A .generalization of the functional equation of bisymmetry
by
M. HOSSZU (Miskole).
1. The funetion F(z,y) is called bisymmetric it
F[F(x,y),F(u,v)]=F[F(x,u), Fly,v)]1).
We shall examine the functional equation

ey Fl@(@,y), H (w,0)]=f[g(®,u),k(y,)],

which is a generalization of the equation of bisymmetry, moreover, in

a certain sense the widest generalization.
We shall prove in the section 2 that all strictly monotome amd dif-
ferentiable solutions of (1) have the form

(2) =Z[X (z)+ Y (y)] ).

It might be worth remarking that here one functional equation
(1) determines the general form of six functiong figuring in it.

In the section 3 we examine some special cases of the equation (1).

Section 4 gives another condition necessary and sufficient for the
possibility of writing a function in the form (2).

2. THEOREM 1. If the strictly monotonic and differentiable functions
F(@,9),6 (@,1), H(@,9),f(2,9),0(2,9),h(z,y) satisfy the funotional equa-
tion. (1) then (and only them) there exist mime strictly monotonic and
differentiable functions x (1), D (t), P(t),p(t) w(t), X1 (t), Xo(t), ¥, (), Yo () and
a constant k such that

(3) fa,y) =xlp@)+y(y)],
(4) F(2,9) =y[0D(2)+¥ (],

%) This equation was solved by J. Aczél, On mean values, Bulletin of the
Amer. Math. Soc. 54,4 (1948), p. 392.400. He proved that the most general stric-
tly monotonic and continuous solution of the functional equation of bisymmetry
is Flay)= o [pp()+qo(y) +7].

) Funections of this form (and only those) can be represented by nomograms
with three straight scales.
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(5) G(m,y) =0 [X,(#)+ ¥, (y)],
(6) H(z,y)=¥"1[X,(2)+Y.(¥)],
m: g(®,y) =¢7 [ Xy (o) +X,(0)+E],
(8) h(z,y) =y [Y,(2)+ ¥ (y) —k],

where @1(t), ¥(t), ¢ 1(1),
(i), p(t); v(®)-
Proof. First let us keep in (1) w=y=y, constant and define fhe
functions «(t), f(f) by
al[G(t,90)1=9(t; %),
Thus we have
FIG(2,90), H (y0,9)1= a6z, 50)]; B1H (30, 2)]}-
If we introduce new variables for G(z,%) and H(¥,,v), which .we
shall denote by x and y respectively, we get

.. F(z,y)=F[a(2),$(¥)]

Hereafter we derive (1) with regard to u and v respectively; then
we have

~1(t) denote the inverse functions of @ (i),

BLH (Y0,t)]1=h (Yo, 1)

190) Fﬂ[G(ﬁay)1H(u1'v)]H1(u7”)=fl[g($7%)vh(yaﬂ)}gz(w3'“)
and
(11) F,[G(x,y), H (u,v)| Ha(u,0)=f:[g (2, u),h(4,2) 1 ha(y

respectively, where the indices 1 and 2 denote the partlal differential
quotient of the respective functions with regard to the first and the
second . variable respectively. Dividing (10) by (11) we obtain

falglo,u),hy,2)] _ Hy(w,2) ha(y,v)
falg(z, %), h{y,v)] H‘z(“ 7’) ga(, '“)

T we keep #=1,, v="0, constant, define the new functions ¢(t),p()
by the equations

H, (“077’0) _M
nuy 0 PENIES G

and further deuote g(z,%,) and h(y,v,) by = and y respectively, then
we geb

¢'[g(t,ue) 1=

(12) =T
or, which is the same, .
ilzy) falw,y) —0
9@ W)
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Thig shows the dependerice.of the functions f(z,y) and ¢(z

+w(y)
whence we get (3). Taking (9) into account, we get alse (4).

In order to determine also the functions @(z,v),H(z,y),g{x,¥ ),

h{xz,y) we substitute (3) and (4) into (1):
AP [#(@,9) 14+ PLH (4,0) | =xp[g(z,4) 1+ [h(y,0 )1}
The strict monotony of F(z,y) implies the st;mct; monotony of x(%);
consequently
@[G($,y)]+T[H(u 0)]=¢lg(@,%)]+v[h(y,v)].
By keeping w=wu,, v=v, constant- and writing X, (f)
Y, ())=vp[h(t,v)]— P[H (%,v,)] we have (5).
Similarly we get (6) and
(3) - ‘ g(@,y) =g [Xs(0)+ Yo (y)],
(14) h(z,y) =y [X,(2)+ Xo(y)].
However (3), (4), (5), (6)',‘ (13); (14) do not yet satisfy (1) because
substituting them into (1) we have o
X1 (@) + T (§) +Xs (4) 4 Yo (0) =X () + Yo () +Xa(y) + Yo (0) -
This shows that ‘
Xy(@)=X, (x)+a,
Ys(u)=X,(u)+b,
with @-+b+¢-+d=0.
Thus by writing k=a-+b we get (7) and (8). (3), (4), (5), (8), (7),
(8) really satisfy the equation (1). We also “see that all functions figur-

ing in the functional equation (1) have the foim (2) -and this completes
the proof of Theorem T.

