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et les conditions aux limites
(22) »(4)=0, #(A)=0.
La solution générale de (21) est
(1) =c,6* e,
oil ¢, et ¢, sont des opérateurs arbitraires. Il s’ensuit que la solution
" satisfaisant aux conditions (22) a la forme
(23) 2(2)=Fsin(A— 4),

oil f est un opérateur arbitraire. Pour gue la fonetion (23) soit pa-
ramétrique, il faut et il suifit que f soit une fonction ordinaire de
la variable t. C'est ce qui implique la forme (20) pour toute solu-
tion du probléme initial, concernant I'équation (18).

Bibliographie.

[1] 7. G.-Mikusifiski, Sur les équations différenticlles du ealoul opératoire
et leurs applications aus équations classiques auw dérivées partielles, Studia Ma-
thematica 12 (1951), p. 227-270.

PANSTWOWY INSTYTUT MATEMATYCZNY
INSTITUT MATHEMATIQUE DE L’ETAT

(Regu par la Rédaction le 28.8.52)

On the Paley-Wiener theorem
by
J. G.-MIKUSINSKI (Wroclaw).

§ 1. Introduction. By the well known and important theorem
of PALEY and WIENER?Y), every entire function F(z) of exponential
type which belongs to L, along an infinite axis can be represented
ag a Fourier integral. In this paper we shall formulate and prove
an analoguous theorem for analytic functions whieh are considered
in a half-plane only. From such a theorem we can easily obtain
the theorem for entire functions (§3), but not conversely.

PLANCHEREL and P6Lva?) have shown that the condition L,
can be replaced by I,. However, they have given a new proof for
both cases. In this paper, we shall prove our theorem by the hy-
pothesis that F(z) belongs to L, (1<p <2) along the boundary of
the considered half-plane.

The form of the Plancherel and Pélya theorem is slightly shar-
per than that of Paley and Wiener. This form and still sharper
forms will be discussed in § 6.

The proof of Plancherel and Pélya is based on the properties
of entire functions and cannot be applied to the half-plane. The
proof given in the sequel is, in some points, analoguous to that
of Paley and Wiener; it leads, however, to an independent and more
elementary argument for the particular case p==1.

§ 2. Theorem. We suppose throughout this paper that F(z)
is an analytic funetion in the half-plane Re>0 and that

lim F(x+iy)=F(iy) for almost every real y.
04

Theorem. If ¢ *¥F(z) 4s bounded in the half-plane Re>0
and F(iy)eL,(—o0,00) (1<p<2), then F(2) can be represented, for
R2>0, as an absolutely convergent integral

1} Paley-Wiener [4], p. 12-13.
2) Plancherel-Pélya [6].
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? @
1) F(z)= l[ e f(t)dt.
In the case p=1, the fumction f(t) in (1) is continuous and bounded for
t=—k and is given in the form of the absolutely convergent integral

1 .~
(2) fy= 5= | i) dy.

1 1
In the case 1<p< 2, the function (t) in (1) belongs to L, (5 - & == 1)
and is given as the limit in mean with exponent q

o

3) f(t):l.i.m.él— fei’"F(iy)dy.

a0 4TC
—_—

Moreover, the function f(t) defined by (2) vanishes for i<~k and that
defined by (3) vanishes almost everywhere for t<—k.

§ 3. Case of entire functions. From the preceeding Theorem
we can easily dednee an analoguous theorem for entire functions.
In fact, it F'(2) is entire, ¢ F(2) is bounded (in the whole plane)
and F(iy)eL,(—o0,00) (1Kp<2), We can obviously apply the Theo-
rem. On the other hand, we can apply the same Theorem to the
function G(z)=F(—z). We see, in case p=1, that the function

oo

1 .
(@) o= [ ey ay

vanishes for {<{—k. Replacing ¥ by —y in (4), we find that g(i)=
#(—t).. Thus, f(t)=0 for ¢t>>k and the integral (1) gets reduced to

Fe)= fe"‘f(t) dt.
—k

This equality holds for Rz>0, but both ifs sides are entire functions
and, therefore, it must hold in the whole plane.

An analoguous argument can be used in ease 1<p<C2.

8§ 4. Two lemmas. In the proof of the theorem we shall need
the following two lemmas:
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Lemma 1. Let 6 and k be any positive numbers. If e FF(z)
is bounded in Rz>0 and

y=8
[ F(ig)dn
v

is bounded in —oo<Cy< oo, then the function
2416

- .
o)== [ Fa

is continuous and bounded in Rz>0.

