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The liniiting distributions of sums of afbifrary independent
and equally distributed r-point random variables

by
M. FISZ (Warszawa) *.

1. Let us consider a sequence X, (n=1,2,...) of random variables,
where X, is for each value of #n a sum of » independent and equally dis-
tributed r-point (r>2) random variables Y, (k=1,2,...,n). Let 4,
and B,#0 be sequences of real constants and let the sequence F,(z)
of distribution. functions of the random variables

n

(L.1) L= Y2 -4

25
converge with n—-co to a distribution function F(z). We can ask what
limiting distribution functions are possible. The answer to this question
is given in § 2, namely by theorems 2.1-2.3 which are proved in §4.
Some notions and theorems used in the proofs of the theorems given in
this paper are quoted in § 3. In theorems 5.1 and 5.2, given in § 5, certain
specified sequences 4, and B, are considered, and sufficient conditions
for the convergence of the sequence F,(z) to a given distribution fune-
tion F'(2) are found. Finally the question of extending the results of §2
to the case when the random variables Y,; can, with positive pro-
bability, take infinifely many values is discussed in §6.

2. TErOREM 2.1. Let X, (n=1,2,...) be defined by the formula
. . ) n
(2.1) ' . Xn =k2'lynk,

where the random variables Y, (k=1,2,...,n) are, for each n, independent
and equally distributed according to the distribution law

(2»2) P( Y =0) =D

(1=1,2,...,7),

* The author expresses his thanks to H. Steinh aus and C, Ry 11-Nar-
dzewski for their valuable remarks.
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where 722,

r
0<Pm<1, ZZ:PM=11

and a, and Py are arbitrary functions of n.

If, for certain sequences of comstamis A, and B,7=0, the sequence
F,(2) of distribution functions of the variables ,, defined by (1.1), satisfies,
for all continuity poinis oj the function F(z), the relation
(2.3) Lim F,(2)=F(2),

N—>00 .
where F(z) is a non-singular distribution funciion, then F(2) is neces-
sarily o distribution function of a sum of independent variables, namely of
s (0<s<r—2) Poisson variables!) and v (v=0 or 1) normal variables
or of a sum of r—1 Poisson variables.

From theorem 2.1 it follows immediately that for »=2 the fune-
tion F(z2) is necessarily a distribution function of a normal variable or
of a Poisson variable. A special case of this consequence of theorem 2.1,
when a,,=a, and a,,=a, are constants independent of », was given
by Kozuliajev [2]

We shall give here some other interesting special cases of theo-
rem 2.1.

THEOREM 2.2. If formula (2.2) in theorem 2.1 is of the form

(2.4) P(Y=0)=pm (I=1,2,...,r),

where @, #m, when I,#1,, then the numbers s and v in the conclusion
of theorem 2.1 cannot both be different from 0.

Thus if the a,;=a; are independent of n for each n and I, then the
limiting non-singular distribution function #(2) is necessarily a dis-
tribution funection of a normal variable or of a sum of s Poisson varia-
bles where 1<{s<Cr—1.

THEOREM 2.3. If the formula (2.2) in theorem 2.1 is of the form
(2.5) P(Yup=0u)=p; (1=12,...,7),
where p; 50, then in the conclusion of theorem 2.1 we shall have $=0

and v=1.

t
1) We say that the random variable ¥ is a Poisson variable, it for each
value of j=0,1,... the equality
—257
P(F = aj+ b= e_"
9!

holds, where ¢0, A>0 and b are real constants.
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Thus if, for each value of » and I, we have Pm=1p; Where p,;7#0,
then the function F(2) is a distribution function of a normal variable.

3. We shall need here certain notions and theorems from the theory
of infinitely divisible distributions and their applications. The proofs
of those theorems are given in the excellent monography of Gnedenko
and Kolmogorov [1].

THEOREM 3.1%). The logarithm of the characteristic function (i) of
an infinitely divisible distribution is uniquely determined by the formula
(given by P. Lévy)

fo?i?

(3.1) log @ (t)== iyt —

[ oo A

T izt . i '
+ J(e‘d41—1:22)dﬂ(z)+f(em—1 i) AN(2),
e i [

\ 1 +22

where y and o are real constanis, M (z) and N (2) are ﬂbzz-deerecwmg functions,
defined in the intervals {—co,0) and (0, -Foo) respectively, satisfying the
relations

(3.2) M(—o0)=N(+c0)=0,
[} 1
(3.3) [ 22a M (2)+ [22dN (2) <oo.
—1 0

Let us consider double sequences of random variables

Enlyfnzy"'!snkn (ﬂ=1,2,‘..),

where the &, in each row are independent.
Definition. The random wvariables &, are called asymptolically
constant if, for an arbitrary >0, the following relation is satisfied :

(8.4) lim max P(]&u— Mal >e)=0,
nooo ISk<<ks

where My, 18 the median of the random variable & .

