Gy

1=

| ,._.

P=

=
-

which completes the proof of Theorem 1.
(xxi) If the order of I+ A is p>0, and if the equation (1) has
a solution ¢, then the functional
1
Po="y+ 5 Upps
»
8 also a solution (1), i. e.

@0+ Apy =
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Suppose ¢ + Ap =1, i. 6. Ap=1y, —¢. Replace dp by ,—
in the equation (xvii). We obtain

Up'p"—‘s —@)— qu‘l’UpQ’_Z@tq] Gis
P
8 %+%%=%¢-§¢w~gf-
Hence

- 1
%=<P—~Z:ug-gi where a,-zg—gbigp.
1= '

Since ¢ is a solution of (1) and g; are solutions of the homogeneous
equation (11), ¢, is a solution of (1).

Theorem 2. Suppose the order of I+ A is p>0. The equation
(1) has solutions if and only if ¥Yup=0 for i=1,...,p.
By lemma (xxi), if (1) has solutions, then

1
Po="0 +6_Up%
¢
is also a solution of (1). Replacing ¢ by @, in (1) we obtain
(12) Uy + Op Ay -+ AUppy =0.
By (xviii) the left side of the above equation is equal to
P
_E Fiyo g
i=1
Hence
D
(13) EWiWo'giZO-
By (xx) the functionals g; are linearly independent. Henece
Wp=0 for i=1,...,p.
Conversely, 1f YQ%—O for i=1,...,p, then (13) holds. Con-
sequently (12) holds, i. e.
%—y'o‘f' Up‘l’o

is a solution of (1).
Theorem 3. The equation (1) is solvable for every w,e £ if and
only if I+ A has the order 0, i. e. if DF#0.
17*
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In fact, if D540, then the operation (see (7))

1 o0
I~5q2;0Aq

is converse to the operation I+ .4 since, by (7),
; ] @
A I——= > ' 4
I+ )( 52 )

=I+A— —( j’Aq I+A))

a=0
1/ -
=I-{—A~—3(gﬂ: q+£(aq+1A_AQ+1))

1
=I+A—=-DA=I.
+ ) I

On the other hand, if I+ A has the order p>0, then, by Theo-
rem 2, the equation p-+Ap=g has no solution since ¥,p,7%0 by
(xix).

Let = be the Banach space of all linear functionals on Z, and

let A be the operation (of & into ._,) conjugate to 4, i.e. ¥=AP
is equivalent to: P(p)=@

(4(p)) for each geF.

Theorem 4. Suppose the order of I-4+A is p>0. The sequence
¥y,..., ¥y is a basis for the linear space of all solutions of the homo-
geneous eguation

(14) WiA¥P—0 (¥ e8)

).

By the definition of ¥; and by the equation (see (F))

AVy =If’€,z {KCy . <;oz}
‘we obtain

%(¢>+%(Ac¢))=ﬁ’;,g{1)p(i"”“ "”"*“"”*'“"“’j';f’)q:z
MRS a

_}_FW{Dp(E;(P:H"-:‘Pi-—l’goi+1:"'7¢p) “Kty- (PZ}}
Biy o« 0 oo e iy

The expression in the outer brackets { } is equal to 0 by
(xiii) (where p is replaced by p—1) since D,_,=0. Consequently
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Zi(p)+Fi(4(9))=0 for every pe 5, i. . W+ AW,=0 for i=1,...,p.
Thus the linearly independent (see (xx)) functionals ¥%,...,%,

are
solutions of (14).

Suppose now that (14) holds, i. o, ¥+ A¥W=0. By (xviii)

p
¥, =—6pT(A¢’)“‘IF(AUp§U)_g;Wi?" (@:)-
Replacing ¥(4¢) by —¥(p) we obtain
PU,p=0,¥,+¥(T, 2%<p Ya;
for every pef, i.e.
l (=]
.=6_§ q. e. d.

For applications it is important to know that D depends con-
tinuously on F and K. Let & be the set of all functionals F on
R sueh that there is a linear operation Te® such that (F) holds.

