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On linear methods of summability
by
8. MAZUR (Warszawa) and W. ORLICZ (Poznan)

The earliest systematic applieations of functional analysis to various
problems of the theory of summability were due to 8. Mazur and 8. Ba-
nach. In their investigations (see [12],[5])?) the problematic part was
restricted to questions of the consistency of Toeplitz methods corres-
ponding to matrices on which some restricting hypotheses were imposed.

In the autumn of 1932 the authors of this paper carried out some
research work with the aim of generalizing the applieability of the
methods of functional analysis to the theory of summability. Their
main results were published without proof in the €. R. de I’Académie
des Sciences [13]. The most important observation consisted in finding
out that the Banach spaces do not present a sufficient ool of research,
and that the fields of the summability methods constifute more general
linear spaces, to which the authors gave the name of Bj-spaces.

At the time when functional analysis was flourishing in the sehool
grouped around 8. Banach, called the “school of Lwéw”, investigations
of the general properties of B,-spaces and, later, of polynomial opera-
tions and other problems of functional analysis appeared fo us as the
most urgent task of research. This delayed the publication of a complete
paper on the applieations of By-spaces to the theory of summability,
and the outbreak of World War IT made it impossible. Various abhsorbing
activities in the period immediately after the war made us put off the
publication until now.

Meanwhile, the B,-spaces, forming & particular case of linear topol-
ogical spaces, were studied by numerous mathematicians working in
the domain of functional analysis. The applications of the methods of
functional analysis to the theory of summability also attracted attention
and several mathematicians obtained results similar to ours (Agnew [3],
Brudno [6], Darewsky [7], [8], Wilansky [18], [19], and others).
Especially the school of Tibingen obtained many interesting results

1) The numbers in hrackets refer to the bibliography at the end of this paper.
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130 8. Mazur and W. Orlicz

in the general theory of summability. In the papers of Zeller [21], [22],
[23] one may find some of our theorems partly in a generalized form.
Zeller applies By-spaces in his research, partly in a manner similar to
ours of 1932.

The present paper has been drawn up with slight alterations after
some notes dating from the period of our collaboration during the year
1932. Besides certain modifications of an editorial character, there are
also some more important changes, consisting in the omission of proofs
of some theorems which we believe to be given a more adequate presen-
tation from the methodical point of view in the works of Zeller; moreover,
we have added the part (B) of theorem 11 in 4.4, which we proved in 1935.
In sections 2 and 3 we prove some theorems dealing, among other prob-
lems, with bounded sequences summable by a linear method of summab-
ility; in our note [13] those results were given only in part. The consis-
tency theorem for bounded sequences (see [13], théoréme 6) is not to be
found in the papers of Zeller. It has been found independently and proved
again, without the knowledge of our note, by Brudno [6]. The proot
of Brudno, however, is more complicated than ours, and the ideas of
functional analysis do not appear in it.

At one time the authors. intended to transfer their investigations
to continual methods of summability, ©. e. methods based upon linear oper-
ations transforming sequences into functions. This has been done re-
cently by two pupils of the former of us (cf. Altman [4], Wiodarski
[20]).

)This paper is restricted to the real case; the extension of ifs results
to the summability of sequences with complex terms does present no
difficulties.

1. In this section we shall first introduce certain definitions and no-
tations. The terminology concerning the B- (Banach) and B,-spaces is
that used in the monograph of Banach [5] and in our paper [14]. Small
italics @,y,u,v,... stand for sequences of real numbers; e, denotes the
n-th wnit sequence, i. e. the sequence whose #-th term is equal to 1, and
the remaining terms are equal to 0; e stands for the sequence all elements
of which are equal to 1. By T, T, T,,T, we denote the setis of all sequen-
ces w—_—{t,n}, of bounded sequences, convergent sequences and sequences
convergent to 0, respectively. With the usual definitions of addition and
multiplication by sealars they ate linear spaces. The norm being defi-
ned as

ffe]l= SEP ftaly

Ty, T,, and T, are B-spaces; if we denote in T the n-th pseudonorm as
l|#lp=1t,l, T becomes a B,-space.

icm

On linear methods of summability 131

Infinite matrices (a;,), (bi), (€m),--- and corresponding methods of
summability are denoted by capital italies 4,B,C,...

The expressions “the method 4=(a;,)” and “the method correspon-
ding to the matrix (a;,)” mean the same, namely “the linear method
of summability generated by aid of the matrix (ay,)” — a3 below.

