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From (3), (4) and (5) follows (2). From (2) and (i) follows (1)
which completes the proof.
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1. The well known theorem of MUNTZ [6] can be formulated
as follows:

o0

(X) If ByyPay.-. 18 an increasing sequence such that > 1/§,= co
n=1
and f(xr) a function iniegrable in [ab] (where a>>0) such that

b
f #Pnf(z)de=0

a

(n=1,2,...),

then f(x)=0 almost everywhere in [a,b].

If particularly B,=mn, this theorem reduces itself to the well
known theorem of LERCE [1]. On the other hand, the following
theorem holds [2]:

(IX) If f(x) is integrable in [1,b] and there exists a number M
such that
(1)

b
[ & f(z)da) <M (m=1,2,...)

1

then f(x)=0 almost everywhere in [1,b].

It is easy to see that the lower bound of the integral cannot
be diminued. Indeed, all moments of any funetion which vanishes
for «>1 are always commonly bounded.

The theorem (II) can be generalized by replacing the natural
sequence of exponents n by any sequence {n°} where 0<a<{1 [4].
The question arises if the sequence of exponents may be replaced
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by more general sequences. It is easy to show that the condition

g 1/B,=oco alone does not suffice. In fact, there exists a function
=1 . . N -
;(w), continuous and non-vanishing identically in [1,2] such that

2

[ @f(x)dz=0. Its transform
1

2
F(B)= fmﬁ;f(w)dw
1
is 2 continuous function which vanishey for f=n? (w==1,2,...).
Thus, if # is near to »? we have |F(f)]<L. Consequently we can
complete the sequence {1/n2} by so much terms, that the new
o

sequence should have the property > 1/f,=c0 and that the
inequalities |[F(B,)| <1 hold. =l
On the other hand, the theorem on bounded moments will

(=]
be still true if we add, to the condition } 1/8,=o0, a supplementary
n=1
condition B,,;—f,>e>0 (n=1,2,...). This is the chief result
of our paper. It can be explicitely written as follows:
Theorem. If Bi,fa,... 8 a sequence of positive numbers such
that

——c0 - and P —By>e>0 for m=1,2,...
N .

be
™=

n=1

and f(x) is a function, integrable in [1,b], such that

1 b

f xPnf(z)do

1

<M for w=1,2,...,

then f(x)=0 alwmost everywhere in [1,b].

The proof will be based on a discontinuity factor, analogous
to that used by PHRAGMEN [7]

p(x)= lim exp(—e").
Ny 00

This method was extended by PICONE [8] and MIKUSIKSKI [4]. In
the sequel, we shall use a very general form of discontinuity factor,
by replacing the function exp(—e™) by a suitable sequence of ge-
eralized exponential functions.

icm
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2. Before the proof we shall give some corollaries of the
Theorem.

Corollary 1. If the sequence P,,Ps,... salisfies the conditions
of the Theorem and f(z) is a function, integrable in [0,b], such that

.
_ifxﬁnf(a?)da:‘<Mqﬁﬂ for n=1,2,...,
{5

then f(x)=0 a.e.') n g<<x<<b.
Indeed, we have
biq ’_'
o' [ afngfgn)do = [ aPrf()da.
Thus, if 0<g<b, ’ ’
big 1

[ #Pngf(gr)do| <M+ [ glf(gw)ldz
1 | 0

and, by the Theorem, ¢f(¢x)=0 a. e. in [1,b/q], that is f(x)=0
a. e. in [g,b].

Corollary 2. If the sequence B,,Ps,... satisfies the conditions
of the Theorem and g(t) is a funciion, integrable in [0,T], such that

1 T
ij ffn‘g(t)dt! <M
[} i

then g(t)=0 a.e.in [0,T].
This Corollary follows from the Theorem by the substitution

fz)=g(t).
3. Now, we approach the proof. Write

r=ée,  b=éT,

()= 2P .,
where
(m) __ rs ’ ﬁ"@?’,, . (_ ﬁ‘mn)
a, = — exp '
" (4 Q ]ﬂmv - ﬁmn] ﬁmv

By the preceeding paper [5], the functions ¢,(z) have the
following properties: -

1) a. e. == almost everywhere.
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10 ¢,(z) decreases in the interval 0<w<oco from 1 to 0;

e T P (1)
= m z ’ ~ B )
J ulm)da =[5 ey
1 (m) 9
30 qg_cf < e (m,n;—_—l,g,...).
me

We are going to show that

@) , () 1 for O<Su<l,
2 im ¢, (2)=
7n—>oaqjm 0 for l<a<<oo.
Let 0<0<i<l. Since of™<exp ﬂ"””; we have
o0
11— (6)|< D) ol 6mn
(3) el A(m 1)
mn, eam—.
f ex Az(mn— 1)
< Sfeen "< S

for sufficiently large m.
This proves that
lim g, (@)=1 for O<La<l.

m—ro0
To prove

lim g, (2)=0 for l<a<oco,

m—>oo

it suffices to show that

for @, (x) are positive and decreasing. But this follows from the
convergence of the infinite product

1
e ()

Thus, the formula (2) is proved.

The formula (2) cnables us to use the sequence ¢, (%) as a dis-
continuity factor; to this purposc, we write
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b . b
1] [1— @, (05)1f(z)do = 21(—1)“+1a§:”) o [ aPmnf(a) dar.
n= 1

b
If 1<6~'<b, the left member approaches the limit f f(x)dz
o1
On the other hand, the right member tends to 0, for its absol-
ute value is, by (1), less than

©
M3 ol
n=1

and the last expression tends to 0, by (3). In this way we have

b
[H(z)dz=0

a-—-l

and, as 6 can be fixed arbitrarily in (1,b), f(#)=0 a. e. in [1,b].
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