Clearly & is a linear subspace of the normed space ® conjugate
to K. The expression

a(FO,FO 7O RO RO . K@)

! By, By, ... EOyyy, l
@

——Fl) KB,y By, ... E®y,y,
T R
EQyy, KOy, ... KOy,
is a 2k-linear operation on
FXFTX...XFXRXKX...xR
g-times g-times
since
0(F,..., O, K, .., KO l<qq [FO)- ... |FO - [EO) - .. | K

by an argumentation similar to that in the proof of (v) and (vi).
Hence

1 L ERREPR
ay(F,K)=a,(F,...,F;K,...,K) =E F"l’yl'“F"!’"'K(?h,.--,yz


GUEST


262 T, Lezahski
is a continuous polynomial on Fx& and

/2
|aq<F,K>|<qq—! B K

Therefore the series

D(F,K)= S‘ (F,K) (ap(F, K)=1)

is uniformly convergent on each bounded subset of Fx®, conse-
quently it is a continuous funetion on &x R i e.:
(zxii) If |F™—F]->0 and [E™—K|->0, then

DEF™, E™)»D(F,K).
II. Applications.
1. Consider first the case where X is the space L? of all measu-
rable functions »(f) on {0,1) with
1 1/a
umu:( f |w(t)|“dt) <oo.
[

5 is the conjugates pace L? (1/p+ 1/g=1; 1<p, g<oo). Clearly,
each function @eZ determines umquely a functional on X denoted
by the same jetter ¢:

1
(15) pr= [ p(t)a(t)dt.

Each measurable function K(f,s) defined on the square
0<t, s<1, such that

(16) ff]K(t s)z(t)p(s)|dids<<oco  for zeX, ge &,

determines uniquely a linear operation of £ into
the same letter K:

Z denoted by

(17) Ke(t)= [K(t,3),(s)ds, i.e. Kgo= [[K(t,s)a(t)p(s)dsdt.
0 00

Let R, be the class of all operations K of the form (17) where
K(t,s) satisfies (16), and let & be the least closed linear set of li-
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near operations of = into Z such that IeR and 8 CR. The linear
space R satisfies the condition (K).

In fact, if K,,K,eR,, then K=K,K,e8, since K is determined
by the funetion

1

K(t,8)= [ Ey(t,r) Eolr,s)ds
0

which satisfies the condition (16). Consequently, if K,,K,e&, then
K K.eR.
If KefR,, and if ¢ X, ¢,e5, then

11
(18) Myy=Eya,- goy= [ [ M, 8)p(s)y(t)dsde
o0

‘where
1

M(t,5)= [ K(r,8)qolt) zo(r) dr,

0

which proves that MeSR,. If K=I, we have
11
(19)  Myy=Tyzo- gy=va - poy= | [ Mlt,8)p(s)y(t)dsdt
[ 1]
where M(t,8)=g(t) - Zy(s) which proves that MefR,. By continuify,

Me®R for any KeR, q. e.d
Now let R,S8e¢R, be two operations such that

(20) (f(fluat r)|pdt)""'dr) <oo,
(21) (fl( f1|S (r,s)]qu)”jqdr)"'”<oo,

where 1ju+1fv=1, 1<y, r<<oo ).
Let T=RSefK,, i.e.
1
T(t,s):fR(t,r)S(r,s)dr.
0

5) The cases u=1, v=100, and u=oco, v=1 are also admissible. Evidently
the norm fl | dr)ti should be replaced by sup i1
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We define the functional F on &, by the formula
11
(22) F(K):ffT(t,s)K(s,t)dtds.
00
F is linear on &, since

11

FlE)< f{fflk s,t)R(t,r)S(r,s dsdtld;

o

ey <f (1 [ R pa™ ([ 180,500 ar

<as(f{ fienra o™ f| fiseopafaf
[ 0

Now we extend F to a linear functional on & in an arbitrary
way ®). The extended functional F satisfies the condition (F). It
suffices to verify the case of KeR, and K=I.