The series

Au("’) = 2 Binly
n=1

are called the iransforms of the sequence m={t“} (corresponding to the
methods 4); we shall also write
k
.4ik(m)=z‘lamtn (¢,k=1,2,...).
If for a matrix A ={(a;,) and a sequence = {i,,} all the transforms 4 ,(x)
are meaningful and there exists the finite

Hm 4 ;(z)=A4 (=),

> 00 =
then the sequence = is called summable to A (x) by the method A, or briefly
A-summable to A (x). Hence every matrix leads to a method of summability
defining a generalized limit A (#) in a certain class of sequences. The set
A* of all sequences summable by the method A4 is called the field of
summability of the method A; by Aj we denote the subset of A* consisting
of those sequences which are 4-summable to 0. If T.CA* or T,CA*, the
method A will be termed convergence preserving Or convergence preserving
for null sequences, respectively. If, moreover,

A(z)=1limt, - for every xeT, or zeTy,
n—»00

the method A will be called respectively permanent or permanent for null
sequences. If, given two methods 4 ={(a;,) and B=(d;,), we have 4*CB",
then the method B is called nof weaker than A; if zeA* and #eB* and
A(z)=B(z), the methods are called consistent for the sequence &. If
T, A*CB*, the method B is called noi weaker than A for bounded sequen-
ces; if T,A*CB* and A(x)=B(w) for every zeT, A", the methods 4
and B are termed consistent for bounded sequences. Similar definitions
are used with regard to convergency or convergency to 0 instead of
boundedness. The methods 4 and B are said to be consistent if they are
consistent for every sequence zeA*B*. Two methods with a common
field of summability and consistent for every # are called equivalent.
Method A = (a,) is called identical if a,=0 for i n,a;=1; method A
is row-finite if, in every row a;,d,..., almost all terms are equal to 0;

g
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if a;,=0 for n>>4 and a,;5£0, the method is called normal. If the system
of equations

[ee]
2 i b=
n=1

has only one solution, ¢,=0, method A=(ay) is called a U-method.
If method 4 has the above property under the supplementary hypothesis
of {t,,}e.’l‘,,, it is called a U-method for bounded sequences.

1.1. Let A be the method of summability corresponding to the ma-

triX (a;;,). The following properties play an essenfial role in the theory
of summability:

(i=1,2,...)

(o) there exists }inlui,Lzaql for n=1,2,...,
=00

(a')  there ezists lim a;, = 0
im0 .

~
(B) Sllp 2} Iai'n‘l<°°7

i a=1

for n=1,2,...;

oo
(v)  there exists im ) a;,=a.

100 fi=1

The fulfilment of («) and (8) implies immediately

o
2 | a,] < oo.
n=1

It is well knbwn that:

‘method A ds convergence preserving if and only if the conditions (o),
(B) and (y) are satisfied;

method A is convergence preserving for null sequences if and only
if the conditions (o) and (B) are satisfied (see [16]);

method A is permanent if and only if the conditions (o), (B), (v) are
satisfied and a=1; ’

method A is permanent for null sequences if and only if the conditions
(«) and (B) are satisfied (see [11], [17]).

Suppose now that we are given a second method of summability B,
corresponding to the matrix (3;), and let the conditions (x) and (y)
define the numbers b, -and b with regard to method B analogously to the
numbers a, and a with regard to method 4. Tf the methods 4 and B
are convergence preserving (convergence preserving for null sequences),
then these methods are coniistent for convergent sequences (consistent
for null sequences) if and only if a,=5, for n=1,2,... and a=b (a,=b,
for n=1,2,...). : ' :
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Affer Zeller, we adopt the following notation for the convergence
preserving method :

z(d)=1lim 4;(e)— ¥ im A;{e,)=a— 2 -
720 k=1 {—o0 k=1

The following lemmata will be used in the sequel.
1.2. Let the matriz {ay) be row-finite. The system of equations

o

ul e .
D, t=1; (i=1,2,...)
A=1

has a solution if and only if, for every system Ayyhasannydy of reals,

»
(%) S =0
i1

(n=1,2,...)
{mplies

”
=0,
i=1
This is the well-known theorem of Toeplitz {sec, for instance, [5],
p. 51).
1.2.1. A necessary and sufficient condition that every bounded sequence
be sumanable by method A= a;,) is that the conditions (), (B), and (y) of
1.1 and the following one be satisfied:

(8) Hm - Y jag, — a,/=0.
o0 =1
This theorem is due to Schur [16].
1.2.2. Let the wmatriz (a;,) satisfy the condition (o) of 1.1 and the

following :
lima;,=0 for i=1,2,...,
R
sup jag, =1 for i=1,2,...;
k3

then

(a) there esists a sequence {ix} of indices and a bounded sequence {1}
such that the sequence composed of the terms

oo
U= il
s

is bounded and divergent,

(b) ~ sup 'a;,! <oo.
n k=1

k=
)

s
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Under the hypotheses of the lemma it is possible to define succes-
sively two increasing sequences of indices 4 and =, with ‘the properties
@il < 9—@+1)

Then

for 1<n<<ny, and mp,<e (k=1,2,...).

lagal<2 . for m=1,2,...
: =t
The sequence
’M,;',":‘ Z a’ikn X‘k
k=1
diverges for at least one bounded sequence A== {4 } for in the contrary

case hmaﬁn—o would, in virtue of 1.2.1, imply Z]am1~>0 as n— oo,

Wthh is impossible.

