On the foundations of Dimensional Analysis
by
8. DROBOT (Wroclaw)

I. Introduction

L The Dimensional Analysis, called also the Principle of Simili-
tude, is & computing method used in practical problems of physies, tech-
nics, natural philosophy and other disciplines. The method deals with
dimensions of actual quantities. It often enables us to solve problems
by means of quite elementary calculations. As an illustration, we are
going to consider the following problem.

An engine of power ¥ turns a mixer. Its wings, of diameter D,
move with angular velocity ¥ in a liquid, of viscosity H. How does
the angular velocity V depend on N, D and H?

Using the Dimensional Analysis, we solve this problem as follows.
We choose a system . of units, for example em, g, sec (CGS), and write
down the dimensions of quantities V, N, D, H:

[V1=[sec.], [N]=[em?gsec™], [D]=[em], [H]=[cm™g sec™].

By eliminating from this equations the dimensions fem], [g], [see],

we get
J—
Ve
[V]fh/ HD3J'

The quantities in brackets have the same dimension, and conse-
quently, they differ by a constant numerical factor o only. Hence

N
HD®

2.‘.'1‘}191'9. is a la,r.ge number of books and papers on Dimensional
Analysis. Many applications of this method and varions formula-

tions of its theory are given in them. Some of those books and papers

are quoted at the end of this paper, the list, ho is by
complete. ! ; however, is by no means

=a
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The origin of the Dimensional Analysis goes back as far ag Newton
[9]. More attention has been paid to this method since the papers of
0. Reynolds, who adjusted it succesfully to problems of hydrodyna-
mics. However, several difficulties and paradoxes of this method are
known [2], [6], [7], [10], [11], [12], [13}.

3. The principal cause of those difficulties, in my opinion, les in
the fact that the primitive notions, axioms, sometimes even theorems
of the Dimensional Analysis are not formulated clearly [2]. This makes
it difficult, of course, to check the correctnes of proofs.

Some authors identify dimensional gquantities with ordinary num-
bers, real or complex, [2], and, as a matter of fact, they do not introduce
the notions of dimension, or of dimensional quantity into the Dimensio-
nal Aualysis, although they formulate theorems on those very notions [8].
Sometimes, in the proofs of theorems, such mathematical tools are
used as, for instance, differential equations. This seems very odd as re-
gards the foundations of Dimensional Analysis. (On the other hand,
it is known that differential equations yield an interesting field of appli-
cations).

4. The purpose of this paper is to construct the Dimensional Ana-
lysis by means of quite simple algebraic methods, namely using the
theory of the linear space. All known theorems of the Dimensional Ana-
lysis can be formulated and proved easily and clearly in the language of
linear gpace. Such a point of view makes a simple physical interpreta-
tion possible and removes the source of paradoxes. Moreover, it is intui-
tive to consider the dimensional quantities as elements of a space, dif-
ferent from ordinary numbers. The algebraical methods of the Dimensional
Analysis can also be-applied to non-physical problems, for instance to the
theory of quality control by sampling, [5], or to obtain the particular
solutions of some differential equations [12].

There are known another attempts of algebraic foundations of
Dimensional Analysis, [1], [8], [14]

11. The linear space

1. The linear space X (over the field of real numbers) is usually de-
fined by the following axioms (4, B, C,X are elements of X and a,b
are real numbers):

1. A+B=B-+4;

2. (A+B)+0=A+(B+0);

3. the solution X of A-4-X=B exists for any pair 4,B of elements
of X

4. (a+b)A=aAd-+bA;
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5. a(A-+B)=aA-}aB;

6. a(bA)=(ab)4;

7. 14=A4.

These axioms imply the existence, in X, of an element 0 such that
0+A=A for any 4eZX; such an element 0 is unique.

Any linear space X° contained in X is said to be a linear subspace
of X,

The elements A,,...,4,, of £ will be called Iineawrly independent
on X° when the equality

adyt. Gy =A"

where A% 29, implies a,=...=a,,=0 and 4°=0. In the limit case, where
0 is the unique element of X9, the linear independence on Z° coincides
with the linear independence in the usual sense.

We shall suppose in what follows that X iz n-dimensional on v,
1. e. that there exist, in X, # elements linearly independent on X°, but
not n--1 such elements.

2. We shall consider the funections
B(Py,...,P,),
where the P,,...,P, and the value of @ belong to 2\
TaroREM I. Suppose that

1) B(Py+8,..., P, 48) —D(Py,...,P,)e 2’
for any 83,...,80eX".