If M is defined by (18), then

F(M)= ffTs t) M (t,s)dsdt
11 1
=ff(fT(s,z)K(r,s)ds) @o(t) o (r) drdt = K Tepyx,.
00 0
If M is defined by (19), then

ffTs 1) M(t,s)dsdt
11 )
— [ 206,000
o0
Consequently, the theory developed in the first part can be

applied to the equation (1) where Ke® and ¢,y eZ=I". If
A=ETeR,, then (1) is the integral equation

)dsdt-quomo_TIcpoxo, q. e. d.

(24) p(t)+ f A(t,5)p(s) ds =y 2).

¢) Since I does not belong to the closure of &, the number F(I} can be
arbitrary.
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Consider, in particular (the case K=1I), the equation
(25) o+ To=1y,,
i. e. the integral equation
1
(26) o(t)+ [ T(t,8)q(s)ds=py(t) (%0, p€L”).

o

The determinant D of the equation (25) coincides with the
Fredholm determinant of the integral equation (26). In fact, we
have (see the definition (7))

A=T, A,—a,T—TA, ,,
i e.
Ao(t75’)=T(t18)7
1
A,,(t,s):anT(t,s)—J T(t,r) Ay o(r,8)dr (n=1,2,...),
0

(27) -

where A,(t,s) denotes clearly the function determining the opera-
tion 4,e8R,. By (iv) and (vii),

aw=1,
28 - F(K,)= ! 1T(s t) K, (t,s)dtds
(-" ) “"+1_n—_1~1 ( n)"n+l ALK
-1 fA (s,9)ds (n=1,2,...)
_71/_]_10 n 2 Ty

We may suppose that
1
F(I)= [T(s,s)ds
0

(if not, we can modify the function 7(s,f) on the diagonal of the

unit square). Therefore
1

(28) 0y =F(Eo)=F(I)= [ Ao(s,s)ds.

Q

The formulae (27), (28), (28’) show that

D=Ya,
n=0
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is the Fredholm determinant of (26), and

1 o0
"b‘gAn(t:S)

is Fredholm’s resolvent kernel of equation (26).

The restriction that the kernel T of (26) is a superposition of
two other kernels is not essential since the examination of (26) can
be reduced to the examination of the equation with the iterated
kernel TT.

Analogous results can be obtained in the case where X=1?7)
and E=P (1<p, g<oo, 1/p+1/g=1). The necessary modifications
in the text are obvious.

II. Now let X be the space M of all bounded measurable fune-
tions z(¢) on the interval <0,1> with the norm?)

It} = sup ess Ja(?)]

and let £ be the space L of all integrable functions ¢(s) on <0,1)
with the nmorm

lel= [ lp(s)|ds.

Clearly each @eZ determines a functional on X denoted by
the same letter ¢ (see the formula (15)).

Each measurable function K(t,s) defined.on the square 0<(t,
s<1, such that

11
(29) [[1E@,s)ps)et)dsdt<co  for each gef, zeX,
0e

-

determines a linear operation of Z .into Z denoted by the same
letter K and defined by the equation

7) I* is the space of all sequences z= (x,) such that
o0 /e
= ( Z 1) "< oo

®) sup ess f(t) is, by definition, the number inf sup f(f) where Z runs
3 Z tnoneZ
over all sets C {0,1) of measure zero. one

icm
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11
(30) : Eoz= [ [K(t,5)¢(s)2(t)dsdt.
The norm of K is °?
1
(31) K= sup ess [ |K(s,s)|ds.
8 [

Let &, be the set of all linear operations K of the form (30),
and let & be the least closed linear set of linear operations of £
into £ sueh-that TeR-and KR,CR. K satisfies the eondition (K).
The proof is the same as in I.

Let T(t,s8) be a fixed measurable function defined on the square
0<t, s<1, such that

1
f sup ess |T(¢,s)|di< oo.
I 8
Clearly TeS,. Let
11
F(K)zf Tit,s)K(s,t)dsdt for Ke&,.
00

F is a linear operation on &,. In fact

11
\FE)I< [ [1T(,9) K (s,1)|dsdt
o0
1 1
gf(sup ess [T(t,s)]-flK(s,t)[ds)dt
0 8 0

1 1 1
< sup ess f]K(s,t)[ds- fsup ess |T'(t,s)|dt=||K]| - fsup ess |T'(t,s)|dt.
i ° o 8 ° s

Now we extend the functional F to a linear functional over
®. The functional ¥ on & satisfies condition (F). The proof is the
same as in I.

