On Lezafiski’s determinants of linear equations in Banach spaces
by
R. SIKORSKI (Warszawa)

The subject of this paper is Lezanski’s [2,3] theory of determi-
nants of linear operators in Banach spaces. The main purpose of this
paper is to prove that the determinant is a multiplicative functional,
i. e. that, roughly speaking, the determinant of the superposition of
two operators is the product of the determinants of those operators.
This result was obtained by Lezathski [3] (p- 23) under the very re-
strictive hypothesis that the operators are commutative. Therefore Le-
zariski’s theorem does not contain, as a particular case, the assertion that
the determinant of the product of two non-commutative finite square
matrices is equal to the product of the determinants of those matrices.
Bimilarly this theorem of Lezanski does not contain, as a particular case,
the earlier result of Lezaziski [2] (p. 274) stating that the determinant
is a multiplicative funetional in the ease of spaces m and L

In this paper I shall prove the theorem on the multiplication of
determinants under a weaker condition, which is always satisfied in
case of integral operators and of matrix operators.

In order to make this paper clear for those readers who do not know
Lezanski’s papers [2,3], I give a brief summary of Lezanski’s theory.
This summary differs in some points from the original theory of Lezan-
ski [2,8]. The disparity will be discussed at the end of this paper (§7).

The main result of §§ 1-2 is a theorem on the logarithm in Banach
algebras which plays an essential part in the proof of the theorem on
multiplication of determinants which is givenin §5. §§ 3-4, containing
a summary of Lezariski’s theory, can be read independently of §§ 1-2.
The verification of the hypothesis of the theorsm on multiplication of
determinants being fulfilled in practice is given in §6.

All Banach spaces under consideration can be Teal or complex,
Consequently all scalars are real or complex numbers respectively. How-
ever, it is sometimes convenient to consider certain power series of A
a8 holomorphic functions of the "complex variable 1, also in the cagse
where the spaces under consideration are real.
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§ 1. A combinatorical lemma. By a word we shall understand any
finife sequence each. term of which is one of the letters 4,B,0. We shall
write words W in the form of symbolic products:

W=A,4,...4,

where A;,=A4 or B or C for i=1,2,...,n (n>0).

The number n (the length of W) will be denoted by I(W).

It W=A,4,...4, and V=B,B,...B, are words, then WV iz the
word A4,4,...4,B,B,...B,,. ¥ W is a word, then, by induction,

1-W=W and (m+1)-W=(m -W)W for m=1,2,...

The greatest positive integer m such that W=m - V where ¥ is a word
will be denoted by d(W). Of course, d(W) is a divisor of I(W).

If W=A4,4,...4, iz a word, then W (or W) denotes the word
A4,...4,4,. By induction, t*"'W=1(7*W) for k=1,2,...

Notice that if *W=W, then k=mg where g=I(W)/d(W) and m
is a positive integer. Conversely, if k=mq (in particular if k=I(W)),
then *W=W.

If W is any word, then W* denotes the word obtained from W by
replacing all occurences of the letter ¢ by the pair AB. For instance,
(ABCBCAY*=ABABBABA. ‘

Let W and V be two words. If there is a positive integer &k such that
W*=7*V*, we write W~V. Obviously the relation W~V is an equi-
valence relation. Consequently the set of all words can be decomposed
into disjoint sets o such that two words W,V belong to the same set w
if and only if W~7V. The class of all such sets o will be denoted by ‘[.2.

Let we Q. The greatest integer I such that there is a word Weo with
1=1(W) will be denoted by I{w). If I(W)=1I(w) (W ew),then the letter C
does not appear in W. If Vew is another word such that I(V)=1(w),
then there is an integer % such that W=1*V. Consequently d(W)=d(V).
The integer d(W), where Wew and I(W)=1I(w), will be denoted by d(f”)'

Let w eQ. The greatest integer s such that there is a word Wew which
contains s times the letter ¢ will be denoted by s(w). Obviously

0<s(m)<%l(w).

The equation s(w)= 0 holds if and only if » contains exactly one element,

viz. either AA...A or BB...B (the “power” of A or B); in this case
Yw) times I(o) times

d(w)=1(w).
If wef, then w, will denote the set of all Wew such that ‘the letter C
appears in W exactly p times. Obviously w, is non-empty if and only
if 0<p<s(w)-
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Tt we? and Wew, then **Weo for k=1,2,... Similarly if Wew,,
then 7Wew, for k=1,2,... ' . ‘
LeMMA, Let we and ‘0<p<s(m‘)."fl’he set com‘ains exactly -
uw)'—'pf(stw))
d(w) ?

words. .
If 8(w)=0, then p=0, d{w)=l(w) and

i@)—p (8‘”’))—_-1:5-‘.
d(w) p ?

Suppose s(w)s£0. Let Wew, I(W)=1(w). The letters A and B appear
in W=A1A2,..A;(m), but the letter € does not appear in W. We can
suppose that 4,—A (if not, we can take a permutation W instead of
W). We recall that d(W)=d(w).

Let 8 be the set of all integers ¢ such that A;,—=4 and 4,,,=2B, and
let 3 be the class of all p-element subsets of S.If Ze 3, then W, denotes
the word obtained from W by replacing each pair 4;4,.,(=4B), where
ieZ, by the letter ¢. Of course, I{W;)=I(w)—p and Wzen,. More gener-
ally, 7*Wzew, for k=1,2,... Conversely, if Vew,, then there are a set
Ze3 and a positive integer k<{l(w)—p suchthat V=*W,. Consequently
the number @, is the number of all words W, where k=1,2,...,
I{w)—p, and Ze 3.

* The word t*W, is determined by the pair (k,Z). The number of all
the pairs (k,Z), where k=1,2,...,l(w)—p and Ze3, is equal to

o)

Hence it suffices to prove that, for a given pair (k,Z), there exist exactly
d(w) pairs (K',Z’) such that *W,=7"W,. Consequently, it suffices to
prove that, for given Ze¢3, there are exactly d(w) pairs (¥',Z’) (where
1<k <lo)—p and Z'e3) such that W,=7*"Wy.