Lemma 2. Let a be any positive number. If ®(z) is analytic
in Re>0, continuous and bounded in Rz>=0, then the funciion

. 1 [ g ®ly)
(5) ‘P(t)-‘—“g;: fﬁma:_aiy)g 1

is continuous and bounded in —oo<t<oco, and vanishing for 103
moreover, we have, in Rz>0,

00 -
~

@(2) . ___afeﬁ,zij(t) dt.

C(idaz

Proof of Lemma 1. The continuity of @(2) in Rz>0 and
that of ®(iy) for real y are obvious. But F(z) is bounded in any
bounded region and this implies, by the Lebesgue theorem,

248(y-+0) i(Y-+6)
lim [ F(di= [ F@)d
T 04 LW iy

and, consequently,
lim @(z+3y)=(%y).

z—+04
This suffices to ensure the continuity of &(z) in the closed half-

plane Rezz=0.
Now, we have, for a positive number M,

2410 i M y+0
f eklsl dz\ =___6_f eklz-}—iu! d’? for C.RZ>0;
p {

v

\‘P(z)ié%l

“. -
gince in the last integral we have o i) <|w+ iy |+ 6, it follows
that

|B(z)| <Me™- ¢ for Re>0.

$tudia Mathematica. T. XIIT. 19
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We have, further,

0 [} /]
1, M M
LS f (Pl in)ldn < 5 o™ f et gy < f ¢ iy — M
0

0 0

>

for positive z. Thus P(x) is bounded on the imaginary axis and
on the real positive axis, and is of exponential type in the half-plane
Re>0. By the Phragmén-Lindeléf theorem, it must be bounded
in the whole half-plane Rz>>0.

Proof of Lemma 2. Let ¢ be arbitrarily fixed in Ne>0.

‘We have
(6) __Q?(z) _ 1 f D(s) ds
(1+az)2—2m'c (1+as)? s—z
where the contour O, (r>|z]) is composed of the z,
semi-circle 0
) sl=7, Rs=0 T
and of the segment of the imaginary axis embraced
by this semi-circle. On the other hand, given any
real u, we have

1 (p s —-—(s—-z)u__
(8) o= L [ 2 o1,
2ma (14 as)? §—z

r

for the integrand is analytic inside the contour ¢, and continuous
on it. Adding (6) and (8) we get

@(2) 1 Q(s) —{8—2)u [ZS
— — —— —_—— —_
(1-+ az)? 2nic 1+ as)? §—2

) If >0, the part of that integral which belongs to the semi-
circle (7) tends to 0, as r—oo, and so0 we get

B(e) 1 7 By e
o ML [ e,

(1+az)? D2 J (L+aiy)? e—iy
But

6—(s~.z)u

—— (6—2)t
= [ et Re<Re
—U
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substituting this into (9) and interchanging the order of integration
we geb

oo

PR [pag l [ P
Ttaey f‘ dsn fe Traiyp ™

—U

This formula is true for Re>0 and any u>0; but its left side
does not depend of %, which implies that the interior integral, equal
o the function @(t) in (5), must vanish almost everywhere for 1< 0.
On the other hand ’

1oyl

|¢(t)|<2—7“_w 17 ap?

k)

which proves the boundedness of ¢(t) and the uniform convergence
of the integral in (5). Thus p(¢) is continuous and our proof is com-
plete.

§ 5. Proof of Theorem. Consider the function

2+i0
1
(10) aye)=5 [ PO,
L]
where 6 is any given positive number. By the Holder inequality,

we have
v+8

o<t | wanas <2 ([ an)" ([ e an)”

v

<o f B (in)? dn)"p

—c0
for any real y and 1fp+1/g=1. Thus @,(2) is bounded on the ima-
ginary axis. Since P (z) is bounded in Re>0, we can apply
Lemma 1. This asserts the continuity and boundedness of Py(2)
in Re>=0.
By Lemma 2 we have

By(2) o r et
(11) ey uf €, p(t) Al

19*
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where the function

17 L, Dliy)
1) = — iyt TO\TI
Paalt) =) T +awdy,

is continuous and bhounded in —oo<t<co, and vanishing for ¢<0.