Consequently, the Fredholm theory from the first part of this
paper can be applied to the equation

¢+KTp=y,,

where Ke®. In particular, if A=KTe R,, this equation is the in-

tegral equation
1

p)+ [At,5)p(s)ds=po(t).

[
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It is easy to see that the case X=L,Z=M can be discussed
in a completely analogous way to the case examined above: X = M,
E=L.

III. Now let X be the space V of all funetion #(¢) on <0,1> with

finite total variation var z(t). The norm in V is
t
|j]=var x(t).
12

Let = be the space C of all continuous funetions ¢ on <0,1)

with the norm [ig|l=sup Jp(s)|. Clearly each gpeC determines a linear
8

functional on X=V, which will be denoted by the same letter @:
’ 1

g = [ o(s)d(2).
0

All integrals in this section are of the Riemann-Stieltjes type.

Let K(T,s) be a function on the square 0<(¢, s<1 such that

(a) for each fixed ¢, the function K(t,s) of one variable s is
of bounded variation, and

sup var K(t,s)<<oco,
12 s
(b) for each fixed s, the function K(t,s) of one variable ¢ is
continuous.

The fanction K(t,s) determines linear operation of = into &
denoted by the same letter K:

1 1 1 1
#2)  Egpo=[{ [ols)a,K(t,9)dott)= [p(s)d( [ E(t,5)da(0).
0 [] 0 [
The norm of K is
(33) [|K||=sup var K (t,s).
t s
Let & be the class of all functions K(t,s) satisfying (a)

and (b), and let R be the least closed linear set such that Te®
and K,CR. R satisfies the condition (K).

The superposition K=K,K, (K;,K,cR,) is determined by the
funetion

1
K(t,5)= [Ky(r,8)d K, (t,7).
L]
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If ey and gue&, me X are fixed, then

1

1
(34) Myy=Kyay-goy= [ ([ wls)d, M (t,5) dy ),
o 0
where

1
M(t,8)=qo(t) [ K (r,s)d,o(r).
o
If K=1I, then

. 11
Myy=vyay goy= [ [p(s)d, M(2,5)dpy(8),
00

where M(%,8)=1py(t) - 2o(8).

Consequently, Me® for every KeR, q. e. d.

Let T'(t,s) be a fixed continuous function on the square
0<s, t<<1. This function determines an operation Te8R defined as
follows:

1 1

(35) Tpr= | (f T(z,s)zp(s)ds) d(t).

[}

For each K e® take
: 1 1
P(E)= [dt [T(s,)d, K(t,5).
[ [i]
F is a linear functional on ® since

1 1
\F(E)< [at| [T(s,)d, K (t,5)
[ 0

1
< [ sup|T(s, )] var K(t,5)ds=|E]sup [T(s,1)].
e 8 8

The functional F has the property (F). In fact, if M is defined
by (34), then

1 1

F(M)=[at [ T(s,0)d,M(8,5)

[ 0

1
= fl dt fl T(s,t)d, ( f %(t)K(v‘,s)drmn(r))=KT%%.
[} 0 0
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The case K =1 can be verified in an analogous way. Therefore
we may apply the theory from the first part of this paper to the
equation

1" g+ Adp=yy,

which can be written in the form
1
o)+ [@(6)dA(t,8)=po(t).
[}

IV. We shall now apply the results of the first part of this pa-
per to the case where X={ or m and E=m or I°) respectively.

We shall write explicitly all formulae and equations for the case
where X=I. In square brackets [ ] we shall write analogous
expressions for the case where X=m.

Let X=I [X=m], and let E=m [Z=I]. Blements of X or
Z are sequences of real numbers. The n-th term of a sequence xe X
or peZ will always be denoted by x, or ¢, respectively. We shall
also write #= (x,) or ¢=/(@,) respectively.