Suppose Z=(j1)fus-- '7jp)£3' Let Z,,=(j1+ gm,fatqm,...,jp+ qm)
where o) UW)

d(w)  a(w)’

and the integers in the brackets are reduced mod I(w) to the interval
{1,l{w)>. Obviously Z,e3 for m=1,2,...,d(w). Let

kn=gm — (the number of all the integers jeZ, such that j<gm).

It is easy to see that W,=7"W;, and 1<k,<l(w)—p for
m=1,2,...,d{w). o .
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On the other hand, if W,=7"W, (1<K <l(w)—p, Z'¢3) then
W= (W) = (¥ W,)* =2*W, where

k=K' +(the number of all j<k such that the j** term of W, is 0).

Consequently k= gm where ¢g=1(W)/d(W) and m is one of the inte-
gers 1,2,...,d(w). Moreover &'=%k,,. Since ¥ W, =W,=7"Wy_, we find
that W,=W;, . Hence Z'=2Z,. .

We have proved that the equation Wy,=v*"W,, (1<k'<l{w)—p,
Z'e3) holds if and only if there is an integer m (1<Km<d(w)) such that
%'y Z")=(kp,,Z,,). Since k, <k, ,, the number of all such pairs (¥',Z’) is
equal to d(w), q. e. d. i

§2. The logarithm in Banach algebras. Let 2 be a Banach algebra
(non-commutative, in general). Let E denote the unit -of Y whenever
it exists, If 2/ has no unit, let B be the abstract unit which can be added
to % in the well known way. '

We define the logarithm log(EB4-4) for AeX by the power series

M tog (B-+4)= 3 U 4o
. n=1 n ’

The tapping log(E--4) of % into itself is defined by (1) only for
guch Ae? that the series on the right side converges. In particular,
log(B+A) is defined whenever |[4]/<1. '

Let @ be a linear?) functional on ¥, and let A,Be2. We shall write

A~B mod ¢
DA 4,...4,)=D(4,...4,4,) ‘
for each finite sequence A,— either 4 or B, i.e. if G(4'B)=P(B"'4’)
for arbitrary elements A’',B’ belonging to the least subalgebra generated
by A and B. In particular, if AB=BA, then A~B modd.

TEEOREM 1. If A,Be¥, A~B mod®, and if

(2) i4l-+IBl+I14B|<1
(e. g. if |A]I<1/3 and |B[<1/3), then
3) ®(log (B+ A +B+AB))=&(log(B+4))+&(log (E+B)).

Obviously the left side of (3) can be written as qs(mg ((E+A)(E’+B))) .

1) The word “linear” always means “additive and continuous”.
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Let Ce? be such that ||A|]+|[B|1—|—]|0||<1. ‘We have

(4) 2 (L4 ]+IBI+ 01" <oe,
and
) log(@+4+B+0)= > " (4 +B10p,

n=1

By (4) we can express the powers (44B-C)" in the series (5) as

the sums of some “words” A;A4,...4, where ;=4 or B or C; and we
can add these words (multiplied by real coefficients) in an arbitrary way.
Notice that each word W appears in the development of (5) exactly
once. More precisely, if Wew, (wef), then W appears once in the de-
velopment of (A+B++0)P gince I(W)=Il(w)—p. Therefore the real
coefficient of the word Wew, is equal to

( -1 )l(m)—p—l

lw)—p
Consequently

8(@) Uw)—p—1

(6) log(B+A+B+0)= > M Mi (=1 )
06 p=0 Weawp l(“’)—P

and

(@) (— 1 Yary—p—1
(1) Dllog(B-+A+B+0) = > 2

el p=0 Wewp

Now let C=AB. Since A~Bmod®, we have @(W):(D(V) for
W,Vew. Let ®(w) be the common value of all $(W), Wew. It follows
from the Lemma proved in §1 that

®(log(E+4+B+A4B))= D (— 1),(.,,)_121() 245(
. —-D

wef2 Weap
8(w) D
(8) e (— 1) Z(w) (s(w))
mﬂ p:gl(w ) p ¢(w)
(”1)1(-»)—1 $(w) s (w)
=¥ W Y
2 a7 (")
‘We have
N 5(w)
2)(-1)10( I‘)"):o it s(w)>0.
p=0
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Therefore we can omit in the last sum > all the o with 8(w)>0. If s(w)=

weld
then either m=(4") or w=(B"), n=1,2,... We then have l(w)=d(w)=n

and
o 0
—1y =1
ey
Consequently
n—l 72—l
q5(10g(E+A+B+AB))=Z( ) H(A™) +2‘ 1) & (B
(9) n=1 n=1
=& (log (E+4))+(log(E+B)), ' q. e &
If log(E-+A4) exists, we have
_ =T e
(10) Qi(log(E—i—A))#ﬂg; —— B (4").

It is possible that the series (1) diverges, but the geries (10) conver-
ges. Therefore we shall assume that the function @(log (E+A4)) is defined
for all Ae2 such that (10) converges.

With this convention, Theorem I can be generalized as follows:

If A,Be¥, A~Bmod®, and if

s(w)

Zd 12 (w)| <o,

wef

then the equation (3) holds.
The proof is the same. Instead of (5) we should now develop the
series (10) where A is replaced by 4-+B+C.

§ 3. Lezanski’s determinant of an element of a Banach algebra.
To make clear the sense of the fundamental notions of Lezafski’s theory
we Teoall the fundamental notions of the Fredholm theory of integral
equations.

Let T'(s,t) be, for instance, a bounded measurable function in the
unit square, and let X be the space of all bounded measurable functions
on the unit interval. Consider the integral equation?)