If A,,...,4, are linearly independent on Z°, PY,...,Ph are elements
of 2% pm are real numbers and

n
P1=P1°'l'k.§pfkﬁk (j=1,2,...,7),
then
n
2) ¢(P1,..‘,P,)=F°.{-k21kak,

where F® is an element of X0 and the coefficients f, are real numbers which
do not depend on PY,...,Pl.

Proof. Let P,...,P} and @!,...,Q" be any two sets of elements
of X If

n
Q,'=Q§'+k§pfktlk (i=1,2,...,7),
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we can write
L3
(3) (D(Qxa“-er):Go'{‘kzlgkAky

where G°eX® and the g, are real numbers.
To have the theorem, it suffices to prove that

fo=g, for 1<k<n.
In view of (1), we have
&(Py,..., P)— D@1y, Q) =H’;
where H0%3°. Substituting here (2) and (3), we are led to the equality

D O

which implies fo—g=0 (k=1,...,n), for the elements A,,...,d, are
linearly independent on X°.

8. A tronsformation @A, mapping X into itself, is linear, when

O(A-+B)=0A+06B
and
O(ad)=0aBA.

Tt is one-to-oneif, and only if, @4 =0 implies 4=0. We shall reserve,
in this paragraph, the symbol & to denote such linear one-to-one trans-
formations which ave identical on X9, i.e. such that OA°=A4° for Ate X0,

TaeoreM II. Suppose that
(4) OD(Py,... Py=D(OPy,...,0F,)
for any transformation @.

If Ayyenoydip (m<n) are linearly independent on X% P; are elements
of 2% py are real numbers and

Pjng_l__ EpjkAk (j=1,2,..',1'),
k=1

then

n

<I)(P],...,P,)=F°+k2‘kak,

where the element T (F0e 2% and the coefficients f. (real numbers) do not
depend on Ay, .., 4nm.

Proof. Let Aq,...,4, aud By,...,B, be any two gets of elements
of %, linearly independent on ZX° We can complete these sets to sets
of n elements linearly independent on 2° ’
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Then we can write
(B) @(Pl,..,,P,,)::F"té‘kak.
Similarly, if
R=F+ 3 ou By (=1.2,...,7,
- we can write
(®) OB, B) =G+ 3194 By

where @e2® and the g; are real numbers.
To have the theorepl, it suffices to prove that F'=@", f,==g; for
1<kS<m and fr=g=0 for m<k<n.
There exists a transformation @4 such that
@Ak':Bk

Then OP;=R; (j=1,...,7). By (5) we have

(b=1,2,...,).

) O0(P,,...,P)=I"+ 3}, B,.

N=1

But, in view of (4), the left members of (7) and (6) are equal, and, con-
sequently, so must be their right members:

n n
(8) Fo+k§kak=Go+k2;ngk‘
Hence

n
kz,: (fa—9x) By=G°—F",

which implies f=g; (k=1,...,n) and F°=@®, since the elements By,...,B,

. .. "
are linearly independent on X° Thus, in the case of m=n, the theorem

is proved.
If m<n, there exists a transformation ©,4 such that
@1-Ak={ B, for 1<k<im,

—B, for m<k<n.
By (5) we have

. m n
(9) @1@@’1;---:Pr)=F°—|-kakBk*k > fuBy.
=1 =m+1

Again, by (4), the left members of (9) and (6) are equal and so must be
their right members:
m

(10) P+ 3B~ Y i By=6"+ 3¢.B,.
kw1 k=m4-1 k=1
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Subtracting (10) from (8), we get
"

2]: Z kaIc=07

=m4-1

which implies f;=0 for m<k<n. This completes the proof.

III. Algebraic foundations of the Dimensional Analysis

1. The foundation of the Dimensional Analysis can be conveniently
embedded into the theory of linear space. However, with regard to the
physical interpretation, we shall use the multiplicative form of linear
space.

Let II denote the space in question. The following axioms for I7
gorrespond to the axioms of X, given in Chapter II (4, B, C, X are ele-
ments of I7 and a,b are real numbers):

1. AB=BA;

2. (AB)0=A(BC);

3. the solution X of AX=DB exists for any pair 4, B of elements

4. AP =A4%4Y;
5. (AB)*=A"B"%;
6. (A%P=A4%;
7. A'=A,

Assume that the positive numbers a« belong to II and that their
b

powers o’ are calculated as usually. Thus the positive numbers can be
considered as a subspace II° of II (satisfying the same axioms as II). It
is easy to show that 14=4 and 4°=1 for any element Aell.