THEOREM 3.23). The random variables &, are asymplotically con-
stant if and only if the following relation holds :

2o
(8.5) lim max f—i-; AF g (2 Mpz) =0,
A~r00 1<k<_kn~w 1+z

where Fo.(2) is the distribution function of &u.

% (11, § 18.
9 [11, § 20.
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TamorEM 3.39%). If, for a ceriain sequence of real constanis A, the
sequence of distribution fumetions of the random variables

T
(3.6) :nzzfnk“f]m
=1
converges 1o a distribution function, then there ewists such a real niumber

C<oo that .
e L 22 .
E f —l—-l——-z—ﬁ d‘ka (z‘]'“ 7"'410)< ¢.

k=1 —o0

(3.7)

THEOREM 3.4%). Let &, be given by (3.6), where the variables &y arve
asymptotically consiant and independent. In order that, for a certain sequence
A, of real constants, the sequence Fy, (2) of distribution funetions of , should
converge 1o a distribution function, the following conditions are necessary
and sufficient:

1. the ewistence of non-decreasing functions M (2) and N(2) defined
in the mtervals (—o0,0) and (0,+o0) respectively, satisfying the relations
M(~-c0)=N(+oco)=0, and such that in lhe continuity points of M(e)
and N(2) the following equations hold:

kn £
lim 3 [ aFu,(e-+ma) =M (2)

(3.8) (»<0),
noo k=1_ly
kn ®
(3.9) lim 5 [ By, (2-+mu)=—N (2) (2>0);

nroo k=1

2. the ewisience of such a real number 020 that

(3.10) lim limzk:"{ J zﬂdF,,,c(z-l—m,,k)——[ | zdF,,k(z+mnk)]"}

=0 p o aok=1"|z1z¢ i2l<s

— kn -
=limlm Y { J z”ank(z—l—mnk)—[ szFnk(z—I-m,,k)]ﬁ}___oﬁ.

£+ 0 n>o0 k=1 el <e lel<e

The constants 4, can be chosen according to the formula

By kn
(3.11) A=) szl?’ﬂk(z+mnk)+21m,,k~y(t),

k=152 K
where —v and 7 are arbitrary continuity points of M (z) and N (z) res-
pectively, and y(¥) is an arbitrary number.

)L 8 28
%) (11, § 25.
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) The logarithm of the characteristic function (t) of the limiting
distribution F(2) is given by the formula (3.1), where the functions M (2)
and N (2) and the constants y and o are given by the formulae (3.8)-(3.11).

4. In this section we shall give the proofs of theorems 2.1-2.3.

Proof of theorem 2.1. Let the sequence ¥, (z) satisfy the relation
(2.3). Let us set

y .
(4.1) E,.z,=§"—" (k=1,2,...,n),
n
(4.2) by ;_"‘ (1=1,2,...,7),
n

and let m, denote the median of the random variable & for k=1,2,...,2.
Formulae (1.1) and (2.2) ean be written, respectively, in the forms

n
(4.8) t,.=k M —A,,
=]
(4.4) Pléu=bu)=pm (k=1,2,...,n; I=1,2,...,7).

We shall show that the variables £, are asymptotically constant.
Indeed, from the assumed convergence of F,(z) and from theorem 3.3
follows the existence of such a real number ¢<<co that

o
nlmdpw(z+m,)<c.

This formula implies

N—>00

. roe
hm_imdli’nk(z+w)=0;

hence, according to theorem 3.2, the variables £,, are asymptotically
constant.

Let us now observe that the sequences p,; (I=1,...,7) are limited.
It is thus possible to find — following the method of Cantor — such
& subsequence 7, of indices that all the sequences p,; (I=1,...,r) will
be convergent. Clearly the subsequence F, (2) converges with #,->oco
to F(z) given by (2.3). In future we shall consider only this subsequence
n, of indices, but for the sake of simplicity we shall suppose — without
limiting the generality of our considerations — that the following relations
hold:

(4.5) limp,=p,; (1=1,2,...,7).
a0

8%
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Each of the sequences np,; contains a subsequence divergent to

400 or o subsequence convergent to a finite number 4. Following again -

the method of Cantor we can choose such a subsequence my; of indices
that all the sequences nyp,, are either convergent to finite numbers
4 or divergent to J-co. We shall consider only this subsequence g, but
for the sake of simplicity we shall assume that for I=1,...,7 one of the
following equalities holds:

(4.6) ' limnp,,; =4 (A< oo,
N—»00

(4.7) limnpy;==oc.
n—=>00

We shall now prove two lemmata.