3. We shall discuss the followmg speclahzatlons of the functional
equation (1):

(15) F(w,y)=g(®,y)=h(z,y), f(w,y)=G(w,y)=H(w,y);
(16) ¢(@,9)=H(z,y)=g(2,9) =h(z,y);
1n . Gz, y)=H(y,)=g(@,y)=h(y,s).

1° First let us examine (15).

THEOREM II. If the sirictly monotonic and derivable functions F(x,y),
H@,y) satisfy the funciional equation

(18) Flf(@,9),f(w,0)]=F1F (@, %), F (y,0)]%),

Xu(y)=Y,(y)+o,
Y,()=Y,(v)+4,

%) See 1) and L. Fuchs, On mean systems, Acta Math. Acad. Sci. Hungar.
1 (1950), p. 303-319, § 4.

=gt %)],
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then (and only then) they can be writien in the form
(19) F(z,y)=¢ ' [Po(2)+Qo(y)+E],
(20) flz,y)y=9 [po@)+ae¥)+r],

where p(x) i3 an arbitrary function and five of the six constanis P,Q,E,p,q,7
are arbitrary and the sizth can be obtained from the equation

(21) (P+@-1)r=(p+q¢—1)E.

Proof. Since now in (1) g{x,y)=h(z,y), therefore if we keep u=v
constant, then the differential equation (12) can be written as

hiz,y) _a ¢'@)

fa(myy) b @)’
where
L 1(w,)
B H,(u,v

Thus we obtain
(22) f(@,9)=x[ag(x)+be(y)]

in the same way as we obtained (3).
In order to determine F(z,y) we put (22) into (18) then

Plylag(@)+be@)],z[ap(w) +be(0)]|=1lap[F (z,4)]+ bo[F(y,)]).

Substituting both sides of this equation into the funetion (%)
and writing again the new variables, we have

P [x(az-+by), z(au-+-bv)])
—ap[Flg (@), ()]} +bp(Flg (y), ¢ (o)}
By denoting

(23) M (2,9)=1"4F [x(@), 2]
(24) N(@,y)=¢{Flg~(@),07 W],
we have .
M(am+by,au—l—bu).——aN(m,u)—}—bN(y,v).
Let
: —— .
== P u=v_u+b,
then t
25) - - M(t,s)=(a+ b)N[a—q-b a+b]
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consequently

(26) N[am-{—by,au—i—bv] ZQN(m,u)—{—bN(y,v).
a+b ' a+b a+-b

This is equivalent to Jensen’s equation and the general solution
is
© N(z,y)=Pe+Qy+E,
where P,Q, R are arbitrary constants®); thus by (24) we have (19). Ou
the other hand, taking (25) into account, we obtain from (23)

F(@,y) =y M (®),1¥)])
- M) () |
“"{(“H)[P ars O +R]l

=[Py (®)+ 9y (¥)+ (a+b)R];
hence

P Pe(@)+ QoY)+ Bl=z [Py (2)+ @y (¥)+ (a+b) R],

or with new variables and substituting both sides of this equation into
the function ¢(t)

Polx()]+Qe[x(¥)]+ R= oy [Ps+Qy+ (a+b)R]. .
With 7' (f)=¢[x(£)] we have

(27) PT(2)+QT(y)+ E=T[Pr+Qy-(a+b)R].
The general solution of (27) is 4)
T(t)=At+B.
Thus

olx(¢)]=At+B
or

x(t)=¢ [ 41+ B].

So we arrive at (20) from (22) by denoting AP=p, AQ=gq, AR+ B=r.
Finally, by substituting (19) and (20) into (18), we get (21).

2* The specialization (16) of (1) gives the functional equation
(28) Flg(@,9),9(u,0)1=flg(z,u),9(y,)].

THEOREM III. All strictly monotomic and differentiable solutions of
(28) are of the form

(29) F(@,y)=f(@,y) =y [Py (2)+Qp(y)],

4 J . Aczél, Uber eine Kilasse von Funltionalgleichungen, Commentarii Ma-
thematici Helvetici 21, 3 (1948), p. 247.252,
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(30) 9@, y)=9[pX (2)+ g X (y)],

where X (t),¢(t) and x(t) are arbiirary functions and P,Q,p,q are constanis
such that -

31 . p@=Pq.