Infinite square matrices will be denoted by letters X,T,S,...,
their elements will always be denoted by the same Greek letters
with two indices: K=(xy), T=/(my), S={(oy), etc. However, the
unit matrix (d;) (where §;; is the Kronecker symbol) will be deno-
ted by I.

‘We adopt the usual notations: S+7 is the matrix (oy;+7x;),
87T is the matrix ’

.
(Z%m ,
r=1

whenever all series defining the terms of ST’ are absolutely conver-
gent.
Let 8 be the set of all matrices K =(sx;) such that

oo

(36) D lmgappil<<oo  for each ge= and weX.

V==
Each matrix Ke® determines uniquely a linear operation of
E into & denoted by the same letter K:
°) m is the space of all bounded sequences %= (z,) with the norm

00
lof] = sup [z,|. I is the space of all sequences = (x,) such that |jz]|= Y [z,]< co.
n n=1
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00
Epr= 3 wirup;-
k=1

The superposition KT of two linear operations K and T is
determined by the product of the matrices K ,T. The unit matrix I
determines the identical mapping of & onto 5.

‘We shall interprete ® as the Banach space of linear operations
of Z into = The norm of an operation Ke® is

(37) uKu=sup( f‘sml) [HKH=51_1P ( > luku)]-
k 1=1 i k

=1
R satisfies the condition (K).
Let ¥ denote the class of all matrices T'=/(z;) such that

o

(38) 170 = 3 SUP |74i| < oo

=1

. il
(17 = 3 sup [zl < oo},
k=1 &

With respect to the norm | |, € is a Banach algebra, since

T,8¢X implies TSe<T and
TSI <" - IS

Clearly TCR. Consequently, each T can be interpreted as

a linear operation of & onto 5. Notice that
i<z
Fach TeX determines also a linear functional F' defined on R

by the formula
F(K)= Y tyn for K={)eR.

Kji=1
This double series is absolutely convergent.

Tn the same way as in IT we prove that |F(K)|<|IK|- I|T)*. Hence
(39) 1P

Now take a fixed TeX and consider the functional F determined
by T. The functional F fulfils the condition (F). The proof is the

same as in case IL
Consequently we can apply the results from the first part of

this paper to the equation
(1) p+Ap=1yp or
where ¢,peZ, A=KET, K=(u)eR.

(I+A)p=1y,


GUEST


[
-1
%)

T. Lezanski

The equation (1) is, in fact, a system of infinitely many linear
equations
(40) ‘PJ;-}—Z,; i Py = Y (k=1,2,...),
U=
where g=(g), p=(w) and A==(ay)=HKTeR,

Sinece we shall examine in this section the equation (1') for
different operations A4, we shall write D(I+4A4) instead of .D. By

definition,
- 1
DI+4)= V= Yureens V|
o fgk s “’"”k{K(?/u»- )}

<y Yr,
Now
’ Yis--r Y
F"’P”l“'F’/’i-”k{K(yl’,A..,,yk)}

oo oo 0 %117 i %.“J %
= E Uiy E Tjaia 2 T |+ = =+ - ¢
i,71=1 12,ja=1 irr=1

U1yeensdB) | Oy oo+ Oy

where the last sign X is extended over all sequences of different
positive integers. The determinants under the last sign X are the
principal subdeterminantsi®) of the matrix 4=(oy;) of the order k.
Consequently **),

(41) D(I+4)=3a,
k=0

where d;, is the sum of all principal subdeterminants of the order v

k of the matrix A if £>0, and d,=1. By (ix), the series (41) is
absolutely convergent.

Subsequently we shall examine the equations (1) only in the
case where K =1, i. e. the equation

(42) p+To=y or  (I4+T)p=vy,
%) Principal subdeterminants (of an order k) of a matrix (ay) are the
determinants of finite matrices (ary) (j,i=1,...,k) where »,,...,7, is a sequence

of different positive integers.
1) An analogous result holds in the case &=P, X=U, see p. 244.
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where TeX. In other words, we shall examine the following infi-
nite system of linear equations:

2

(43) ¢k+_21 TPi=Yx 0T (Ori ) i =Y
=

]

%
where k=1,2,..., T=(74)e<.