1.3. Let method 4 be convergence preserving or convergence pre-
serving for null sequences (these hypotheses are not essential for the
argument in 1.3-1.4.2). The fields of summability A* and 47 form a li-
near subspace of the space T; in A* and A§ we infroduce the pseudonorms
for n=1,2,...,

(1) Hﬂ:‘”,},:]ln\,

(2 l@lh= sup [ Anr (@)],
3) flo|°= sup [d,(@);
then we set

51 fafh
o= % Tl

| a2
o S L ok
At 2" 14l|olk
Obviously @=0 if |jz|,=0 for n=1,2,...
1.3.1. The spaces A* and Ay are By-spaces under the norm
(4) el =z + [l + |25 k

the convergence generated by the norm in these spaces is equivalent to the

convergence gemerated by the totality of the pseudonorms |zl and |=|f,
where j=1,2, n=1,2,...

1.3.2. If the method A is row-finite, then A™ and Ag are By-spaoes,
under the norm

(#) el =i+l
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the convergence in these spaces, generated by the norm (47), 8 eguwalem to the
convergence genemted by the lotality of the pseudonorms &P and [z
where n=1,2,..

1.3.3. If the U-method A is row-finite, then A* and Ay are Banach
spaces under the norm |a|f.

The proof of 1.3.1 and 1.3.2 presents no difficulties (see Zeller [21]).
The case 1.3.3 requires somewhat deeper argument. The pseudonorm
ll}® is in this case a (homogeneous) norm, since A (2)=0 (n=1,2,...)
implies #==0.

Now we must prove that the spaces 4* and Ay are complete. For this
purpose it suffices to prove that x; eA* (¢,eA;) together with

sup |4 () — ;| >0
implies the existence of a sequence m={ij} such that wu;=A;(x,) for
i=1,2,... Let the numbers Z;,4,...,% satisfy the condition (x) of
1.2; then

I

2 A Ai(y) =0

for k=1,2,...,
whence
yd
El,ﬂln;:().
i=1
In virtue of 1.2
one solution.
1.3.4. For row-finite methods (row-finite U-methods) the mnorm (4)
is equivalent to the norm (4') of 1.3.2 (o the norm Il2l®)-
This is implied by the well-known theorem of Banach ([5], p. 41,
Théoréme 7).
1.3.5. Let the U-method 4 he row-finite.
I a0 implies

the system of equations wu;==A;(2) has precisely

Then ,$k={t,’ﬁ} and
lm#E=0 for n=1,2,...
k

An analogous property have the norms (4) of 1.3.1 and (4) of 1.3.2 as
immediately follows from their definitions.

By aid of the above norms in A* and A} we may define the metric
in the usnal way by the formula d{z,y)=/lx—yll; Wwe shall say that this
metric is implied by the norm || .

1.4. Let method 4 be convergence preserving or convergence pre-
serving for null sequences. Denote by U the seb of double sequences
u={'uf¢,,} for which there exists limlimu,. It is a Bg-space ([14], (I),

k(4

i
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p.190); under the usual definition of addition and multiplication by
sealars and with the pseudonorms

[|oofl; = sup | lim wy,,|,
i N~>00

o]y = sUp 2| for i=1,2,...
n

Let us associate with the element w={t,}ed” the element (y,z,u)
of the product W=TxT,x U where y={t,}, z={4;(x)}, w={4,,(=)}.
This correspondence obviously establishes an isomorphical mapping

of 4% onto a subset R of W, which is closed in virtue of 1.3-1.3.4. The

space W is separable since such are its components (for the separability
of U see, for instance, [14], (I), p.191-193). Hence:

1.4.1. The spaces A™ and Aj are separable.

1.4.2. It is not difficult to establish the general form of linear
functionals in W; therefore by the above described mapping of A"
onto W we may determine the general form of linear functionals in 4*
and Aj (see [217).

Let us also notice that if the series

&() 22 Uy,
n=1
converges for every meA™ (reAdp), then &(x) is a linear functional in
A* (47).

2. In this section we shall deal with the problems of consistency
of methods of summability. Given two methods of summability 4. and B
and a class of sequences T one may ask under what hypotheses about 4
and B the equality 4 (z)=B(z) results for every zeS=TA4*B*. We shall
answer this problem in certain simple cases.