LeMMA 1. If the relation (4.6) holds and 14>0,
by — My, 18 limited.

Proof. Let the assumption of this lemma hold for a certain value
of 1. Let us suppose that some subsequence.b,;— My, tends to co. Then
if n; is sufficiently large, the relation

then the sequence

(Emk' 'm’m>z denik(z+mm)>pmz
is satisfied for an arbitrary large number z. From this formula and from
(3.9) it follows that
oo

(4.8) N(2)=—lim n; } Al (2 +my) < -hm'n P = —H.

Mi->00
Ag 4 >0 and 2 can be a bitrarily large, this formula is contrary to the
relation N (+4oco)=0.

We can show in a similar way that no subsequence of the sequence
bp—m, can be divergent to —oco. Lemma 1 ig thus proved.

Let us now consider the values of I for which the relation (4.6) holds,
where 4,>0. Since, for the I considered, the sequences b,;—m, are lim-
ited, it is possible to find such a subsequence n, that for n,—~co we have
bu,z‘mnv*br For the sake of simplicity we assume that for the I con-
sidered the following relation holds:

(4.9) lim (b — my,)=b;.
. Nn~>00
LemMA 2. If the velation (4.7) holds, then the following equality is
satisfied :
(4.10) 1 (bpy — M) = 0.

n—rco
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Proof. Let us suppose that for a certain value of I fhe rela-
tion (4.7) holds but (4.10) does not hold, ¢.e. that in (4.9) we have
b;~0. For instance let b;<<0. Let 2 be an arbitrary value satisfying
the double inequality b;<<2<<0. In view of the relation (4.9) we see that

(4.11) hmnj ank(z—i—m,,,)>hmnp,,,_—oc

From thig formula and from (3. 8) it follows that M(2)=ococ. But this
result is impossible. Lemma 2 iz thus proved.

Now the proof of theorem 2.1 will easily be deduced from the lemmata
1-2 and theorem 3.4. Indeed, the formulae (3.8) and (3.9) will take the
form .

(4.12) M(2)=limn f AF s (2-+my) (5 0),
(4.13) —N(z)=limn | @B (e+ m,) (e>0).

nsoo 2

The values of the functions M (z) and N (z) are determined by the posi-
tive and finite limits 4, of the sequences np,;. Indeed, the equalify 4=oo
implies the relation (4.10); if, on the other hand, 4,=0, then % adds no-
thing to the functions M(z) and N (2).

Let the equality (4.6), where 4,>>0, be satisfied for s values of I
It will be noted that s can be equal at most to r—1. Indeed, at least
one of the sequences p, must converge to p,7%0 and thus, for this I,
the relation (4.6) will not be satisfied. Let the values by (j=1,...,8),
defined by (4.9), be ordered as follows: )

b,l<bli<...<b,,<0<bw<._.<b,‘.
Then formulae (4.12) and (4.13) imply that

M(z)=0 (2<by )y
MEemi oty (<2 <0),
N @) (0<2<by ),
Ne—o (b

Substituting these formulae into (3.1) we get

2, byhy ) o=z2

(414)  log ¢(t)=( 5o %+ 5wl
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Formula (4.14) is the logarithm of a characteristic function of a sum of
independent s Poisson variables and ¢ normal variables, where 0<{s<{r—2
and v=1 if ¢5£0 and v=0 if ¢=0. If, on the other hand, s=r—1, the
equality o= 0 holds. Indeed, let s=7—1, then r—1 among the » sequences
Pu Will converge to 0, and thus one sequence, Say Pp,, satisfies the rela-
tion '

(4.15) limpy,, =1.
00
We gee that
(4.16)  Lm[n(l—py,)]=bm[npu, -+ .. +0pe,_]=A+ Ay
n—+o0 00

Here formula (3.10) will take the form

(4.17) K0 [ (B, — ) Pag, (1 =Py )] =0%

Lemma 2 and formulae (4.158) and (4.16) imply that o= 0. Theorem 2.1
is thus proved. :

Proof of theorem 2.2. Let formula (2.4) hold and let the sequence
F,(2) of distribution functions of {, defined by (1.1) converge to a distri-
bution function F(z). Then the relation