Any element of I7 which does not belong to II? ¢.e. which is not
a number, will be called a dimensional quantity.

The elements 4,,...,4,, of II will be called démensionally indepen-
dent when the equality

u. i
A Ay =,

where o is a number, implies ¢;,=...=a,=0 (and a=1).

We shall suppose, in what follows, that there exist, in I7, n elements
dimensionally independent, but not n+41 such elements.

Any set X,,...,X, of dimensionally independent elements of II will
be called a system of wunits. Obviously, such a sysbem eannot contain
numbers.
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I X,,...,X, is a system of units, then any element A4 of II can
be uniquely represented in the form

(1) A=oX{. . X2,

where ay,...,a, are real numbers, and a>0.

It X,,..., X, and ¥y,..., Y, are two systems of units, there exist
n positive numbers &,...,&, and a non-singular square matrix (%)
of ‘n? real numbers #; such thab

(2) Xi=5ifnlY5" (i=1,2,...,n).

These properties of systems of units correspond to the well known
properties of linearly independent elements in the theory of linear space.
Substituting (2) in (1), we have

(3) A=aﬁ f] £y,

g1 g1

This formula enables us to pass from a given system of units to any
other.

2. A transformation AA, mapping IT into itself, will be called a di-
mensional transformation when

A(4B)=(44)(4B),
A(A%)=(44)%,
44=1 4=1,

Aa=a for aell’.

implies

The first two of these axioms correspond to the axioms of linear
transformation in the theory of linear space. The third axiom ensures
that the transformation 4 shall be one-to-one. The last axiom means
that 4 is identical on II° :

3. We shall further consider the functions
D(Qy;..-,Q),

where Q,...,Q, and the value of & belong to II.
Such a function will be called dimensionally invariant if the identity

(4) D(4bh;..., 4Q)=A4D(Qs,...,Q,)

holds for any dimensional transformation 4 and any set @i,...,Q, of
elements of I7. . ‘
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It will be called dimensionally homogeneous if, given any system
of elements Q,...,Q, of IT and any system gy,...,0, of positive num-
bers, there exists a number ¢ such that

(5) D(0:1915. -5 085)=0P(Q1,- .+, ¢s)-

4, TEEOREM II. TLet &(Ay,...,4,;P:,...,P,) be a dimensionally
invariant and homogenecous function. If Ay,..., A, (m<n) are dimensio-
nally independent and

P= njkIJl AR

where m; and py ore real numbers, m;>0, then

(j=1321"-17')1

m
(6) ¢(A1:‘"1Am§Pl:"'7-Pr)=‘PkI:IIAgv

where the coefficient o (positive number) does not depend on A,,...,4,, and
the exponents fy, (real numbers) depend neither on Ayy..., dy MOT 0N Tyyuesy T

To obtain the proof of this theorem, it suffices to write it in the
additive form. Then the theorem follows directly from Theorems I and
II of the preceding Chapter.

IV. Remarks on Theorem II

1. Usually, the conditions under which Theorem II holds are not
clearly specified. Thus it will be of interest to show that this theorem
fails when either of the two assumptions on @, its dimensional invariance
or its homogeneity, is omitted. In fact: '

10 Let n=1 and let X, be any fized dimensional unit. Then, each
element of IT is of the form

A=0aX?,

where o and a arve real numbers, «>0. The function ®(4)=a is ob-
viously dimensionally homogeneous but not dimensionally invarians, for, .
if AA=aX?®, we have '

AP (A)=a and D(44)=20.

The Theovem II fails, for the coefficient ¢ (equal to ) depends on A.
29 The function ®(mwA)=A" is dimensionally invariant bub it is
not homogeneous, since
D(pnA)y=A".

The Theorem II fails, for the exponents depend on .

2. On the other hand, it is customary to write ¢(wy,...,m,) instead
of g in the formula (6). The aim is to make it evident that ¢ depends on
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Myy...,0, but not on 4,,...,4,. But then it is not clear enough what
relationship there is between ¢ and pgy. The answer is that ¢ really
depends on py.

In fact, it is a question of mere verification to show that, in (6),
p cal be a completely arbitrary positive-valued function of m; and py,.