2.1. Let w;={t}} denote sequences canvergent to 0 such that

lim#h,=¢, for m=1,2,..., lim¢,=0,

00 N—>00

and .
sup fin | <K <oo  for 4=1,2,...
n

Then, for every s>0 and every positive integer p, there emist numbers
QyyUgye..y Uy SUCHh that

w20 for i=1,2, ..k
(«) o
a=0 for i=1,2,...,p,
k
(8) 2 a=1,
=1
] k i
) sup | Xl —t,] <e.
n di=1
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The hypotheses imply the existence of incereasing sequences of in-
dices {n;} and {m;} such that

1 € - -
supit;{“——fu;<;— for I=1,2,...,i—1
n>ng =

(my=1),
£

sup“:li ‘—tn; < o

n<ng -~

Let us choose r>(4K4-ep)/e and set

-1
=3 r—p
l 0

For k=m, the conditions («) and (B) are satisfied, and, as can easily
be seen,

when i=umy, I>p,

when im,, i=my, I>p.

S ; {w iy P e 2K
ity — 1, = o ¢ ,(tn_f7¢>§<7‘r“. <e.
i Srt] ! pd r—p

|

We have not used the concepts of functional analysis either in the
formulation or in the proof of the above lemma. In the terms of functio-
nal analysis the hypotheses of Lemma 2.1 are equivalent to the weak
convergence of the elements #;={t}} to #={t,} in the space T,. The lem-
ma asserts that there are numbers «; satisfying («) and (), and
such that

.

—

i=

k
"] o —e <e
i= :

By a well-known theorem of Mazur such assertion is implied in
every Banach space by the weak convergence to a limit element.

2.2. Let method A be permanent for null sequences. If a bounded se-
quence x={t,} is A-summable to 0, then for every p and e> 0 there ewist non-
negative numbers a,ay,...,a, such that ;<1 and such that the sequence
Z=[t,], whose terms are defined as

t, for w=1,2,...,p,

(1) Lh=1 ty_pl, for n=p+1,p+2,. .., p+s,

[ elsewhere,
satisfies the inequality

(2) sup|4(@) — 4,(F)|<e.
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Let :
m ‘
Ym =1 Zla’intn}7 Y :{Al(‘”)} .
n=
These sequences satisfy the hypotheses of Lemma 2.1, whence there exist

non-negative numbers fi,fa,--.:Pprs such that fi=0 for i=1,2,...,p,
pis

2 pi=1 and
=1 : P48 "
(3) | 2 B~y <o

P48
The i-th element of the sequence 3 B.¥. is equal to
1

(4) (Brt- - FBprs) Bt H(Bat- -+ Bpys) Giatat- - +Bprsbiprslnrer

whence setting w,=fpin~tPpinsrt -+ Bpis for n=1,2,...,8 we see, in
virtue of (3) and (4), that -sequence (1) satisfies the inequality (2).-

Remark. Given an increasing sequence of indices {#x}, the index s
may be chosen in such a way that p-+s will be an element of the se-
quence {ny}.

This follows by a similar argument — it suffices to replace, in the
above proof, ¥, bY Vn,.- :

2.3. If method A= (ay) satisfies the condition () of 1.1, then there
ewists a normal method B= (by) satisfying the same condition (B) and
equivalent to method A for bounded sequences.

Let us choose an increasing sequence of indices {mi} in such a way
that

s 1 .
Ela'inl<7)‘1? for 4=1,2,...,
-

n=mi
and define the mafrix (b;,) as
0 for i<m,, n=1,2,... and i£mn,
1 for i=nmy,
by=1 Gin Tor my<i<<myy, W<Tiy,
9t for my<Ci=n<mhy,
0 elsewhere.

The method B= (b;,) has the desired properties.

2.4, THEOREM 1. Let the methods A and B be permanent for null so-
quences, let B be not weaker than A for bounded sequences A-summable to 0.
Then every bounded sequence A-summable to O is B-summable to 0.
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By 2.3 we may suppose that the methods 4 and B are normal ones.
Let #={t,} be a bounded sequence belonging to A4}. By 2.2 there exist
sequences of the form

J’l:altnaztz’“'1’-‘n1tn,:0105"'5
) By=tylyseeeslngy Oy p1bny 105 Gy palg y2rn ey Gnglng s 040400y

&y = t‘lvtsy---7tn,;ang+ltn5+17an:+atng+27'“1(1113!:1370,07'“1

such that 0<a, <1 and

1
|z, —alP< w for a=1,2,.

Let A={4,} be an arbitrary bounded sequence; the series
(3) m;.=7~1-51+2;1n(“’a*'1’n-1)

converges in the space 4j, whenece #; is A-summable to 0. Since from
the convergence implied by the norm [z|® follows the convergence of
every “coordinate” of the sequence separately, therefore the formula
() implies that @,={#}} is of the form