(4.18) Tim (b — ) =0

T3> 00
holds either for all }=1,...,r or only for one I. Indeed, for at least one
value of I the relation (4.18) must hold, since at least one of the se-
quences p, tends to p;5£0. Let us now suppose that for two values
of 1, say I, and 1,, the equality )

o
419 fim (22 _, )=- (__nm _
(4.19) im (% )= tim (% ) =0
is satisfied and hence
(4.20) lim 25 % _g.
fe>00 n

As @ #a, , the last equality holds only when |B,|-oco. Then it follows

from (4.19) that w,—0, and thus equality (4.18) holds for I=1,2,...,r

Consequently, if equality (4.18) holds for all I, then the functions
M(z) and N(z) will be given by the formulae
M(2)=0, N(z)=0,

respectively, and the limiting non-singular digtribution will be nor-
mal. If equality (4.18) holds only for one value of I, say l., then the
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formula (3.10) will take the form (4.17) and in the same way as above
it can be shown that o=0. The function F(z) is then a distribution
function of a sum of s independent Poisson variables, where 1<sgr—1.

Proof of theorem 2.3. This proof is very easy. Let formula (2.5)
hold and let the sequence F,(z) converge to a non-singular distribu-
tion funetion F(z). From lemma 2 we see that for all values of I the re-
lation (4.18) holds. Thus we have M (z)=0 and N(2)=0. As F(2) is
a non-gingular distribution function, it follows o30. The limiting
distribution is thus normal.

5. THmOREM 5.1. Let X, be a sequence of sums of random varia-
bles Yy

n
Xn= 2 Yul:!
k=1

where the Y, are, for each n, independent and equally distribuled acoor-

" ding to the distribution law

P(Yukzatu)='pnls
45.1)
P (Y =0nz) =Pn2=1—Pu1>
and where Gy, ,0,, ond Dy, are arbitrary functions of n.
Let F,(2) be the sequence of distribution functions of the standar-
dized variables

(5 2) b= w
' T Y D(E)
Then :
1° if the relation
(5.3) Hm 5 (1 — Pag) = 00,
n—>00

holds, the sequence Fy.(z) will satisfy the relation

2
1 e
- - d;
(5.4) lim Fy(e)= = l it
2% if the relations
(5.5) mpu; = ps,
00
(5.6) Limnp; (1— Par) = 45
n->00

hold, where A>0, and if there emisis such an integer n, that for.'n>’no all
the differences @pi— Gns have the same sign, Fn(zz co'nvc:rges with =00
to o distribution junction F(z) of a Poisson variable in all continuity

points of F(z).
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THEOREM 5.2. Let X, be a sequence defined by
n
-Xn:‘z‘ Ynlu
k=1

where Y (k=1,...,n) are independent random ovariables, equally distri-
buted according to the law

(6.1 . P( Y= ty)=pn
and where :

I=1,2,...,r),

r
ngn‘lgly ZZZM:L
=1

Let Fy.(2) be the sequence of distribution funetions of the variables &,
defined by (5.2). Then:

1° if the relation
(5.8) nﬁlilo”[PmPnz + PuaPrst+ .. Pagr—) Pny]= o0

holds, the sequence F,(2) will satisfy the relation

. 1 z .

(5.9) lim F, (¢) = —=—— f " g,

i ]/2.‘2’[_00
2° if the relations ‘

- (5.10) y}ianm:Pt (1=1,2,...,7),

(5.11) limnp, =24

N—->o0
(5'12) ) r}ilr;‘on[pnlpn2+pn1pna+ e Pag—yy pm] =1

hold, where 2>>0, then the sequence F,(z) converges with n—oo to a distri-

bution function F(2) of a sum of s Poisson variables in all continuity

points of F(2), where 1<<s<Lr—1. ‘
We shall give only the proof of the last theorem, as the proof of

theorem 5.1 follows the same lines. '

Proof of theorem 5.2. Let us write
Y B(Y)

e ==
VnD ()

Here we have
(5.18) B (Y k) =01 Pn1+ 0y Prg+.... + 0 Dupy

(6.14) D(Ypk) = Pr1Pnz (@ — a5)? +Dn1Pns (8 — a5)2 4. ..

+ PniptyPrir (Bpy — )2,
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The random variable #,, takes, with the probability p,;, the value e,
given by the formula

(B15)  ou= B ni— B1Pp1— o — O _1Png—1) — Gy Prgsy - rpm“
VD (¥
where ¢n==1—pu-.
1° Let the relation (5.8) hold. Then, for all values of I,
(5.16) lime,=0.