(1) @ (s) 42 [ T(s,t)w(t)dt =2, (s),

where 2,¢X is given, and xeX is unknown. The following notions play
an essential part in the Fredholm theory:

1
%) In this section we write | instead of 1B
0
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(12) THs,t)=T(s,8), T™(s,t)=[T(s,7)T" *(r,0)ilr
(13)%) - o= [ T(s,s)ds,

(14) o= [[ T(s,8) T (t,8)dtds

for n=2,3,...

for »=2,3,...,
1
(15) =1, a,n=?—zfA,,_1(s,s)ds for n=1,2,...,

(168)  Ay(s,0)=T(s,1),  A(s,8)=a,T(s,t)—[T(s,7) Api(r,1)dr

- for n=1,2,...,
17 D=3 a, 1%
n=0
(18) A(s,t;0)= D 1" A4,(s,1)
n=0

D(2) is Fredholm’s determinant of the equation (11). If D(2)z£0,
then

A
(19) m(s)=x¢,(s)—D—(l—)fA (3,13 2) @ (1) @
is the solution of (11). On the other hand, if 4 is sufficiently small, then
(20) o(8)=ao(8)+ X (—A" [ T™(s, )y (t) dt
n=1
is the solution of (11). Further we have Plemelj’s formulae

n—1 ¢ 0 ..0 0

(21) anz_]; ...............
n!
Opml Opeg » ¢ o o o & g 1
nd On Oy v oee e 0y 0 4
Ts,t) m 0 0 0..0 0
T2 (s,8) o, m—1 0 0..0 0
22) A,.(s,t):i' T3(s,8) o, o0;2—20...0 0 ,
n -------------------
T"$y8) G105 5 -« .. oy 1
T* s, t) 0, Gy + . .. 0, oy

3) In order that o; be defined we must additionally suppose that 7T(s,

integrable. 8) is
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and Fredholm’s formulae

(23) f f (Zi; )ds1 .ds,,
and
B e
where
o) ST LT
1revesTn T(Sps?s) v T(85,70)

From the point of view of Functional Analysis we can interpret
each function K (s,%) as a linear operator (in the space X) denoted by the
same letter K. Ingtead of

y(8)=[K(s,t)z(t)dt
we shall write y=Kx. Hence the equation (11) should be written
(25) (I+AT)2=a,, ’
where I is the identical mapping of X onto X. Instead of
K (s,t)=[K,(s,7) E,(r,t)dr

" we shall write K=K, K, i.e. K is the superposition of K, and K,. Con-

sequently 7™ (see (12)) is the superposition of » replicas of the operation T
determined by the funection T(s,t). However, the function T'(s,t) plays
in (14) a different part from that played by it in (12). It is not an opera-
tor here. Lezanski [2] has remarked that the function T'(s,t) should
be interpreted here as a linear functional F determined on a class R of
operators, such that for operators K of the integral type

(26) F(E)=[[T(s,)K(t,s)dtds.
We can now write (14) in the form
27) o, =F(T"") for n=2,3,...

Notice that ¢, and a, are uniquely determined by the function T'(s,?),
but not by the operator T. In fact, if we modify the function T'(s,f) on
the diagonal of the unit square, then the operator I' remains unchanged,
but the number

oy=a,>=[T'(s,8)ds

can be arbitrarily changed. Consequently, the determinant D(A) is
uniquely determined by the function T(s,t), but not by the operator 7.
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After this introduction we can pass to the definition of the deter-
minant of a linear equation

(25) ([ AT) o=,

in an arbitrary Banach space X, where x,7,eX and T iy a linear ope-
rator of X into X. The letter I always denotes the identical mapping.

It is obvious from the above considerations that besides the oper-
ator T' we must also introduce a linear functional F defined on a linear
class R of operators. Obviously we wish to define o, by equation (27)
for #=2,3,..., and, by analogy,

(28) oy=F(T%, -where T0=I.

Therefore we should assume that Ie8f and that the superposition
E,K,;eR whenever K, K,eR, i. e. that & is a Banach algebra of oper-
ators with the unit I. The problem of solving (25) for each w, is, roughly
speaking, the problem of finding the inverse element (I+AT)™ in the
Banach algebra K. In this formulation of our problem the assumption
that elements of §& are operators is not essential. Consequently we can
generalize a part of Fredholm’s theory of integral equations as follows
(see Lezanski [3], p. 14-18):

Let & be a Banach algebra with the unit I, and let F be a linear
functional on ®. Let Tef. Set by induction

1
(29) y=1, a,,=%F(B,,_1) for »=1,2,...,
(30) By=I, B,=a,I—-TB, ; for »n=1,2,...,
(31) 4,=B,T for 2=0,1,2,...
We have
(32) A,=T, A4,=a,T—-TA4,, for n=1,2,...,

which shows that formulae (29) and (32) are an abstract formulation
of (15) and (16) respectively.

B, is a polynomial of the variable T of a degree <<n. 4, is a polyno-
mial of the variable T of a degree <{n-}-1. Therefore

(33) A4,T=TA, and B, I=TB, for »=0,1,2,...
The expression B, has no analogue in the ¥Fredholm theory since
(in the case of R=a class of operators) B, is not an operator of the in-

tegral type.
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We define D(A) by the formula (17). Analogously to. (18) wWe set

(34) B(i)= Y I"B,,

n=0

-

(3B) T A=Y 14,.

N0
Let - p==max (||F,[|T]). We find by an easy induection that
la,|<¢" and B,<(n+1)¢" for n=0,1,2,...
‘Hence, if |j<1/g, then

o0

(36) 2 |6, <00

n=0

and 34" B,l<co,
=0
and congequently
2_]0 A4 p]l <00,

If  is such that (36) holds, and if D(A)70, then by (30)
B(2)

37) I+ ZT)WD(A) =1,
i. e. (see (33))
B(d) _ —1
(38) ) DA =(I+ALy"
Congequently also
1 A(4)
(39) (I+AT) =I——Z——~Du) .