For each TeX let T,=(z%;) denote the matrix defined as fol-
lows:
[ gy i i<<n [k<<n],
lo  if i>n [k>nl

It is clear that T,e¥ and |T—T|*—0. The letters F™ and
F will denote respectively the linear functionals determined by Ty
and T. By (39), |F®™ — F||->0. Hence, by lemma (xxii),

DI4+T,)—=DI+T).

n
Thi=

We have
DI+T,) 2 am,

where d{¥ is the sum of all principal subdetermina,nts of the mat-
rix T,. Now each principal subdeterminant of T, which is not e-
qual to 0 is the principal subdeterminant of the finite matrix (7x)
(k,i=1,...,m). Hence, by the known properties of determinants,

D(I +T ) ig equal to the determinant of the finite matrix (8p;+7Tw);
where k,i=1,...,n. Consequently:

Theorem 5. If TeX, then the sum dy of all principal subdeter-
minants of the matriz T exists for each Fk, the series dy-+d,+dy-+...
is absolutely convergent, and

E1+Tu Tys oo T }
|

(44) D(I+T)— S‘dk—— ml\ To1 1+ 7Ty oen T

i Tl Tn2 e 1+Tnn
The number D(I-+T) is called the determinant of the imfinite
matriz C=I-+T. The determinant D(C) of an infinite matrix €
is thus well defined if C—IeT.
Now let SeT be another matrix, and let S, = (d%;) be the mat-
rix defined analogously to T,, i e.
o o if i< [k<n],
"’“—{o i# i>n [k>nl.

Studia Mathematica. T. XIIT. ] 18
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‘We have ||S, —8|[*—0. Since ¥ is a Banach algebra, we obtain
T8, — T, Sul*—0, and consequently

(T8 +TS0) — (T +8+T8)|[*—0.
Hence, by (39) and (xxii),
D(I+T)I+8))=DI+T+8-+T8)=1im D(I+Tp+8,+TrS,)-

Now, if 4>n, the i-th column [line] of the matrices T),, S,,
T,+8,+T,8, contains exclusively the numbers 0. Consequently
(see the proof of Theorem 5), D(I4T,) is the determinant of the
finite matrix (& -1;), where k,i=1,2,...,n, and D(I-8,) is
the determinant of the matrix (dy-+o0y), where 4,k=1,...,n.
Analogously, D(I+T,+8,+T,8,) is equal to the determinant of
the finite matrix (8;+7r)(0k+ow), Where k,i=1,...,n. Hence

DU AL+ 8 +Tu8)=D(I +Ty) - D(I+8,)

and, consequently,

Theorem 6. D((I+T)(I+8))=D(I+T)'D(I+8) for arbitrary
T,8eT.

In other words, if 0;,—Ie¢¥ and C,—Te<, then

D(0102)=D(G1) : D(Oz)-

23

During the print of this paper R. Sikorski and the author
have proved that the Theorem 6 holds in arbitary Bamnach space.
Since the determinant of the equation (I4+T)p=1v is uniquely
determined by ¥, but not by 7, the extension of Theorem 6
to the case of an arbitrary Banach space must be otherwise
formulated.

The above theorem shows that the infinite determinant D(C)

(C—1¢%¥) has the multiplication property of usual determinants
of a finite order. Obviously it has also other properties of finite
determinants. For instance:
(xxiil) Let C—IeT, lot aem [ael] for i=1,2,3, and let O
be the matrixz obtained from C by replacing the v-th- column of C by
the sequence a;. Since C;—1 e, the determinant D(C;) ewists (i=1,2,3).
If ay=a,+ay, then D(C;)=D(C))+D(C,).

This additive property follows immediately from Theorem 5.
Analogously :
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(xxiv) Let C—IeS, let a;el [a;em] for i=1,2,3, and let C; be
the matriz obtained from C by replacing the r-th line of C by the sequence
a;. Since C;—TeX, the determinant D(C;) ewisis (i=1,2,8). If
ay=a,+ ay, then D(Cy)=D(C1)+D(Cs).

