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BEach of the 10 parts into which the clasy of all topological spaces
ig divided corresponds to one of the conjunctions (*,*). The falsity of
these conjunctions does not follow from (s) sinee all the ineclusions
implied by (*x) are allowed for in the dia-
gram. The parts marked by numbers (1)-(9)
correspond to the respective cases (1)-(9)
congidered by Sikorski, whereas the part
(0), corresponding to the conjunction

(0) (I)(I) (DY,

hag been left ount by him.

To supplement the proof it is necossary
to give an instance of a space possessing
the property (0).

Tig. 1 R. Sikorski hag proved existence of

a topological space Y;JY¥,, possessing

those and only those of the properfies (x) which are possessed by both
gpaces Y,,Y,.

One can eagily verify, that if Y, fulfils conjunction (2) and ¥, ful-

fils conjunction (3) (and the existemce of such spaces is proved by

Sikorski), ¥; 7 ¥, possess the property (0). Thus Sikorski’s proof
is completed.

ON THE REDUCIBILITY OF DECISION PROBLEMS
BY
A.JANICZAX ¢
EDITED BY A, GRZEGORCZYK*

The notion of general reducibility by means of machines, first men-
tioned briefly by Turing?!), was defined precisely by Post?). Let
“X >V denote that the decision problom of the set X can be reduced
to the decision problem of the set ¥ by means of Turing’s machine.

In order to oxamine this relation we introduce the following de-
finitions:

A function f is eomputable with respect to a funckion ¢ if f belongs
to the smallest clasy which:

10 contains the funetions: g, o+1, r+y, Br=x—[y cf;

20 ig cloged under the operations of substitution, of identification
of variables, and of the offective minimum.

By the operation of effective minimum we mean the operafion which
Jeads from a fuaction A to the function j defined as follows:

j(u)=(minz)[h(u,r)=0]1=the smallest x such that h{u,2)=0
provided that the function b satistios the condition
13 h(u,z)=0
u oz

(if h does not satisfy this condition, then the operation (mins) is unde-
fined). :

Let ex Do the characteristic function of the set X. The function ex
agsumes only the values 0,1, and

[lex(s)=1-=-z¢X.

Using these notions we can prove the

THEOREM 1. X—Y if and only if the function ex is computable with
respect to the funetion eyp.

* This paper and the one immediately following are posthumeus works
of an author who died prematurely in Warsaw on July 6, 1951. The papers were
prepared for publication from the notes left by the author.

1) See A. M. Turing, Systems of logic based on ordinals, Proc. of the London
Math. Soc. 45 (1939), p. 173.

3) See E.L.Post, Recursively enumerable sets of positive integers and their
decision problems, Bulletin of the Am. Math. Soc. 50 (1944), p. 311,
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This theorem can bhe considered as & mathematical definition of
general reducibility. It facilitates the proofy of many theorems concer-
ning properties of the relation of general reducibility.

We shall consider the following example.

Let & Dbe the class of all sets X for which the decision problem is
reducible to the decision problem of a recursively enumerable set:

XeX-

=Y X->Y and Y is recursively enumerable.
¥

Let ZIT be the class of all gets X for which there existy a recursive
relation R such that

zeX-e= ZITR’L Y,8).

Let —X denote the comploment of the get X

THEOREM 2. For every set X of positive integers, XeX if and only
if X,—XeXIT.

Proof. We shall say that a function f is recursive with respest to
a fumction g if the function f belongs to the smallest class which:

1° containg the function ¢, and 2+-1;

20 i3 closed under the operations of substitution, of identification
~of variables, and of recursion.

If the funetion ey is computable with respect to the function ey,
then the function ey can be brought to the following canonieal form:

§)) ex(2) =EB((min @) Hy, (P (2,2))=01);

here Hy(w) is a universal function for the class of all functions which
are recursive with respect to the function ey.

We assume that Hg(u)=ep(u). P(z,2) is a pairing function (e g.
P(z,2)=2°(22+1)—1).

The function Hp(w) can be defined by means of double recursion?).
This recursive definition can he transformed in a familiar way into an
arithmetical one by means of the double series of primes: p(z,y)
=p(P(%,y)), where p(v)= the 2-th prime. The arithmetical definition of

the relation Hy(x)=z obtained in this manner has the form of an oqui-
valence:

(1) Hexp(n,p(o 8))>0+D-0xp (v, p(0,5)) = ep (4)+-1:

(II)  Hy(w (2) exp( v, p(k,2)=e1:
(8) R(v),

E%’l

}) E.g. in a manner similar to that used by Robinson in his definition of
2 universal function for the class of primitive recursive funetions. See -R. M. Robin-
son, Reeursion and double recursion, Bull. of the Am. Math. Soc. 54 (1048), p. 987-903.
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where exp (v,x)=(mint) [~(m‘+‘|'v)],‘ and R is a recursive property which
establishes certain rclations between the (positive) exponents exp(v,p(n,4).
Namely the relation R corresponds to the inductive step in the recursive
definition of the function H. Condition (1) states that Hy(x)=ey(2) and
oquation (2) that Hy(x)==2

" It follows from the conditions (1) and (3) that if exp(v,p(n,4))>0,
then exp(v,p(n,i))=H,(#)+1.