This formula is an abstract formulation of (19). Notice that the equa-
tion a,=F(B,)/n (for n>0) does Dot enter into the proof of (38) and

(39).
On the other hand, if |A|<|T|", then

(40) Sieiir<es,
and consequently (see (20))
(41) (I—}—).T)"]:g(——}.)"lm.
Tf J is such that (40) and (36) hold, then by (38) and (41)

BA) _ s
oy~ 2

(42)

Studia Mathematica XIV
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Consequently
(43) F(B(2)=D(%) 20( —A) 0y
: fm

where, analogously to (27) and (28),
(44) o,=F (T for n=1,2,...
On the other hand, it follows from (34), (29) and (17) that

oo 0 d
(45) F(B(A)= ZOA“F(B”)= Z_]ﬂ P (n-41) = 7 D(4).
It follows from (43) and (45) that
Z:)(n+1) G Z"=Z_,’ua% Vi 20( — AV 01,

which makes it possible to calculate a, as a function of ¢,. We obtain
again Plemelj’s [4] formulae (21), and the formulae analogous to (22):

In 0 0 ..0| T = 6 0 ...0
T oyn—1 0 ... 0 1 ™ ogn—1 0 ...0
(46) Bﬂ:% T 0, 0, 7—2 ... 0], A”=7n7 ™ 6y 0y n—2...01,

- . +]
' On1 P !T" G, Op1 0

It follows from (43) and (45) that
d * "
?Z—J:IOgDM) =ﬂ§u(——}.) Opi1r

Hence (see Plemelj [4], p. 121, and Lezanski [3], p. 16)

00 (__1)1:——1

47 D(A)= S
(47) (h—exp( 3-—

n=1

op ].”)

=6xp (2#‘:1”F(T"”1))=exp (F (jt‘._lil—-_llnlma))

for A sufficiently small.

Obviously the condition (36) holds for each A only for a special kind
. of elements 7'; the functional F cannot then be arbitrary, but must be
closely related to the element TeR. In the next section (see also the
beginning of § 5) we shall formulate certain conditions which imply that
(36) holds for each 1, and that (I-+AT)™" exists if and only if D(4)=0.
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§ 4. Lezanski’s theory of linear equations in Banach spaces. Let
£ and X be two Banach spaces. Elements of & will be denoted by
&, 1, and elements of X — by «, y,# with indices.

‘We suppose that & and X are paired, i.e. with each pair (§,2)eSE XX
there is associated a scalar denoted by & in such a way that &z is a bi-
linear funetional on ZxX. We suppose also that
(48) lelj=sup|éxl,  [&]=sup|éa|

. len<t <1
for arbitrary zeX and Ze¢Z. Consequently each zeX can be considered
as o linear funetional on E, and conversely each £e can be considered
as a linear functional on X. Thus we have isometrically?)

(49) XCE*  and ECX*.

The value of a bilinear funetional K (defined on & x X) at the point
(¢,2)e Ex X will be denoted by £Ka.

Each bilinear functional K on Z£XX can be interpreted as a linear
transformation of X into 5%, denoted by the same letter K and trans-
forming an element ze X into an element y=KweE* such that fy=EKo
for each £¢F (where £y is the value of the functional yeZ* at the point
Eel).

Analogously each bilinear funetional K on £x X can be interpreted
as a linear transformation of = into X* denoted by the same letter K
and transforming an element £eZ into an element n=§EKe X" such that
no=EKx for each xeX (where nz is the value of the functional neX* at
the point z e X)%).

Conversely, each linear transformation K of X into E* (or: of E intd
X*) can be interpreted as a bilinear functional {Ex on ExX defineo
by the formula

ERp=£(Ko)  (or: =(£K)a).

Notice that the norm of K is the same in all the three possible in-
terpretations of K (see (48)). Therefore we shall identify the three no-
tions: bilinear functionals on £ x X, linear transformations of £ into X*,
and linear transformations of X into =™

Suppose that K, and K, are two bilinear functionals on Zx X such
that K,zeX and £K,eS for zeX, £¢E. Then K,X, is the bilinear fun-
ctional defined by the equation

ER K= (EE)) Kyo=EK, (Kyo) = (£K;) (Kp®),

4 If Z is a Banach space, then Z* ig the space of all linear functionals on Z.

5) The above notations will be gystematically used in the sequel: if X ig & linear

transformation of £ into X* (of X into &%), then &K eX* (KxeZ*) denotes the
image of the element e Z (zeX).

3
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4. ¢. the Dbilinear functional determined by the linear transformation
y=K,(E,2) of X into & (or: by the linear transformation 5= (¢K,)K,
of Zinto X*). Thus, if we interpret K, and K, as linear operations, then
K,K, is the superposition of K, and K,. .

The linear transformations determined by the bilinear functional
£x are the identical mappings I of X onto X and of & onto F respec-
tively. Therefore we may write £Ix instead of £w.

Let & be a linear subset of the space of all hilinear functionals on
&x X such that (see Lezanski [2], p. 245):

(K) & is closed and IeR; if Kef, then KaeX and £KeZ for weX,
$ef; if K, K,eR, then K, K,ef; if 2eX and £e¢5 are fixed, then the
bilinear functional K defined by the equation

(50) nKy==¢&y-no
belongs to K.
If K is defined by (50), then

for 7ef, yeX,

Ky=¢y-x and nK=nx-§,

i.e. K is a one-dimensional operation (transforming X into X or £ into 5
respectively). The last of the conditions (K) means that each one-dimen-
sional linear operation belongs to K. .

Let F be a linear functional on . Following Lezanski [2], p. 247,
instead of F(K) (where K eR) we shall also write F,m{nKy] where » and y
are the “bound variables” and can be replaced by other letters. For
instance, if K is defined by (50), we write

(1) Pty )
instead of F(K).