=l ot +h{1— a)t,
t;*‘:/‘q sty +2g(1— az)ts,
t:'q:ll a::l+1tn,+l+;*9;(1 - Uml)t'nn
(%) iﬁ1+I:;ﬂalll+ltn1+l+;"3(l — Oyt ) 1

vl
tn1+2=)"2 a111+1tn1+2+;‘3(1 - “nm‘-z) tavns

whence the sequence x; is bounded.
The funetionals
0
Bi(z)= E binty,
1

n=

being continuous in A7, we have

B;(xz;) :3-1-31(*”1)‘1‘2‘2%34”’”” Ly_1)-


GUEST


140 8B Mazur and W, Orlicz

The sequence ®, being B-summable by hypothesis, method ¢, corres-
ponding o the matrix whose -th row is composed of the elements

By}, By (0y— i), By (w3 — dy)yeeny

is such that every bounded sequence {Zn} is O-summable. Therefore thig
matrix satisfies the condition (3) of 1.2.1, whence

lim (‘Bz<‘x"l)l+ 2 I B'L(mn_ '"’n~1)‘) = O;

1-+0o0 N=2

tihus
o0
Bz’ (./U) :Bi(‘”l)”{_ 2 Bi(w‘n_ ‘vﬂ.——l) =0.

=2
THEOREM 1'. Let the methods AYA*,....B be permanent for null
sequences and let [] AT, CB*. Then every bounded sequence A*- summable
&

to 0 for 4=1,2,... is B-summable to 0.

As in proof of Theorem 1, we may suppose that the methods 4*, 42, ...
..., B are normal. Let || |} denote the norm || * in the space A" and let
the sequence m:{tn} be A*-summable to 0 for 1=1,2,... Applying 2.2
we can prove that there exist numbers 0<a,<C1 and sequences , of the
form (x) such that '

lo,—wlf<<2™™  for k=1,2,..n, n=1,2,...

Again as in the proof of Theorem 1, we observe that the series (3)
converges in the gpace A¥ for every bounded sequence, whence w, is
A¥-summable to 0 for k=1,2,... This implies, as before, that » is B-sum-
mable to 0.

THEOREM 2. Let the methods 4 and B be convergence preserving and
consistent for convergent sequences and let y(A)#0. If method B is not wea-
ker than A for bounded sequences, then these methods are consistent for bown-
ded sequences (see [13], Théordme 6).

Denote by A and B respectively the methods corresponding to the
matrices (@;,— a,) and (by,—b,) respectively, where a,=lima,,, b

i

n=
=1limb,,, and, given a bounded A-summable sequence z, leb
* oo
A (‘E)_ 2 a’ntn.
. n=1 )

2(4)
Then the sequence {/,—o} is Z-summable to 0. Since both methods,
4 and B, are obviously permanent for null sequences and every bounded

A-summable sequences is B-summable, the sequence {tn—e¢} is B-sum-
mable to 0. Finally, a,=b,, y(4)=y(B) implies B(x)=4A ().
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2.5. Let method A be permanent. If for every bounded A-summable
sequence m={t,} it follows that the “transiated” sequence z*={t, .} is also
A-summable, then A (x)=A (z").

The hypotheses imply that every bounded A-summable sequence
is B-summable, where B=(b;) and bu=0, by=ay_; for i=1,2,...,
#=2,3,... Hence we can apply Theorem 2.

2.5.1. In connection with Theorem 2.5 let us observe that there
exist permanent metheds 4 with the following property: the A-summa-
bility of the sequence x always implies the same for the translated se-
quence z*, but A(z)=A(«*) does not hold for every zeA*.

Choose a>1 and define the methods A={a;,} and B=(b;,) so that

1

Ay ()= Pt
) a 1 ) 1
Ay (@)= 7 fﬂ";:‘l' ty o+ o i, (method 4),
1
B (a)= py t

B, (#)= ﬁ =t (method B).
Suppose that the sequence x= {tn} is B-summable. An easy computation
gives
By(x
tuz((z—ﬂa"[—l(——)—
a

B, () B, (x)
("2 e a”, 1
whence setting
N Brarl@)
a={e—1) YT
=

’
a

(e='(a—1)(

B () _ By () _ By () _ )
a* o Py

we see that i,=z,+ ca”, and that the sequence {z,} converges. On the
other hand, method B is permanent and the sequence {a"} is B-summable
to 0, whence every sequence {z,+ ca”} with eonvergent {2} and e= const
is B-sumnmable; thus the field of method B consists exclusively of the
sequences of such form. Further, for n=1,2,... '

Ay ()= By (@),

B1(-”’)_ Bz(‘“)’_ . B, (=)

An-}-l(r):(a—l)[ 'T]'%‘Bm\nl(m)-

2
[ ()
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It follows, e. g. in virtue of 3.52, that the methods 4 and B are equiva-
lent; hence A* consists exclusively of the sequences of form {zn-l-'oa"}’
therefore, # being any A-summable sequence, the translated sequence z*
is also A-summable. The sequence #={a"} is A-summable to 1, the trans-
lated sequence x*={a"""}, however, is A-summable o az1.

The methods A and B, constructed above, yield a simple example
of two permanent and non-consistent methods of summability with
a common field.