_Similarly, the exponents f, can be completely arbitrary functions of
Pi- That means that the conversion of Theorem II holds without any
restrictions.

Thus, the use of the symbol ¢(z,,...,n,) is correct only under the
assumption that all numbers py are fixed in the problem in question.
In that case, the exponents f, are to be treated, of course; as constant
numbers.

3. Lastly, it is worth while to notice that, in the particular case
where the function @ of Theorem IT depends on 4y,...,4,, only (44,...,4,,
are dimensionally independent), we have

‘n

Q(Al,...,Am)zqzllAﬁ‘,

and the numbers ¢ and f, ave constant. This is a direet corollary of
Theorem II. However, in this case, the assumption that @ is a dimension-
ally homogeneous function is superfluous. To see this, it suffices again
to write the theorem in the additive form and apply Theorem II of
Chapter IT.

¥. The physical interpretation

1. As examples of dimensional quantities appearing in physics we
can give the length of a segment, the mass of a body, its velocity, a time
interval, the temperature of a gas, its pressure, the electrical charge
of a particle. These quantities are to be considered as elements of I7.

In physies, one considers products and powers of these quantities
-and their products by numbers. The laws of these operations are expres-
sed by axioms 1-7 of Chapter IIT.

2. In considering any physical phenomenon we must introduce
some gystem of wnits. If a quantity 4 is represented in the system
Xyy...» X, by formula (1) of Chapter IIL, then formula (3) allows us
to represent it in another system ¥;,...,¥,. That formula can also be
interpreted as a transformation of a system of units. However, ingtead
of considering transformations of systems of units it iy convenient
to consider transformations of the quantity A itself, which iy mathema-
tically the same. Namely, the transformation of A, corresponding to
(3) is described, in the system of units X...,X,, by the formula ob-

&
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tained from (3) by replacing ¥; by X; in it. Such a transformation is
characterized by the four axioms of Chapter ITI; thus it is a dimensio-
nal transformation 4.

3. The formnla (4) of Chapter IIT means that, if a transformation
4 is applied to arguments of a function @, then the same result can be
obtained by applying the same transformation A to the value of the
function @ itself. Coming back to transformations of systems of units
we reason as follows. The function @ depends on quantities Q;. Those
quantities are given in two systems of units X,,...,X, and Y,,...,¥,.
Thus the value of @ can be calculated in either of the two systems by
means of appropriate coefficients and exponents. The condition im-
posed by (4) is that in both cases the value of @ ghould be the same
quantity (but expressed in different systems of units). This property
is often formulated as follows: the form of the function does not depend
on the chosen system of units [2], [8].

4. Lastly, the formula (5) means that if each argument of @ is mul-
tipliad by a numerical factor, then the value of @ should also be multi-
plied by a numerical factor. The physical meaning of this will be ex-
plained by introducing the netion of dimension.

V1. The dimension

1. It is usual to say that fwo elements A and B of II have the same
dimension if there is a number o such that B=ced. Then we write in
symbols, introduced by Maxwell,

[4]=[B].

For example 3m and 5em have the same dimension called length, for
3m=~60-5cm; in symbols

[Bm]}=[5em]=[L] (length). i

The space II can be divided into disjoint classes such that all ele-
ments of the same class have the same dimension. Thus, it is natural,
from the formal point of view, to identify the dimension of a given quan-
tity with the class to which this quantity belongs. It is convenient
to introduce, for practical reasons, the notion of product and of power
of dimensions; the definitions are as follows: :

[4]1[B]=[4B], [4)*={A"].

Particularly, .if a is a number, it follows from the first formula that
[a][B]==[B] and hence [a]=1. Thus, the dimension of any number
ig 1.
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It iy easy to verify that the dimengions satisfy the axioms 1-7
from Chapter IIT. Thus, the set of all dimensions can be treated as a space
of the same type as the space II.

2. Now, it is easily seen from formula (3) that if the arguments
of @ retain their dimension, so does the value of @. This ig the physical
interpretation of the formula (5) and constitutes the starting point for
model testing.

In physics, a phenomenon iz described by a function &. We say
that a phenomenon, called model, is similar to a phenomenon, called
prototype, when the following conditions are satisfied: the function
@ for the model and for the prototype is the same, the arguments and
values of @ for the model and these for the prototype have the same
dimensions and differ by such numerical factors that the numbers
Tyy...y7m, 0f Theorem II retain their values. This is the principle of
similitude. The numbers =,,...,s, are called invariants of similitude.