The expression (51), depending on & and =, is a bilinear functional
on EXxX. Following Leianski [3], p. 19, we shall denote this bilinear
functional by 7. By definition

(52) ET Q=T &y - o).
Notice that (see Lezanski [3], p. 20)
(83) 1Tl <17

In this section we shall consider only one functional F on ® such
that

(54) TyeR.

Therefore in this section we shall write, for brevity, T instead of I'p.
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It follows immediately from (52) that for K,,K,eR°)
(55) Fw{'EKJf’/ : 77K2a;}= (EE,)T{K,z)=§ K, TK .

Consequently, if 0<r<n, if p;,ps,...,p, 18 & permutation of the
numbers 1,2,...,n, if &.,4,...,8,65 and 2,,,,...,2,¢X, then the expres-
sion
(56) FEm{Ffm{‘ . '{Fe,w,{fl By Eallpy™e o fnmmH - }}
is well defined, does not depend on the order of the signs Fey,...,
P,,., and, for fixed
Dpy1yeee s Bj1sByyns- - - s Tp€ X,

.
Srpraeens Erny Eiqay ey 8065,

it is a bilinear functional (of variables &;,x;) belonging to K. For the
exact proof of this fact see Lezanski [2], p. 248.
We shall now examine the linear equations

(57) : (I+AT) m=m,,
(58) E(I‘I“;LT):&J:

where z,¢eX, £¢eE are fixed. We shall also examine the homogeneous
equations

(59) (I+AT)z=0,
(60) E(T+AT)=0.

The solutions # and & should belong to X and & respectively.
Following Lezaniski [2], let us set

Coo=1,
gy &y ... &3,
2 eee » T, .
Gro (51,...,5,)= Soy &ty & ¢d for ’)‘:——1,2,'...,
DBygenes®y] | oo v o
Era"l Ermz 'Srmr
Siyeen &p __1_ {0 (‘Elr-" 1-77717"'7"776)}}”_}
O”‘(wl,-u,wp BT R e I PN A e
for r=0,1,2,..., k=1,2,...

Obviously Cy, is a sealar. O, (for r>0) is linear in each gf theA
variables &i,...,&,, #,...,%,.. More precisely (see (56)), O, considered
ag a function of £ and = only (1<, j<r) belongs to R. :

%) The last expression is well defined since &(E,TK)z=E((K,T)Eyr= E(Kl(,TK'))
w= ({K,)T(Kyz)= ((E,T)Kyw=.... ete. _. .
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Developing the determinants .., after 'the & line (1<j<r)
we obtain (see Lezanski [2], p. 255)

c, (5“ ) 3 (— 1 -0, (f“---aff—ufmw--,s,)
’ T,

Fsse i=1 LSTRRRRL N PLU TS FRRRRL
(61)

N AN el ff*“”’f”“""fr)}. ,

Analogously, developing the determinant 0,,;, after the j* column
(1<j<r), we obtain?)

ouffrnE)= 3

i=1

— 1) £ Oy, k(Sl,... St bty Er)

COTRRRRLL A B RS PRRRRL Y

7 {0 _(51,....‘ ......... JEN
YV k 1w1, Ty Yy By Ty Ny

Following Lezanski [2], p. 253, let us seb

L AR &,
(63) D,(wlzn_jmr)—Z}."G (mf,

k=0

(62)

)6
w’) for r=0,1,2,...

Clearly D, depends only on 4. D, (for »>0) are linear in each of the
variables £; and x;.

The series (63) converges for each A since (see Lezaxiski [2], p. 253)

Grk (fu

Xy,

+r

(6'4)“) <- (B0 flall oo - Dl o 6l

| (7G+7)
)

It follows from (61) and (62) that for >0

Eryeens &, < ;
Dr(wli...;m)zg( RACLS D*“(i: e ,5)

(65) I RECEPLCYS PRRRPR
_AFW{EQI -D, (517 o i—11777£i+17-~':'5r>}
- Bipeeninnannn.. , &,
pfE & vy bbb &
. vt _2(__1) éiwi'-D‘r—l( 1y T—19 Siplyc ey )
(66) 2T e B3 ®jprge Ty

) I k=0, we omit the expression F, ..} o
n the right side.
%) This inequality follows from Hadamard.’s inequality for determinants.
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Replace in (65) and (66) the number » by r-+1 adding a column i,

and set j=r-+1. Then

E1yeriyn 5) (51, ............ ,5,)
-Dr b b b .D
(67) Jrl(931,--- 2550 Byyeesy By 1,8, Pip1s %y,
B P e U Pt
poffoile Sean (bt id)
(68)
El! !5) w {D (511"'7Er3§). }
e D( SERREL kil A VPO oy

"If r=0, we omit the sum X on the right gide of (67) and (68).
It follows from the definition of C,, that (see Lezanski[2], p- 253)

- a £l ey £
R R W e mz:...’,m:)}}--}}-
Fix a value for 4. )
Sinee D, is a holomorphice function of A, there is an integer r=0

guch that
-
—d—i;D,,;eO
at this value of 1. Hence the functional D, is not identically equal

- to zero.

Let r>=0 be the least mteger such that D,s£0 for this value of 4.

In the sequel &,...)&€8, @,..., 56X will denote fixed elements such
that
&,.. )
70 6=D "
(10) o
Let (;¢Z and zeX (j=1,2,. ,7) be such elements that
(71) Ejszr(E“""'""""""E') for each wxeX,
Byyeeny By, ByBig1y ey Bp)
(72) Ez,«‘=Dr(il""’5:‘—1’5’57'4-1;---,5") - for each £&eX.
1y cneee e anee oy Bp

These elements exist by (K) and (56) and are uniquely determined
on account of (48). If r=0, then &, ©;, §;, #; are not defined.
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It follows from (65), where ¢, is replaced by &, that
' Ez,—l—le{Ey-nzj}:O

i. €., by (52)

E(I+IT)2z;=0 for each £ed.