We shall show that, as 60, the function g,,(f) tends to

17, P
(12) Falt) =— fe"’“_k) (*M"; dy

2r
—00

uniformly in the interval —oco<t<oco. In fact, we have

l 9017/’)‘9 d
ol —p <= [ |7 [ Flin) an—Fliy)
Pas(0)— (0 Zn_f efF(’wz)dn Py o
o0 [
(13) - 7 dn|—2
b ij[ (fy+in)—F(iy)] 77‘1_}_&21/2
)
1
<5 [ pman
where ’
) _ a ., . R dy
paln) = i B Gyin) — B s

If F(iy) belongs to L,, we may write
(14) Vo) <[ Bty +in) — B (iy)| dy ;
if F(iy) belongs to L, (1<p<2), then by the Hélder inequality

(15) %(n)<(le(ierin)«F(iy)l”dy) (fm At eyt )W'

Both (14) and (15) prove that

1im Ya(n)=0

Thus, by (13), @,,(t) tends to ¢,(?) uniformly in —oo<t<oco. More-
over, g,(t) is a continuous function, vanishing for $<0.
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Letting 6 tend to 0, we obtain from (10) and (11)

o

—kzF

(1 +az)? f Pa(t) i

0

or, which is equivalent,

(1+az)?

Now we have to pass to the limit with «. If F(iy) helongs
to L,, we get from (12)

edttBI<5- [ PG 2y

(16) e _ f e (1) dt
[

and, by (2),
lim @, (t-+-k)=f(t)-
a—>0
Thus, as a—0, we obtain from (16), by the Lebesgue theorema,
the formula (1). Moreover, one sees from (2), that f(t) is continuous.
If F(iy) belongs to Ly (1<p<?2), then, as a—>0, the function

1 [y
fuli =5 [ "Bty ay

converges, by a theorem of TITCHMARSH %), in mean with exponent ¢
to a function f(f) such that

o o 1
a7 [ora<es( [ramra)
Similarly, by applying the same theorem of Titchmarsh to the
difference
F(z
€ ),
(1+a)?

we are led to the inequality

[ 1 . F( Y A » 1
(18) flipa(t'!'k)”_‘f(t)iq‘lt < (2%) ( fl‘(l—k’fl’ly)z F(’Ly)i dy)fl"‘l.

8y Titchmarsh [7], p. 96, Theorem 74.
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But the last integral tends to 0, as a—0, which implies that
q:a(t.—!—k) converges in mean with exponent ¢ to f(f). Since ¢,(t+%)
vanishes for i< —Fk, the function f(¢) vanishes almost everywhere
for t<—F. )

Now, it is easy to see that, as «—0, the formula (16) takes the
form (1) and that the integral in (1) is absolutely convergent for
Re>0 (because f belongs to Ly).

) §6. Sharper forms of Theorem. Plancherel and Pélya have
given a slightly sharper form to the theorem of Paley and Wiener
Namely, suppose that ) .

(«) ¢ F(z) is bounded in the whole plane of z,

(8) F(iy) belongs to L,.

Then the Paley-Wiener theorem asserts that F(z) ec:
presented in the form (#) oan be e-

&
(19) Fz)= {C e~ (t) dt.

Planeh.erel and Polya have shown that if («) and (8) hold and
moreover, if for some k' and k" (—k<—k <k"'<k) 7

(y) e ¥ F(z) and ¢ **F(—z) are bounded for x>0,
then the formula (19) can be improved by introducing narrower

bounds of integration:

kr

(20) F(z)= { e (t) dt.

It is easy to show that (20) follows, b :
A , by (yv), from (19). In fact
;Vi%n |F(—z)}< M for x>0, then it follows 'from (19) that, for
: b

&
1 {e“‘""’”f(t)dtkM
or, which is equivalent,
k—k
| [ f+k")at| <M.
—kk
Hence
k_k"m oo
]of = fli+k )dt|<M1=M+_ bf* (E+R) de,
and by an elementary theorem of PICONE*) we have f(t-+k')=0

4) Picone [5]; see also Mikusifski [2].
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almost everywhere for 0<i<<k—k" or f(t)=0 almost everywhere
for k' <i<k.

Hence, the upper bound in the integral (19) is to be replaced
by k". Similarly, one can show that the effective bound in (19)
is —k.

T we use a stronger theorem than that of Picone, we can eas-
ily relax the eondition (y) and obtain in this way still sharper
forms of the Paley-Wiener theorem. For instance, if F(z) satisfies

(), (B) and
) ¢ **F (%) is bounded for a sequence of positive numbers

o0
Ly, %y, ... SUCH Bhat 2, 4 —2,>0>0 and Y 1/z, =00,

n=1
then by a theorem of LEVINSON®), e P(z) will be bounded
everywhere for z>0. Consequently, we can Teplace in (19) the
lower bound of integration by —k’. We can proceed similarly with

the upper bound.
The same argument holds, of course, in case of a half-plane,

as in our Theorem.
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