We also have the equivalence

w=2-
=224

(XID) ==y (i) FLlr=1u —17-v-u=1~It_[g(t);é1),

where ¢ is a ecomputable function which enumerates the set Y.
From (II) and (III) it follows that the equivalence (II) can be
written in the form

(IV) Hy ()= ZZHS’ 8,1k, 2,2),

where § is a computable relation.
Indeed, substituting (IIT) for (I) we get an equivalence of the form

HZ];[ Un,i,8,8,k,7,2)
s

Y i

Hy(x)=zr =

with a recursive U7. It is known+) that such & recursive ¥ can be found
that ) :
HZH U(v,i,8,t 7r,r,~ -_ZH”V (v,1,8,8,k,2,2).

<y 8 1 Ty
Taking

S(v,8,t,k,2,2)=[] V(v,i,8,t,k,2,2)

i<y

we obtain (IV) since the rostricted quantifier I7 does not lead beyond
the clags of computable relations. i< .
From (IV), using the pairing functions, we obtain

Hy, ( ZHT kg, 1),
V)

ZHT Eyy,u,1),

=1—Hy, () and T is a computablo relation.

Hy () 7#0-=" H,(z

where H, ()

4) Bee A. Mostowski, On a set of integers not definable by means of one-quan-
tifier predicates, Ann. Soc. Pol. Math. 21 (1948), theorem- 3.3, p.. 1186.
3%
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From (I) and (V) we obtain
ceX-=- N{E(r)=1-M(rz)},

(VI) "
ve—X-= I {B(r)=0-M(r,2)},
where r
Mr,2)=- 3 [] Tk, Pl2,7),u,8) ] ZHZ’(kI,P(z,m),u,t).
@ ¢ el A

From (VI) we conclude that X and —X belong to the class ZII
Conversely, if X,—XeXIT, then there exist two sets Z, and 7,
such that '
#eX =) ~P(2,0)eZ,

ve—X- =3 ~P(z,0)eZ,.

?
Tt one of the sety Z;,Z, is empty, then also one of the sets X, —X is emptby,
and X and —X are computable. Hence ¢xis also computable. If both
the sets Z, and Z, are not empty, then they are recursively enumerable
ones. Hence there are two computable functions f and g such that

zeX- a-;~%‘l’(z7v)=f(?/)y

ge—X =3~ 3 P(z,0)=gy).
Y ¥

Let U be the set of the values of the funetions 2f and 2g+-1:
(VIII) ve U = lo=2f(y) v &=29(y)+1].
v

(VII)

From (VII) and (VIII) we obtain
zeX =-3 ~(2P(2,0)e U) =" Y ep (2P (2,2))=0,
IX v v
(%) te —X =Y~ (2P(2,0)+1e U)-=-3 ey (2P (2,0)+1)=0.
Also ° ”
(X) ex(2)=L—ey(2P(z, (mino)ey (2P (2,v))=0-v ey (2P (2,7) +1) = 0])).

The function e, satisfies the following condition:
[T 3 ev(2P(2,0))=0-v ey (2P (2,0)+1=0}.
z v

This follows at once from (IX). Therefore the operation of minimum
used in (X) is effective, and the function ey is computable with respect
to the funetion ey 5).

% An extension of the Theorem 2 was proved by 8. C. Kleeno: Introduction
to Metamathematics, Amsterdam 1952, p. 293, Theorem XI.
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SOME REMARKS ON PARTIALLY RECURSIVE FUNCTIONS
BY

A JANICZAK T
EDITED BY A, GRZEGORCZYK*

The class PR of partially recursive functions is a natural generali-
zation of the class of compufable functions. In this note I shall mention
some properties of the class PR. Let D*(f) be the set of arguments and
D(f) the set of values of a function f. We shall consider only such fune-
tions for which both the sets D*(f) and D(f) are not empty and are

© contained in the set of positive integers.

1. DEFINITIONY). fePR if and only if there exist two computable
functions g and h such that ‘

(1) [IZED“(f)'E'%’h(Z,;L‘):O,
2y ]:[zfl)*(f) "D flz) =g ((min@)[k(2,2)=0]),

where (min)[h(z,z)=0]= the smallest x such thal h(z,w):().-
The definition of partially recursive functions of many arguments
is similar. : )
2. The above definition is equivalent to the following two:
jePR-=- Y{geR-D(g)=D"(f) fye B},
. u

fePR-

=-D*(f) is a recursively enumerable set

and [[{geR-D(g)CD*(f) D fgeR},

where B is the clags of computable functions, and fg is the superposition
of the functions f and g.

3. There exists a function fePR which assumes only two values
0 and 1, and which cannot be extended to any computable function.
This means that

g{ge ‘R f#9\D*().

* See the footnote* on page 33.

1) See 8. C. Kleene, Recursive predicates and guantifiers, Transactions of the
Am. Math. Soc. 53 (1943), p. 41-73. The first definition was p{oposed by Kleene
in the paper On notation for ordinal numbers, Journal of Symb. Logic 3 (1938), p. 152.
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