3. Let the arguments 4,,..., 4, have in a gystem of units X,,..., X,
the dimensions

n
[4 ]=k1—]1[Xl?c4k] (1=1,2,...,m).
The quantities 4,,...,4,, are dimensionally independent if, and only
if, the determinant |ay| does not vanish.
Let a quantity F have, in thé same system of units X,,...,X,,
the dimengion

[F]=[][X¢*).
k=1

In applications, it is often important to know whether F can be
expressed as a fonetion & of A4,,...,4,, (satisfying (4) and (5)). The
answer is that it is possible if, and only if, the equations
721 Q] 3= (k=1,2,...,m)
have exactly one solution.
This is an easy corollary of Theorem II.

4. 8o far, the only operations on dimensional quantities have been
products, powers and multiplication by numbers. However, for practi-
cal purposes, it is convenient to introduce also addition and subtraction.
The last two operations can be performed only on quantities of the same
dimension. The equalities

ad+pA=(atp)4,
aA—pA=(a—p)4,
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are, formally, to be considered as definition of those operations.. In order
to make subtraction always possible it is natural to introduce also the
elements oA with non-positive coefficients. Thus we put stress on the
fact that the quantities a4 with non-posibive coefficient a do not belong
to the origindl space I7.

Addition and subtraction are defined, so to say, within the dimen-
sions under consideration; they comnsist in performing appropriate ope-
rations on numerical coefficients. In the same way, it is possible to intro-
duce other operations, like differentiation, integration, etc. E.g. we can
introduce the limit of an infinite sequence, writing

Lim (o, 4)=(lima,} 4 ;

R->»00 N~>00

all elements of the sequence, as well as their limit, have, of course, the

same dimension.

VII. Examples and paradoxes

We shall consider some examples, the first two of them being known
as paradoxical [2], [7], [10], [11], [12].

1. A rigid ball of diameter D and heat capacity ¢ moves with the
velocity V in a gas, of which the heat conductivity is H. The tempera-
ture in the centre of the ball differs from the temperature of the gas
(at a great distance from the ball) by 7. How does the rate U of
the change of the heat depend on the quantities D, C,V, H,T?%

To obtain the solution we must determine the form of the function

U=o(D,H,T,7,0)
Adopt the system of the four units: em, g, see, degree. Then,

as we learn in physics, the unit of heat, cal, has the dimension

[cal]=[cm? g sec 2]
and
[D]=[cm],
[V]=[cm sec™],
[T]=[deg],

The four quantities D, V, H, T are dimensionally independent, for

[C1=[em cal deg']=[em g sec™ deg™],
[H]=[em™ sec™! cal deg~']=[cm g sec™ deg™],
[U]=[sec™" cal]=[cm? g sec].

10 0 0
10 —1 @]
S = —170.
11 —3 1]
0-0 -0 1d-
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Then, the guantity ¢ can be expressed by D, V, H, T:
O=nD'V'H.
By Theorem II, we have
U =g, (n,) D*V°HT,

where ¢; is a numerical factor which depends on =, only, and the real
exponents d, », h,t can be determined from the equality

[em® g sec™]=[(cm)? (cm. sec™)%(erm g sec™® deg™)* (deg)].
. We obtain d=1, v=0, h=1, t=1. Thus

1) U=¢(=,) DHT,
where =, =DCV [H.

Now, we are going to solve the same problem using a complemen-
tary assertion of statistical physics which says that

(1.2) [deg]=[call.

Thus, the system gets reduced to three units: cm, g, sec. By Theo-
rem II, we have

(2) U=g,(n,,7,) DHT,
where 7,=DCV[H and w,=D3C.

The only difference between the formulae (1) and (2) is that the
numerical coefficients depend on the single variable w, in the first case
and on two variables &, =, in the second case. Thus, formula (2) gives’
us }ess information on the phenomenon described than formula (1) does.
This seems to be a paradox, for, to establish formula (2), we have used
complementarily fhe hypothesis (1.2), and therefore we should expect
4 more precise result.

‘ But this paradox turns out to be only apparent if we notice that
in formula (1), the use of Theorem IT needs another hypothesis, na.mely’
that the four dimensions, [em], [g], [sec] and [deg], are independent:
Thus, the number of hypotheses in both cages is the same. ‘

The qualitative difference between the first hypothesis namely
thabt cm, g, sec, deg are dimensionally independent, and tl{e second
hypothesis (1.2) is the following:

The first hypothesis means that the equality

. [em™ g% sec? deg™]=1
implies )
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‘The second hypothesis means that the equality

[om® g% sec® deg® J=[cm™ g% sec™ (cm? g se¢ )™ ]=1
implies
ay 20, =05+ a,=a; —2a,=0.