This means that 2, is a solution of the homogeneous equation (59)
for j=1,2,...,r. )
Analogously, we infer from (66) and (52) that {; is & solution of the
homogeneous equation (60) for j=1,2,...,r
Those solutions. {;,2; are linearly independent since by (70) and. by
the skew symmetry of D,
&yy=0-0,=0;m,

where 8, is the Kronecker symbol.-
Set
El LA | 51') E

for £eE, weX.
N

EC$ -Dr+1 (

It follows from (K) and (56) that CeR (see the remark before (61)).
The formulae (67) and (68) can now be written in the form (see (55))

r
(73) E0p=— &z, Lw+ &+ 8—A- ETCm,
i=I
,
(74) . ECp=— D't &2+ bw- 0—A- ECTw.
i=1
The elements 2,,2,,...,2, and {y,y,...,5, form a basis of the space

of all solutions of (59) and (60) respectively. In fact, if & satisties (60),
then, multiplying (60) by Oz, we find from (73) that

=~ Z Ea,- L

1—1

for each weX,

T
2 Emt ‘ Ci .
i=1
Analogously, if a satisfies (59), then multiplying (59) by £C we find
from (74) that : ’

f-_—..

S| =

1
E-'D—E Ex-22,  for each {eF,

Hbq*

2&” 2,

Qol)-‘
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If there is a solution z of the equation (57), then multiplying this
equation by {; we find that

(75) Lwe=0 for §=1,2,...,r

Conversely, if (75) holds, then, by (73) where x is replaced by =,
_ 1
the element w=50w0 is the solution of (57).

Analogously, if there is a solution of the equation (58), then multi-
plying (58) by #; we find that

(76) &z;=0 for j=1,2,...,r.

Conversely, if (76) holds, then, by (74), the element é:%goo is
the solution of (58).

If r=0, then (75) and (76) give no restriction. The equation (57)
and (58) are always uniquely solvable.

The analogy between Lezanski’s theory and Fredholm’s fheory is
complete.

§ 5. The theorem on multiplication of determinants. Suppose now
that X, 5 and ® satisfy the conditions mentioned in § 4. Interpret & as
a Banach algebra of linear operators in the space X (see p. 35) and
apply to this algebra the theory developed in § 3.

It follows from the definition of ¢y, and Cy; and from (55) and
(61) that Cy and Oy satisfy the induction formulae (29) and (30) (the
last should be multiplied by ¢&eZ£). Consequently

1 Eryeais &y
(77) %=00k=ﬁpém{'_' '{Féﬁ;{c’“’ (ml,...jwk
and
1 & &1yensé
EBo=ECy, o= ﬂlﬁﬁ,ﬁ{ {Fﬁ,k{ow 0 (w o w:)}} - }
for k=1,2,... These formulae are the analogues of the Fredholm formulae

(23) and (24).
Consequently D(i)=D, and B(4)=D,, where the bilinear functional

Dl(i) is interpreted ag an operation of X into X.
Notice that, by (64) and (77),

1o
(78) , ol < =l 1.
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In §4 we considered a tized functional F' satisfying the condition
(54). Now we shall consider the class M of all linear continuous function-
als F on R satisfying the condition (54). Obviously M is a Banach space
(see (53)). Following Lezaniski [3] we make M into a Banach algebra
defining the product H=F-GeM of two functionals F,GeM by the
equation
(79) H(RE)=F -G(E)=G(KTy)

The transformation F—Ty defined in § 4 is a ring homomorphism,
i. e. (see Lezanski [3], p. 20)

(80) Tip=1Tp, TF+G=TF+T07
Consequently, by an easy induction.on n,
(81) PI)=F (%"  for FeM,

where F™ is thé n'® power of FeM in the Banach algebra M.

Tt is convenient from & purely formal reason to add the abstract
wit F to the algebra M. Obviously the transformation »E+F—>+I+Tx
is a ring homomorphism of this extended algebra into R.

We shall now examine the determinant D(2) (of the linear operation
I++2ATy) as a function of FeM. Therefore we shall write a,(F) instead
of a, to emphasize that a, is uniquely determined by Fe¢IM. More
precisely, a,(F) is defined by the right side of (77) for k>0, and
a(F)=1 (FeM).

Let us set
(82) D(E+F)=)a,(F) for FeM.

k=0
Since by (77) )
0, (AF)=xa, (F) for k=0,1,2,...,

for Ke&.

Tpe=TpTs.

we obtain

(83) DE+1F) =3 Fa (),
k=0

i. ¢. D(E+AF) coincides with the determinant denoted hitherto by D(4).

D(E+F) is the determinant of the linear operation I-++Tp.
More generally, D(E-+AF) is the determinant of the linear operation
I+4+Tp=I+2Tp. It follows from the last equality that it suffices to
examine only the determinant D(E-+F) of the operation I+T'p.

Notice that, in general, the mapping F—T, of M into K is not
one-to-one (see p. 31). Consequenply the determinant D(H-+F) of the
operation I-+Ty is uniquely determined by Fe OR, but, in general, it is
not uniquely determined by the operation I-4Tj.
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Set
(84) O(F)=F(I) for FeM.

@ is a linear fuﬁctioﬁal on M. By (81) a,nd (84)
(85) F(TF ) =2 (F").

Hence for each FeM (see Liezanski [3], p. 16)
(86) D(E+AF)=exp (@(log(E-i—lF))):exp (S‘ (=1~ qb(z«m)an)

1 n

whenever the expression on the right side is defined (see (10)), e. g. if
A< :

In fact, the equation (86) holds for A sutficiently small by (47). Since
D(E-+AF) is an integer function of 1 and

- o0 _1 n )
(87) & (log (B+AF))= 2—(—%—’ & (F™) A"
n=1

is a holomorphic function of 4, the equation (86) holds for |A|<r where r
ig the radius of convergence of the series (87). By Abel’s theorem, the
equation (86) holds also for |A|=r whenever the series (87) converges.

