ON A PROBLEM OF K. ZARANKIEWICZ
BY
T. KOVARI, V.T. $G8 AND P. TURAN (BUDAPEST)
1. K. Zarankiewicz?®) hag raised the following interesting question.

Let 4, be a matrix with » rows and » columns consigting exclusively
of 0’ and 1's as elements, and § an integer with

(1.1) 2 n—1,

Now the question of Zarankiewicz requires a proof of the asser-

tion that if 4, eontains “a sufficiently large” number of 1%y, then the
matrix contains a minor of order j consisting exclusively of 1’s. More
exactly, what i3 the minimal number %, (n) of 1’s in 4, so that the exis-
tence of a minor of order § consisting merely of 1's can be assured?
8. Hartman, J. Myecielski and O. Ryll-Nardzewski have proved
that

(1.2) ¥ Ty ()< egn¥2,
with numerical ¢, and ¢,2). In what follows we shall show that

ey (m)

(1.3) lim gt =1,
=00 :

and also the inequality

(1.4) ky(n) <1+ 20+ [052],

where [#] as usual denotes the integral part of »8).

Hence, for.j=2, Zarankiewiez’s question is at least agymptotically
solved. Moreover we shall show for every i of (1.1) the inequality

2j—1
(1.5) k,(n)<1+y’n+[(j—1)‘fn[7“]

which containg (1.4) as the gpecial case j=2. In the sequol the right-
-hand part of this inequality will be denoted by }(n)

) Colloquiurma Mathematioum 2 (1981), p. 801, problem 101.

. *) Communicated to the Polish Mathematical Bociety, Wroctaw Section, No-
vember 20, 1951, Seo this fascicle, p. 84.

a)‘As we learned, after giving the manuseript to the Redaction, from a letter
of P. Erdés, he hag found independently most of the results of this paper,
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2. If = is “small” compared to j, the estimation (1.5) can be trivial,
i.e. ki (n)>=n% This is certainly not the case when
3

2.1) n=f

In that caso, namely, we have

iz8,

2 k)
j)62>(1+?)1
forther
RAY 2\ 2
'n>y'2>9'(1+7) ) (1+-:~)7’<"

and. thus

3 AL g \E n \F A
K my<14+jn 4+ (—1)7n 7 <(F) o) i
7
il 1 LAl g
=n7 if-}—?.—z-)--}(_r:l_y_ <j'n ! (1+7—_)<n2
7‘ 7
It is very probable that also for j=>3

k(n
lim 2(1_)1
W > 00 ny 1.

exists; some remarks about that we shall find in Seeti?n 6. The proof
of (1.5) will be given in Section 4, that of (1.3) in Bection 5. )

As we can see from the proofs, the results could be generalised to
the case when the matrix 4, is replaced by a matrix B, , with n, Tows
and n, colurmns and we want to ensure the existence of a subma‘tl_'ix
with j, rows and §, columns consisting exclusively of 1’s. We restrict
ourselves here to the original problem of Zarankiewicz; nevertheles§ we
ghall treat in Section 7 the case n,=p(P-+1),N=p%ji=F1=2 (P prime),
in which case the ewscé minimum can be determined.

3. Before turning to the proof we ghall give an a.pplic.ation of (1.B)
to a graph-theoretical question. Given n different points in the three-
-space Py, P;,...,P,, constituting the vertices of the graph P of o_rder n,
we connect some pairs P;, Py (i7%) by a lifie, called an edge of P,in such
a way that two edges can have no other common point than a vertex.
A part of the edges together with their end-points fm:m a subgraph
of P; a subgraph is called complete if all pairs of its vertices are Qonnec-
ted by edges. A graph is called of even ctrouit or, shortly, even if its ver-

tices can be divided into two classes, 4 and B in such a way that no
4%
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two vertices of the same class are connected. A graph P’ is o saturated
even graph if, moreover, any two vertices taken ouf of the clagses 4
and B are connected in P’ by an edge. A saturated oven graph P’ is
called of the type (¢,1) if the classes 4 and B confain exactly 4 and I ver-
tices respectively. Now there is a trend in this theory?) to infer from
the number of edges as much as possible about the stricture of the graph.
Thus emerges the question, what number of edges existing in a graph P
of order n can ensure the existence of a Saturated even subgraph of the
type (j,7) if 2j<<n? Denoting the minimal number of edges hy H;(n) we
deduce immediately from (1.5) the estimation

3.1) H (n)<hi(n) where h;’('n)z-l-!-l% Ic}‘(n)],

i. ¢. the existence of hJ(n) edges in a graph of order n already ensures
the existence of a saturated even graph of the type (,). Namely let
a matrix 4,= (ay), correspond to our graph P of order n with the

vertices P,,P,,...,P, so that
=0 (i=1,2,...,n)
and, for 5%
39 1 if P; and P, are connected,
(3-2) “i"_“"“‘{ 0 if not.