‘We see that the first hypothesis implies the second one, thus the
first of them is stronger.

Therefore the elass of the funetions considered by the second hypo-
thesis is larger than the class of the functions considered by the first
hypothesis. Bach funetion, which exists in the space with four units,
om, g, sec, deg, exists also in the space with three umits, em, g. sec,
provided we assume (1.2). The physical meaning of this remark is that
the hypothesis (1.2) enlarges the physical theory of the same pheno-
menon. ‘

The formulae (1) and (2) describe the same phenomenon in two
different theories. Whieh of the two theories is true is a question which
concerns not the Dimensional Analysis but experience. However, we see
that the Dimensional Analysis allows us, after appropriate experiments, to
argue about the correctness of physical theories.

Lastly, let us remark that formula (2) can better be adapted to the
result of the experiment than formula (1). In fact, if formula (1) is veri-
fied by an experiment, then formula'(2) is also verified by the same ex-
periment since formula (2) is then formally valid, for we can always
assume that g,(z,,7,) is constant in regard to m,. On the other hand,
if formula (1) is not verified by experiment, then it is still possible that
formula (2) will be verified by experiment.

This example shows how the result furnished by the Dimensional
Analysis can and must be completed by experiments or other theories.
In the example from Chapter I the determining of the numerical
coefficient « belongs to experiment, if, nota bene, the formula is verified
by experiment.

2. How does the period T of vibrations of a mathematical pendu-
lum depend on its length L, mass M and on the gravity acceleration G'%
To determine by Dimensional Analysis the form of the function

T=9¢ (L, M, &)
we adopt the system of units em, g, sec. Then
[T]=[sec], [L}=[em],  [M]=[g],
By Theorem II, we have

[6]=[cm se¢™*].
T'=number V % .

Studis Mathematica XIV
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It should seem that the assumption of the period‘ T depending o1
the gravity acceleration @ is artificial. It ig, namely, a well known em-
pirical fact, that in any fixed place of the earth the period’ 7 depends
on the length I only. But if we assume that ’

T=®(L),

then from the Corollary of Theorem II, Chapter VI, 3, it follows that such
a funetion does not exist. This seems to be a paradox (cf. also [6]). ‘

In my opinion, this is a good example of how the Dimensional Ana-
lysis ean sometimes improve our empirical observations.

3. How does the size P on a sample depend on the size N of a lot
of merchandise, on the cost I of the control and on the standard deviation
8 of value in the lot?

To defermine, by the Dimensional Analysis, the form of the fune-
tion

P=¢(N, K, 8)

we adopt the following system of units: the size of the lot of mer-
chandise (this unit we call PIECE), the size of the sample (this
unit we call piece) and the value of the merchandise (this unit we call
L). We construect, [5], the theory of quality control by sampling, where
it is proved that

[P]=[piece], [N]=[PIECE],

[K]=[Z piece™], §=[Z PIECE™"*

By Theorem II, we have '

@) pp SV
K

where f is a numerical factor.

. It is interesting to notice that formula (3) holds for various econo-
mical conditions. If a definite economical condition is given, the factor
p can be determined. Formula (3) is known in practice as empirical.

4. Let us consider the differential equation

0F oF\? oF\2

" w25 _(x2E)(ro0
( 0X0Y K XEJX YBY ’
where F is an unknown function and XK is a parameter.
) Wo vhall consider the variables F, X, ¥, K as dimensional quanti-
ties. We adopt the quantities X, ¥ as the system of units. Then, from
(4), it follows that )

XY
=5
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is a number. Theorem II leads to the equality
F(X,Y;K)=p(§) X" Yb:

where &, b are real numbers and g(&) satisfies the ordinary differential
eqgnation

dp [2(a+b)E2+(a—b— 1)5}3—‘; + (a2 — b2t — ablo=0.

52
T
The general solution of this equation is a four-parameter family
of the particular solutions of (4). For example, if a=b=0, we get

EKY/X

P=a exp(—%?)dfa

)
where a and & are arbitrary numerical constants.
For some linear partial equations, this method can give a general
solution, [12].
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