THEOREM 2. Let F,GeM be such thai

(88) F,-Fy ..o F (I)=F,-...- F,- F1(I)
for each finite sequence F;=F or G (i=1,2...,n). Then
(89) D((E+F) (B+G))=D(E+F)-D(E+G).

Obviously F,-Fy-...  F,eM (an..-Fn-Fle‘m) denotes the product
of Fy,Fy,...;Fp (Fay...,F,,Fy) in the algebra M (non-commutative,
in general), and Fy-Fp-... - F,(I) (Fz-...-Fn~F1(I)) denotes the value
of this functional at the point IeK.

Theorem 2 states that the determinant

D{(E+F)(B+@)=D(E+F+G+F -6
of the superposition
(I+Tp) (I4+Te)=I+Tp+To+Tr Te=I+Tr.q:r ¢
is the product of the determinants D(E+F), D(E+G) of the operations
14Ty and I4-Ty respectively.

To prove Theorem 2 let us notice that the expression

D((E+AF)(E+}.G))=D(E—]—(AF+AG+MF-G))
is an integer function of A. :
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In fact,
(90) D((E+}.F)(E—1—}.G))=k2ak(lﬁ’+ G422 F - G)
=0

where @ (AF+1@+A*F-@) is defined by the formula (77) where F is
replaced by AF-+AG@+22F-@. Consequently a, is a polynomial of 4 of
a degree <2k. The series (90) of polynomials converges uniformly for
|A|<<r, » being arbitrary, since by (78)

kf2

¥
| (AP HIG+ 1T - @) < | AP + 26+ 127G

e
< P (IFI+ 6+ 7112 G

We have AF~I1G modd (see p. 27). Consequently, by Theorem 1
(where A=M, 4=71F, B=2G) and (86),

D((B+1F) (E-{-lG)) =D(E+AF)-D(E+iG)
for

w<§min(uzﬂu—‘, ).

Since D((E+AF)(E-+14)), D(E-+iF), D(E+AG) are integer functions
of 2, this equation holds for each A, in particular for A=1.

§ 6. Applications. Let I be a set with a measure u defined on
a o-field of subsets of I. Let I be the Banach space of all measurable
functions # on I' such that

lall=(f lo(8) Pat)# < oo

where 1<<{p<oo. The integral is always taken over the whole space I

L7 is the Banach space of all bounded measurable functions # on I'
with the norm

|l]|==supess |z (1)] .
tel

If I' is a metric space and p is a Borel measure such that

(m) for each point teI' and for each open set U (teUCI) there is
an open set U, such that teU,CU and 0<u(U,)<oco,

then let O be the Banach space of all bounded continuous functions
z on I' with the norm

ol =sup |z(2)].
tel’
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Let X and 5 be one of the following pairs of Banach spaces

1 1
I8, LE (lgp, qgoo,; +E:1)’
L}" 0)“5
Cr, Ly,

with the bilinear functional
Ex==[E(t)x(t)dt for

Let &, be the class of all hilinear functionals K on SxX of the
integral type, i. ¢. of the form

(91) ERa=[[K (s,t) £(s) 2 (t) dsdt

teE, reX.

for £eE, zeX,

where K (s,?) is a function on the space I'x I, measurable with respect
to the product meassure uXpu, and such that

(92) [[1E (s, 1) E(s)m(f) |dsdi<oo  for EeS, weX.

All double integrals are obviously taken with respect to the prodnet
measure u X y.

Let & be the least closed linear subspace of the space of all bilinear
functionals on Ex X, such that IeR and {,CR.

Clearly X, 2 and R satisfy the conditions (48) and (K). Now let O,
be the class of all linear functionals on R of the integral type, 4.e. such
that :

(93) | F(E)=[[T(s,t)E(t,s)dtds for KeK,,
where T'(s,t) is a measurable function on I'XI" such that
[T (s, ) E(t,8)|dtds<co for KeR,.

Suppose that FeN, is defined by (93). Then Ty (see p. 36) is the
bilinear funectional determined by the same function T'(s,?), ¢. e.

(94) ETpu=[[T (s,t)é(s)a(t) dsdt for e, zeX.

Consequently T'=TzeR, and M,CM.
‘We shall now prove that

(95) Py Fy-...-B,(I)=F,y-...- F,- Fy (I)

for an arbitrary sequence B By, B eM,.
In fact, if

F(K)={[T,(s,t)K(t,s)dsdt for Ke&,

&
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then
F, Fye... Fo()=F,(Tp,- . -7oy) =Fu(Tr..Tr, )
=/ f T1(8,81)T2(81580) -
—F,(Tr,...Tp)=Fy- ... Ty Fy(I).

T (Sp—1y8n) 481 - ds,

The order of the integration is of no consequence since the integral
remains finite if we replace T;(s,t) by |T;(s,?)|.

Let 9N, be the least closed linear space such that 9, COM, CM.
It follows from (95) and Theorem 2 that

THEOREM 3. If F,GeM,, then
D{(B+F)(E+G)=D(E+F) D(E+E)

The classes & and M, (and, consequently, & and M,) can also be
specialized in another way (see e. g. Lezanski [2], Part II). We can
define ®, as a linear set of bilinear functionals of type (91) satisfying
certain additional conditions. IR, is then a class of funectionals F' such
that (93) holds. It is obvious that (95) is true under certain hypotheses
about the absolute integrability. Consequently Theorem 3 remains
true.

Congider, for instance, the case where F=X=I%. Let & be the
class of all bilinear functionals of type (91) such that

(96) JIE (s,0)Pas dt < oo,

and let ® be the least closed linear space such that IeR® and K,CR. Let
M, be the class of all linear functionals on R such that (93) holds, where
T(s,t) is a measurable function on I'xI" and

97) [T (s,1)|2ds i< 0.