2.6. Let method 4 be permanent; we shall say that the sequence
#y={th} € A" has propeity (p) if, given any e>0 and positive integer r,
there exists a convergent sequence m={t,,‘} such that

00

(U') ‘Za'in(t?z.—tn)}<€ for ’L’=1,2,...7
n=1

(B) !tgf—tn!<5 for 17r=172,...,'1‘,
n ‘ .

() | Danth—t)|<e for i=1,2,..,r, m=1,2,...
n=1

It is apparent that wo={ts} e 4™ has property (p) if and only if there
ewist convergent sequences x, such that ||w— z,||—0, the norm being defined
by formula (4) of 1.3.

In order that every sequemce of A* hawe property (p) i is necessary
and sufficient that the set of convergent sequences be dense in A* in the me-
tric implied by the norm (4) of 1.3.1.°

Replacing in the above definition of property (p) the permanency
of method A by the permanency for null sequences, A* by Aj, and
the convergent sequence {t,} by the sequence convergent to 0, we obtain
the definition of property (p,).

By 2.2 and by the definition of the norm (4) of 1.3.1 it follows that

2.6.1. If method A is permanent for null sequences (permanent), then
every bounded sequence of Ay (A*) has property (p,) (property (p)).

2.6.2. THEOREM 3. Let the method A= (a;) be permanent, and let
method B=(b;,) be mot weaker than A. Then a necessary and sufficient
condition for the emistence of & method C with A*=C* and O (x)=DB(z)
is 7(B)#0. '

THEOREM 4. Let the method A= (a;,) be permanent.

(a) If the sequence mye A* has property (p), them A (my)=DB(w,) for
every permanent method B mot weaker than A.

(b) If the sequence @,6 A* does mot have property (p), them for every
real ¢ there exists & permanent method B such that B*=A" and B (@,)=c.
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THEOREM 4'. Let the method A= (a;,) be permanent for null seguences.

(a) If the sequence mye Ay has property (Do), then A(z,)=B(z))=0 for
every method B permanent for null sequences and such that A5CB".

(b) If the sequence x,e Ay does not have property (p,), then for every
real ¢ there exists a method B permanent for null sequences, such that
A3 CB* and B{x,)=c.

2.6.3. 4 permanent method A is consisient with every permaneni
method not weaker than A if and only if the set of convergent sequences is
dense in A* in the metric implied by the norm (4) of 1.3.1.

The above theorems, 3 and 4, have been given by the authors without
proof in {13]. The method which we used in the course of our research
in 1932 consisted in principle in determining the form of linear functio-
nals in the space 4* in order to construct effectively method €. Since the
same method of proof was disecovered independently some years ago by
Zeller [21], whose exposition is somewhat clearer and more general,
we omit the proofs of these theorems, referring the reader to paper [21]
of Zeller. Theorem 6.2 of paper [21] of Zeller presents a slight gen-
eralization of our theorem 3, and his theorem 6.3 generalizes our theorem 4
to the case of convergence preserving mefthods. Theorem 4’ may be pro-
ved analogounsly.

2.7. The sequence {u,} is said to be orthogonal o the sequence {v,)
o0

8

if

b

lt,]< oo and Y u,v,=0 (absolute convergence of the last series
. 1
not being required).

2.7.1. Let the method A= (ay,) be permanent and let z,¢ A*. Then for
every >0 there exisls a convergent sequemce z satisfying the snequality

sup|4;(m) — 4;(@)] <e,

if and only if every sequence orthogonal to the columns of the malriz (ag,)
is orthogonal to the sequence {A;(z,)}.

Necessity. Liet the sequence {u,[} he orthogonal to the eolumns
of the matrix (ay). The functional

6 £) =2

defined for y={v;} T, is linear in T,. Let y,={d4;(e,)}; then &(y,)=0
for n=1,2,... The sequence z,=¥;+¥s+ ...+ Y, converges weakly in
T, to the element y*={4;(¢)}. Indeed, we have

sup [4i(e)+ ...+ 4 )< K for n=1,2,...,

Lim[d;(e) ... +4;(en)]=44(e) for i=1,2,...

n->00
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Weak convergence of the sequence {zn} implies &(y,+ys+...9,)—>
£(y*), whence &(y*)=0. Let T denote a linear combination of the elements
€163,63,--eybny... and leb F={4;(%)}. The elements % form a set dense
in T,; whence by (B) of 1.1 the elements ¥ form a dense set in the sub-
set ZC T, consisting of the sequences y={A;(#)}, where @ is a convergent
sequence. We have proved above that &(7)= 0 for every 7, whence &(y)=0
for every yeZ. By hypothesis the sequence y,={4;(#,)] belongs to the
closure (in the space 7,) of the set Z; consequently

£(1) ={Z;”'iAi(m(l) =0.