(xxv) Let C,, OS, O’ denote respectively the matrices obtained
from the matriz G (C—I¢X) by replacing the r-th column by the

()
sequence (Gy,0y,...,0,,0,0,0,..) or (0,0,...,0,1,0,0,...), or by
a=(ay,05,85,...)66*2) [el]. Then the determinants D(GCy), DY),
D(C") exist, and

n

(45) D(C)= 3~ DICY,
(46) D(C")=lim D(C) = § & D(CY).

The formula (46) is the expansion of (“ on the r-th column.
The equation (45) follows from (xxiii). (47) follows from (45), (39)
and (xxii) sinee ||[(Cp—1I)—(C'—I)}*—>0.

The analogous statement is true for the expansion on the ¢-th
row. The sequence & should belong to 7 [¢,]-

Let C=(y1;) be such thab

47)  limyu=0 for i=1,2,... and C—Ie¥ [C—IeT].
k

Let u; denote the determinant of the matrix obtained from
the matrix ¢ by replacing the term y; by the number 1, and all
other terms in the k-th line and in the 4-th column by O. Let
M =(py). We shall prove that

(48) M-0=D(C)-1.
Set a=(y1;Pss »Vas 5-+-) iDL lomma (xxv). We obtain
el
0'= 2 tiri%is-
=1
On the other hand, ¢'=C if s=7; hence
od .
3 wivis=D(0) if s=r.
i=1
12) ¢, is the space of all sequences convergent to 0. It is not known whe-
ther ¢, can be replaced here by m. Consequently, it is not known whether the

condition lim y,=0 in (47) is necessary.
* ) 18*
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If s %7, the matrix C* has two identical columns: the s-th and the
r-th one. Therefore D(C')==0 which follows easily from Theorem 5.
Consequently,
oo
2 ‘U‘ri'y'ix:D(O) ) arsa q. e. d.
T=1
Theorem 7. Suppose T fulfils the condition (48) and wem
[pel]. If D(I+T)#0 and if @ is a solution of (43) then

(49) Pi= 5 Zﬂik?ﬂk'

This follows immediately from (48). Clearly, (49) defines the
operation inverse to I-+7 (see Theorem 3).

If pecy'®) [pell, then the formula (49) is analogous to the Cra-
mer formula for a finite system of linear equations since

0
2 Hike Vre
1=1

is the determinant of the matrix obtained from C=I+T by repla-
cing the i-th column by the sequence y=(yy)eco[ ell.

I am indebted to Prof. 8. Mazur for suggesting this problem
to me; I also wish to thank Prof. R. Sikorski for essential
advices and correction of several proofs.

(Regu par la Rédaction le 5. 7. 1952)

1) Tt is not known whether ¢, can be replaced here by m. See foot-
note%).

icm

Sur un type de conditions mixtes pour les équations
aux dérivées partielles
par

J. G.-MIKUSINSKI (Wroelaw).

§ 1. Introduction.

Considérons 1'équation différentielle

mo grtr
M 2; Gy S A= @ (1, 3)

dont les coefficients o, sont constants (réels ou complexes). Dans
un travail antérieur [1], j’ai discuté la méthode opérationnelle de
résolution de cette équation et le probléme dunicité, lorsque les

;u
. Tig. 1. Fig. 2. . Fig. 3.

conditions initiales sont données sur une seule axe, & savoir O4
(Fig. 1), ou sur les deux axes O et Ot (Fig. 2). Or, dans les appli-
cations physiques et techniques, un autre type de conditions est
d'une grande importance (Fig. 3): ce sont des conditions sur la
frontiére d’une demi-bande

D: 0<<t<oo, KA A ’

Ce type de conditions intervient, par exemple, dans le prob-
ltme de la propagation de la chaleur, lorsque la température est
connue sur les deux extremités d’une barre, dans cerfains problé-
mes de la ligne électrique et dans beaucoup d’autres problémes,
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