If there are at least hf(n) edges in P, it follows that the matrix

has at leagt
K *
2h}‘(%)=2([ ’é")]+1)>9 k?f L n)

1’s ‘and thus owing to (1.5) a minor of order j consisting merely of 1’s.
If the indices of the rows and colwmus of this minor are

(3.3) T1ylayeeey By respectively oy, Mgy ey My,

then owing to the structure of the matrix none of the row-indices coin-
cides with 2 column-index in (3.3). But this means that each of the
vertices P,h 1 By ’Pii iy connected with the vertices P,, , P, .,me.
Omiftting the edges of the form P, P and Pm P, (if they exmt at all)

we already obtain the required sa‘cura,ted even gmph of tiype (4,4).

It is very probable that also the quantity hf(n) is near to the best
possible. By a similar reasoning we could solve the .analogous problem of
the existence of a saturated even graph of type (i,7) with i--i<{n but
wo do not go into details.

#) For an account of this see P. Turén, On the theory of graphs, this faseicle,
p. 19-30. -

om®
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Let us call attention to & rather surprising fact. We have geen that
2f—1

the presence of about ni edges in a graph of order n already ensures
the existence of a saturated even subgraph of the type (j,7), i.e. of
a subgraph of order 2j with at least j* edges. Now wo may compare -
this result with the solution of the questlon what is the minimal number
of edges in a graph of order n which engures the existence of a complete
subgraph of order 2, i.e. of a subgraph of order 2 with §(2j—1)~2;2 edges.
This problem was solved more than ten years ago®) with the following
result: the exeet minimum i
2 —2
2(2j—1)
where 7 is uniquely determined by

n=r mod (2§ —1)

.
e (],

(0<r<2j—2).
I. e. the minimal number ig now of order n2, which is much larger than
%1
order n 7 .
4. Now we turn to the proof of the inequality (1.5). In other words,
we have to prove that if the mumber of 1’s in A, is greater than
i
jut(i—-107n 7 =0,
then 4, containg certainly a minor of order j consisting merely of 1’s.
To show this we mneed Holder’s inequality in the following form:
For the positive numbers ;,ds,...,by and integer 1>1 we have

L L 14
St L‘“’( va) .
w=1

y=1
k, be such that with the above U

(4.1)

(4.9)

Now let the integers ki,k,...,

(4.3) by 4-Tyte. R, >0
and

k=i for v=1,2,...,m,
(4.4)

k,<j for w=m+1,...,n

Then we have

S0 50

P y=1

5) See 4) in which also the question is gettled when we reqmre the existence
of a complete subgraph of order (2j—1).
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Applying the inequality (4.2) with
I=j, b,=k,— 1, L==m,

we obfain
n k,, 1 mn . i
S04 S
=1 \] A y=1
I ) it iy
}'j_'{Zkvwlnw—'(k’m%-l'{"-"+kn)} >'F‘(U'—'m}3-
¢ p=1 M

Taking into account (4.1), we get
n - 1 %1y i
s 345 -0 f=i-0f> i-v(%).
Now let k, bo the number of 1’s in the »-th row of 4,. The 1’3 in
the first row determine cxactly (7;1) combinations of the column-indices
1K My< Myl <My 80 that
Bign, == By, == o =gy, =1.

The same applies to all rows. Hence the total number of such combina-

tions is
S0
il

=1
But owing to (4.3) and (4.5) we get in this way more than (j—1) (”) com-
binations. This means, however, that there is at least ono com{)ination
1< i<l <...<{h<n
of column-indices which occurs in at least § rows, say in the d,-th,d,-th, ...
««y @th. Hence the elements
g 1 (v=1,2,...,5; p=1,2,...,9)

r
form a minor of order j consisting merely of 1’s.