Sufficiency. Let every sequence orthogonal to the columng of the
matrix (a;) be orthogonal to the sequence {Ai(mo)}, and suppose that z,
does not have the property mentioned in the theorem. Let Z have the same
meaning as above; then the distance of the element (1/0={Ai(m(,)} from
the set Z (in the space T,) is positive. Therefore there exists a linear
functional in 7', of the form

00
E(y) = D) wyv;+ u lima,,
i=1 T~>00

. [e<]
where y={m}eTc, 2]%,-]<oo, guch that &(y)=0 for yeZ and &(y,)#0.
1

Hence, writing y,={4;(e,)}, we have

o0 oo
E(yn)r‘ qu'i‘lli(Pn) = Zl""’ia’inz 0
i=1 i=

for n=1,2,..., and arguing in the same way as in the proof of necessity
we infer that .
o0
DugAy(e)=0.
i=1

On the other hand,
oo
&) =2“iAi(‘-")+“= 0,
i=1
whence % =0. Orthogonality of the sequence {m} to the columns of the
matrix (a;,) gives
o0
Dy A (1) =0,
i=1
and then u=0 implies &(y,)=0, which is contradictory.
THEOREM 5. Let the U-method A be permanent and row-finite. Then

the sequence z,6 A* has the property (p) if and only if every sequence ortho-
gonal io the columns of the matriz (a,) is orthogonal to the sequence {A,(x,)}.
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In the case under consideration the convergence implied by the
norm || | is equivalent to that implied by the norm (4) of 1.3.1 — ag fol-
lows by 1.3.3. We infer immediately that the sequence zy=— {2} e A* bas
the ptoperty (p) if and only if, given any positive ¢, there exists a conver-
gent sequence {¢,} satisfying the condition («) of 2.6. We apply now 2.7.1.

THEOREM 5’. Let the method A be permanent and row-finite. Then
the sequence x,e A* has the property (p) if and only if for r=1,2,... ortho-
gonality of the sequence x4 to the r-th, (r+1)-th, (r-2)-th,... column of the
matris (&;,) implies its orthogonality to the sequence

{ngaiﬂtnn} -

For row-finite matrices the convergences implied by the norms (4)
and (4') of 1.3.1 are equivalent, therefore Boe A* has the propérby (p)
if and only if for every £>>0 and every positive integer r there exists a con-
vergent sequence z= {t,} sabisfying the conditions (x) and (B) of 2.6.
Let the method A"=(a},) arise from the method A by replacing the
first » columns of the matrix (a;,) by 0’s. It is easy to see that if for every
£>0 and every A" there exists a convergent sequence {tn} (depending
on 7) and satisfying the condition (x) of 2.6 with @, replaced by af,,
then, given any £>0, there exists a convergent sequence {tn} such that
for the method A the conditions (&) and (B) of 2.6 are satisfied. The con-
verse is also true. It is sufficient to apply Lemma 2.7.1.

3. The structure of the fields of summability may present many sin-
gularities. E. g. the field of summability defined in 2.5.1 is composed
exclusively of all linear combinations of convergent sequences and one
unbounded sequence (cf. [7] containing some more general theorems of
this kind). Therefore the study of various properties of fields of summab-
ility, aimed at explaining their structural properties, is not without
interest for the general theory of summability. This seetion is devoted
to various problems of this kind.

3.1. The space T is isomorphic with every closed linear set RCT of
infinite dimension. .

Denoting by #={t,} a variable element of the space T we define
the functionals &,(#)=t,. By a well-known procedure we can choose
from the sequence {£,(»)} a subsequence {£,.(x)} such that these function-
als are linearly independent over R, and that every functional En(2)
is representable over R as a linear combination of the functionals & (2).
The sequence {E,,‘(m)} is infinite — for, if it were composed of m elements
it would follow that R contains not more than m linearly independent
elements (it can even bhe proved that precisely m elements) which is im-
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possible. Tndeed, let @;={fi} e R for i=1,2,...,m41 and let |, ly,... by,
denote arbitrary but different indices. Since :

11381y (0)+ i £y () F o g B () =0

il b Py
it meR, Y |ul>0, &,(w)=1, it follows that all det gﬁ,):o (5,§j=1,2,...,
1 I
m--1), whence the rank of the infinite matrix &,#,...,%,..., where
i=1,3,...,m+1, does not exceed m. It follows easily that there exist 1,
non vanishing simulfaneously, such that

Moy 2924 A1 By 1= 0.

This béing so, let us consider the set § of the sequences {&ns (@)} with
¢ R. We shall prove that this set i closed (in the space T'). Suppose that
sequences {&,,(a7)} converge to the sequence {8} as p->oo, i. e. that

limg, (2°)=9; for i=1,2,...,
P>
i.e.
Clim#g =9, it o®={f).
P—>00

Denote the functionals not appearing in the sequence {&,(#)} by
&, (#), &m,(@),..; these functionals may be represented as

S'mk(m)z_Z;ai'ﬂ En‘(m)i

the coefficients of being uniquely determined. Then
" T :
ffn,,'-——Sm,‘(mp)———_z:affn‘(mp)—{‘z;afﬁt' ag  p->oo.