Proof. F(z,y)=f(2,y) is evident if we set w=y in (28); further
(29) follows from (28), just as (22) from (18); finally (30), (31) are evi-
dent if we substitute (29) into (28)53).

3 We obtain the functional equation

(32) F[g(may),g(%‘:'u)]=f[9(93-,u),9(1’7?1)]
from (1) by the specializaticn (17).

THEOREM IV. The strictly monotonic and differentiable solutions of
the funciional equation (32) are

(33) F(z,y)=f(z,y)=2[o(@)+e®)];
(34) g(z,y)=¢ [ X (x)+ ¥ (y)].
Proof. F(z,y)=f(z,y) is a consequence of (32) with u=y; further

(32) with z=v implies the symmetry of f(z,y) (f(z,y)=f(y,2)); the
further proof goes along the same lines as. the proefs of (22) and (5).

4. If we wish to decide whether a given function z(x,y) belongs
to the class of functions (2) or not, we look for an equation containing
the least possible number of functions. Such eqnations can be obtained
by specializing (1), e. g. by the specialization (17), i. e. (32). The question
whether z(x,y) has the form of (2) or not can be settled practically by
testing the differential equation (12)¢).

The functions (2) ean be characterised also by the following simple
condition (which also can be reduced to (12)):

(D) The strietly monotonic and differentiable functions z(x,u),2(%,v),
2(y,w),2(y,0) — all considered as functions of @,y,u,v — are not inde-
pendent.

THEOREM V. The condition (D) is necessary and sufﬂeieht for the
emistence of three strictly monotonic and differentiable functions Z (1), X(1),
Y (1) by which the function 2(z,y) might be represented in the form (2).

5) It might be observed that solutions (29), (30), (31) can be obtained also
without supposing the derivability by reducing the equation (28) to the funetional
equation of bisymmetry. For theorems IIT and IV ef. M. Hosszu, A biszimmeiria
fiigguényegyenletéhez, MTA Alkalmazott Matematikai Intézetének Kosleményei
1(1952), p. 335-342.

) J. Aczél, Zur Charakierisierung nomographisch einfach darstellbarer Funk-
tionen durch Differential- und Funktionalgleichungen, Acta Scientiarum Math. 12,
Pars A (1950), p. 74-80, §1.
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Proof. The condition (D) is necessary because
212w, u) 142 [2(y,0) =2 [2(2,0)]+274 [2 (Y, w) ]
On the obher hand, if (D) holds then
| 24(m,u). 0 25(2,u) 0
} 2, (2,v) 0 0 2y (2,0) 1
L0 AW mw 0
| 0 21(y,9) 0 25(y,0)
and taking w==y this becomes
20(2,9) 22(2,9)2 3 (¥, 9) 2. (Y, 0)=2(7,Y) 2:(2,9) 2: (¥, ) 2a(y,7) -
If v is constant, we arrive at (12) with

2y (,0) 21(¥,9) 2a(y,y)
X it hds Y(y) =L 2
e MR s W
Thus really .
‘ 2(@,y)=Z[X (z)+ Y (¥)], q.e.d.

(Regu par la Rédaction le 15. 5. 1953)

Sur certains corollaires du théoréme de Titchmarsh
par
" W. WOLIBNER (Wroctaw)

Désignons respectivement par f(z) et g(x),0<<o<2x, deux fonetions
complexes, intégrables avec leurs carrés,
o
flz)~ Z(a’n cosnz + b, sinnz),
=0

g(@)~ 3 (¢, cosna + di, sin na) (by=d,=0),

n=0
ol les séries

& Sia, St Sleat, Siar

sont convergentes.
Les coefficients de Fourier 4, et B, de la fonction

h () =0ff(y)g(w—y)dy

sont alors

A= mazo + Z

m=1

a0d7n+ 00 mo_ 1 S‘ mdm‘}"b Cm s
217'.

T (mb +a-ndn v (G, + Conbm)
A= (Ot byly) — = S N SR

(@) AEM=0 n*—m?
. (@ + Cnbn) + M (Gl i)
nEM=0 “mP—mnt
6o+ 3b, s, 2040,
B a’ndvzlonn)+a%n+ nd‘z____/;:_Q
< (Gl — mdm) o 717'_(-bnfim —bpdy) — 1 (%ﬁnj" O )
:+ n;%zxi mr—nt-- nq='m=(| m?—n*

pour n>0.
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