5. Next we turn to the proof of (1.3). This can be done if we agsu-
me a matrix A, with 0 and 1 as elernents, with “nearly” n®? l-elements,
not having a minor of order 2 of 1’s. Owing to the fact that the quotient of
the consecutive primes tends to 1, it is obviously sufficient to prove
our assertion (1.3) for n-values of the form ’

(5.1) ' n=p*,
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where p runs over the prime numbers. We shall show indeed that in

this case ome ean construct a matrix 4, with exaetly p?=n¥* 18 go

that it containg no minor of the second order consisting merely of 1%s.
For the proof of our agsertion wo define the symbol (n) by

(5.2) nE= () modp oL ny><p)

and congider the following combinations of the elements 1,2,...,p%
taking p of them at a time. If

(5.3) Iga<p, 0<b<yp

aro integers thea we form the combinations

(5.4) ‘ Ta={kp+ Ca+bky+1)  (k=0,1,2,...,(p—1)).
The number of theso combinations is obviously 2. The essential pro-
perty (property A) of these combinations is that any two of them have

at most one element in common. To show this we consider the combi-
nations J,, and J,5. Owing to the construction, each of the intervals

o<np, p<n<klp, ..., (p—1)p<n<p?

containg exactly one element of every J,-combination. Hence the com-
mon elements of J,, and J,; ave only those for which

a--bk=c--dk modp.

Bub owing to (5.3) we have 0<<b<<p, 0<d<(p, which means that apart
from the case b=d there iy exactly one common element of Jy and Jes.
If b=d, as4¢ then J, and J,; have no element jn common.

With the aid of this system of combinations wo construct our ma-
trix in the following way. We arrange thom in a cerfain way; then, with
a changed notation we denote them by

Tudayeensdps
and lot
Jr=(i1r7i2r,"'9'£17r) (r=1,2,...,p%)
Then the 7-th row of our matrix consists of 1's at the i1-th , 4g,-th, .. yipr-th
place and of 0's at the other places. Then the number of 1's in this ma-
trix 4, is obviously
p3=n3/2,

and we assert that A, does not contain a minor of second order com-
sisting inerely of 1’s. Indeed if it did and the 1's were taken from the
i-th and kth rows, then the combinations J; and J; would ha;ye two
common clements at least, against the property A. Hence (1.3) is also
provod.
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6. It is vory probablo that the estimation (1.5) approaches the best
possible also for j>2. More exactly, an inequality of the form
91

(6.1) ky(m)y>en 7

probably holds also for j>2 where ¢ depends only wpon j at most. A
proof of this assertion would follow if it eould be proved for all n-va-
lues of the form

n=p,

p prime. We should need tho existence of a system B of » combinations
formed from elements 1,2,...,7', taken p’~" at a time, with the following
property: no system (4y,4,...,%) with

1 <iy< .. <Ly

can occenr in more than (j—1) combinations of the system B. For j=2
thsi problem had been solved in Section b.

7. As we did mention at the end of Section 2 there is one cage when
the ewact minimum can be determined. It is the case, when

(1.1) w=p(p+l),  ny=p%
In this case, denoting the minimum by ks a(ni,7,), Wwo assert thab

(7.2) Fa o {0 +p, 0% =ptlp+1)+1.

To gshow this we first coastruet a matrix with p*4-p rows aud p* co-
lomas containing p?(p+41) 1's and no minor of the second order consisting
of 1’s. In order to do'this, to the system of combinations J, described
in (5.3) and (5.4) for »=0,1,...,(p—1) we add further combinations:

(7.3) L,=(vp+F) (k=1,2,...,p);

this enlarged system of combinations we call D-system and thon con-
struet a matrix ¢ with p*+p rows and p2 columns as given in Section 5.
Then the number of 1’z is exactly »?(p-+1) and gince cvidently no two
combinations of the D-gystem contain & common ambo, no minor of
the second order can exist in C' consisting of 1's. So this part of our
agsertion is already established. To prove the remaining part we, assert
further that no zero in (' can be replaced by 1 without violating its
property of not containing a minor of the second order consisting of
P’s. This will be shown simply by eounting all ambos in D, taking in-
to account that no two of them are identical. Since each combination
containg exactly p eloments, the total number of ambos is

p(p+1)(229) =(’;ﬂ),

fr=ja=2.

icm
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indeed the number of all ambos of p? elements; thus if we changed
a zero in € to & 1, the total number of ambos would be greater than

('pz), i. ¢. the corresponding matrix would confain a minor of the second
2

order congisting of 1’s. With this remark our proof can be completed
as follows. As before, we have only to show that if the mtegerg

Bprkgy oy kpn sy

are subjected to
P(P-+1)

S h=E>pip+1),

ve=l

2(P+1)
kY [p?
5 [5)-6)

But this follows evidently from the fact that if

fhen

»(w+1) i
(7.4) 2 L=pp+1) (1, integers),
r=1
then e
2{p+1) p(P+L
k . 1,
min ") > min ( )
T ; (2) b y;: A2y’

and the quantity

P(p+1) 1
2 (3)
y=1

with the restriction (7.4) zissumes its minimum for I =ly=... =l =0;
. 6. . :
»(P+1) .
l R
min 3 ()= (%): a.e.d.
p=1
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