=00
From the last relation it follows that the sequence m, of medians of the
variables 7,; tends to 0, and that for an arbitrary >0 the following
relation holds:
im [ dF(2)=0.
1L—>OOIEI>E

Thus the variables #,, are asymptotically constant and theorem 3.4
can be applied. Formulae (3.8) and (3.9) give here

(5.17) M(2)=0, N(z=0,
and formula (3.10) is of the form

! r 7 2
(5.18) [ 5 dupa S ) |-1.

Since, for each n, we have H(,)=0, therefore from theorem 3.4 a‘nd
from the last two relations we obtain the following equality for the char-
acteristic function g(f) of the limiting distribution funetion:
ti
loggp()=—-

The relation (5.9) follows from the last relation.

9° Lt the relations (8.10) - (5.12) hold. Then one and only one of
the sequences Pz, 8aY Pni, does not converge to 0. Thus p,,—1. Then
in formula (5.12), for all 1s£1, we shall have

(3.19) m npapu=4,
and consequently
(5.20) limapu=h,
n— 0
(8.21) B0 2Py Pty = 0 #1;L#1).
Nen 0O
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Then- formulae. (5.14); (5.15) and (5.21) imply that

(5.22) im D(X,) =lmnD (yu)= > 4(a—a,)?,
mpseod i T Mo o ot I=2 Co :

where 2,70 at least for one value of 1>>92.

We see further that g,,—0 and, for 1=2,...,7% ¢u=1. Then it fol-
lows from (5.15) and. (5.22) that ' :

(5.23) lima,, =0,
N—>00 |
— O
limey = - ! : — =0,

24 -
R " ]/ 2 hla—a)?

for I=2,...,r. Thus the sequence m, of medians of Tk  CONVErges with
n—>o0o to 0. Therefore for each & >0 '

L P([oag, — 1) > &)= 1im P([ppog) > &) = K P, 7 G g) = 0.
n-s00 00 n—r00

The variables #,; are asymptotically constant and theorem 3.4 can be
applied. Formula (3.10) is here.of the form Lm[neg,pny (1 —Ppy)] =0t
e 00

From the relation n(1—p,;)->1 — which is satisfied in view of (5.19)
and (5.21) — and from (5.23) it follows that o=0.

Since ¥(,)=0 for each n, we see from (3.8) and (3.9) that the logan
rithm of the characteristic function of the limiting distribution function
of the sequence F,(2) is given by the formula

(525) . logg(t)= .-—128’ 11101]”__[_128: ll,(eic’il'— 1),
=] <1

where 1<{s<{r—1. Assertion 2° is thus proved.

6. We discuss briefly the problem of extending of theorems 2.1-2.3
to the case when the equally distributed discrete random variables
Yo can, with positive probability, take infinitely many values.

In the case considered lemmats 1-2 (§ 4) hold. However, such gen-
eral and simple theorems as those formulated in § 2, where the conver-
gence of the sequence F,(z) was the only assumption, cannot be ohtained
here. Difficulties arise when the set of limits b; of the sequence Dyg— my,
has finite densiby points. We shall not go farther into this matter. Wo
shall only give the following example, showing that if no additional
assumptions?) concerning the set of the limits b, are made, then an ar-

%) The case when the k. are integervalued has been considered by
A. Rényi (3] o
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. bitrary infinitely divisible distribution function can be the limit of a se-

quence F,(z) of distribution functions of random variables {, defined

by (1.1). )
Let us consider an infinitely divisible distribution function for which
M@R)=0 (e<a), M@=H0D) (b<2<0),
where a<<b and
' N(z)==0.

Let us assume that the funetion M (2) is confinuous in the interval
(@,b). We divide this interval into = subintervals by the points

G=2,<23<... <% <y =b.
Let Y,.(k=1,2,...,n) be independent and equally dis't;ribut}ad random
variables and let the logarithm of the characteristic function of Y.
be equal to
14,
= o ) [ M (2.0) — M (2)].
= D (=) [ M (0) — M (3

=1

n
Letb g, (£) be the characteristic function of the random variable £, ::kzl Yor-
Then
n
10g Pn (t)= E (Gw‘“ 1) [M(z:i+1) “‘-M(z:l)] 1

j=1

and the following relation holds:
b
lim log g, ()= (6™ —1)d M (2).
Ny 00 a

However, M(2) is an arbitrary non-decreasing fu.uctifn? ooni_;im%ous_in
the interval (a,b), and thus an arbitrary infinitely divisible distribution
can be obtained in the limit.
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