If Fe,, then TrefR, is defined by (94), and equation (57) is the
integral equation
o(8)+A[T (5,85 (t) di=m,(s)

of Carleman’s [1] type. We can apply the theory developed in §4. In
particular we obtain Carleman’s [1] theorem stating that series (17)
and (18) are integer functions of A. Theorem 3 is also true.

Let us return to the general case.

The functional FeIMN, (see (93)) is uniquely determined by the func-
tion 7'(s,t) if and only if T belongs to the closure of 8. If I belongs to the
closure of &, then D(E+AF) is uniquely determined by the operation
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I+AT. It I does not belong to the closure of &, then ¢, is determined
by I-+4AT for n>=2, since for n>1,

Gp=J. .. JT(81,82) T(85,85). .. T(8,,81)d81...ds,,.

However, o;=F(I) is then completely arbitrary. Therefore the de-
terminant D(E-+AF) of the operation I+ATyis not uniquely determined
by I+ATp (see (47)). This phenomenon is not unexpected since it appears
in Fredholm’s theory of integral equations (see the remark on p. 31).

Notice that if I' is the unit integral with the Lebesgue measure, then
I2=IL” and Op=C. If I' is the set N of all positive integers and w(Z)=(Z)
(the cardinal of Z) for ZC N, then IP=IP. If I' is the set N,, composed of
all positive integers and of the number oo, and if p(2)=Z for ZC¥,,
then € is the space ¢ of all convergent sequences and L'=l (the topo-
logy in N, is the usual one).

Obviously, if I'=N or N, then the integrals can be replaced by the
infinite series, and  the functions K(s,t), T(s,t) — by infinite double
matrices. '

“If I' is finite and if u(Z)=Z for ZCI', we obtain the theory of linear
equations in Euclidean spaces.

§ 7. Final remarks. Lezaiiski’s [2,3] original theory differs from
the theory developed in § 4. He supposed only that = is a closed sub-
gpace of the space X*. Consequently he could identify bilinear functionals
on ExX with linear transformations of 5 into X*, but not with

ke

linear transformations of X into E* (see p. 35). Consequently instead
of (55) he had only the equation

F | EKy - no)=EK Ta.
The equation
() Ii’w{fy -nKu)=¢TKe

was not a copsequence of his hypothesis, therefore he had to assume
additionally that each operation K eS satisfies the condition (F). Notice
that the condition (F) can be briefly written as follows®):

(F") Tpe=TpK ~ for each KeR,

%) Lezahski wrote K&z instead of &éKw, and K¢ instead of £K. Therefore the
order of all superpositions in my paper is inverse as compared with Lezafski's
papers. In the original notations of Lezahski we should write
&) TFK‘_’KTF for each K ef,
where

FK(M)=F(MK) for each Mef.


GUEST


48 R. Sikorski

where Fy is the functional

Pr(M)=F(EM) for MeS.

Since Lezanski's hypotheses about £ and X were not symmetrical,
his results ave more complicated than those in §4. He examined only
the equations (58) and (60). Instead of the equations (57) and (59) he
examined the equations conjugate to (58) and (60) in the space E*. Be-
gides the equation (58), he examined, more generally, the equation??)

E(I+ATK)=&.

However, this generalization iy not essential since Lezanski’s [2]
(p. 252) determinant of this equation coincides with the determinant
D(B+AFg) of the operation I4ATp,=I+iTxK.

Notice that Theorem 2 remains true if we admit the original hypo-
thesis of Lezanskill).

The connexion between Lezafski’s [2,3] theory and Ruston’s
[5,6] theory should be discussed separately. We notice here only that
Lezanski’s formalism is more general than that of Ruston (the question
whether they are equivalent remains open). Therefore the theorem on
multiplication of determinants holds also in Ruston’s theory.
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1) (I+ART)té=§, inthe original notation of Lezafski.
1) See Sikorski [7].
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On the two-norm convergence
by
A. ALEXIEWICZ (Poznah)

G. Fichtenholz [4] has introduced in gome concrete Banach
spaces a kind of convergence weaker than that generated by norm.
In a previous paper [2] I introduced a general convergence in linear
spaces which I called two-norm convergence, containing as particular
cases the convergences of Fichtenholz. In this paper?®) I shall complete
the results obtained in [2].

1. Let X be an F-space (Banach [3], p. 35) and denote by ]|
the norm?) in X. Suppose that in X a second norm [jz|* is defined, not
stronger than |z||, i. e. such that

& lleall >0 llalf*~>0.

A sequence {m,,} of elements of X will be called ;)-convergent to @y
if it iy bounded with respect to the norm |z|| %) and if |z, —ao*=0; we
shall then write

implies

y-lima, =z, or Ty
n

Convergence y will be termed the fwo-norm convergence. The space
X supplied with this convergence will be denoted by X, — it is evidently
an L*-space (Kuratowski [5], p. 84), moreover, addition of elements
and multiplication by sealars are continuous.

A convergence generated by norm will be termed the morm-conver-
gence. The convergence y is in general not equivalent*) to a norm-con-

1) The results of which were presented on May 23th 1947 to the Polish Ma-
thematical Society, Section of Poznaf. Since that time Orlicz [7] has developed
a theory of Saks spaces which are closely related to the notion of the two-norm
convergence.

2) Here by a morm is meant an F-norm; it is a non-negative functional [xf,
satisfying the postulates: (a) [lo|=0 if and only if z=0; (b) lz+yl|<|=l+lyl;
(€) an~>ao, |ln—2oll-»0 implies |anon—agaoll 0.

3) The sequence is bounded with respect to (or under) the norm ||z] if t,~>0 implies
l[tn@nll>0. This notion goes back to Banach.

Y) Two convergences a and B in L*.space are said to be equivalent if the
classes of convergent sequences in both convergencies coincide and the limits
under both are equal.
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