It follows that the sequence {#®} converges in T' to an element
which belongs to R, the set R being closed; moreover &, (#)=9;, whence
[7.‘2,;} eS8. We prove now that I'=_8. In the contrary case there would exist
a non-trivial linear functional & in T such that £(y)=0 for y={t;]e8;
the general form of & being

& .
E@)=Yoit; (o={ts}):
we must have
k
gr; o6 Em(w ) =0

for zeR. This, however, is impossible, since a;,...,0; do not vanish si-
multaneously and the funetionals &, (x) are linearly independent over R.
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It follows that the set R consists of all sequences {t.} such that £, ,2,,...
are arbitrary numbers and

3
(1) tm,= aft, for k=1,2,...
i=1

Associating with the sequence {#;}eT the sequence {t,} such that #,=d;
and #,, are defined by (1) we get a linearly-isomorphical mapping between
T and R.

Remark. From the above proof it follows that under the hypothe-
ses of Lemma 3.1 there exists a sequence of indices {n;} such that for
every sequence {#,} there exists an element {t,}e¢R such that i, =#;.

3.2. Method A will be said o have & rale of growth if there exists
a sequence {#,} such that 8,70 and [t,}eA* implies |8,2,]=0(1).

Method A will be said to have a sirict rate of growth if there is a se-
quence {#,} such that 19 |9,2,]=0(1) for every {ta} e 4%, 8,540 and 20 if
lopta]=0(1) for every {t,,}eA*, then there is a constant N such that
loa <N |[8,] for n=1,2,...

3.2.1. Every convergence preserving row-finite U-method has a strict
rate of growth.

By the theorem 1.2 of Toeplitz the set § of sequences {u;} of the
form

00
u’t':Ea'intna {tn}ETv

n=1

is a linear closed subspace of the space T. Let the operation U map the
element u={u;} of § upon the element i=[t;} of T; this operation is
additive and continuous (the simplest proof of that is by applying the
closed-graph theorem of Banach [5], p. 41). Hence #, are linear func-
tionals of the variable « and therefore representable in the form

0
(2) ty= 3 Cpmly, fOr n=1,2,...,
m=1
Where p,=10 for almost all m’s; this follows by the theorem on the ex-

tension of linear functionals in the B,spaces and by the general form
of linear functionals in the space T. Write

o0
0&1:(5“1)] Ec'muAm("”)])—l’
m=1
the supremum being extended over all elements zed* for which

sup |4, (2)] <1.

Method A4 being convergence preserving, &, is defined for every m,
10+
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moreover #,70, for. 071y 0y, If m={t”} eA*, then in virtue . of
formula (2) ™

n=1,2,...,

[ Oty [ sUP |4,y (2))  for
m

and this implies that 1° is satisfied.
Suppose now that the sequence {an} is such that |o,t,|= 0(1) for
every {t,}ed*; let us define linear functionals in 4*:

[=2]
En (.’U) =0y 'ZlonmA'm (.’B) :Untn .
M=

The sequence {£,(«)} is bounded in A*; A being a U-method, 4*is a Ba-
nach space under the norm || ||* whence there exists a constant N >0 such
that
, [€x(@)| <N sup |4y, (@)

m
for we A", and there results

[0 SUD | 3 Oy Ay (@)= 0, 877 <N,
[Am@E)<1 m=1

whence 2° is also satisfied.

3.2.2. A row-finite convergence preserving method A= (ay) has a rate
of growth if and only if the system of equations

oo
(3) 2 Gintn="0
n=1

has a finite number of linearly independent solutions (see [13], théoréme 2).
Necessity. Let B denote the set of all solutions {t,,} of the equa-
tions (3); R is obviously linear and closed in 7. The remark which follows
the Lemma 3.1 implies that if method A has a rate of growth, then R
is finitely dimensional. =~
Suificiency. Suppose that the system of equations (3) has preeci-
sely p linearly independent solutions {tn},{2},...,{#}; then there exist
indices ny,ms,...,n, such that det())s£0, ¢,j=1,2,...,p. Let B=(b
denote the matrix arising from method 4 by adding to the matrix (ay,)
p initial rows b;, where ’
0 for mnzta,
1 for

for 4=1,2,...,p. The system of equations

; bin tn= 0

has only the trivial solution, whence B is a row-finite U-method,
moreover A*=B*. We apply now 3.2.1

(i=1,2,...)

«in)

b=
e n=mn,

(i=1,2,...)
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By 3.2.1 and the proof of 3.2.2 there follows

THEOREM 6. A row-finite and convergence preserving method has
a raie of growth if and only if it is equivalent to row-finite U-method.

In the sequel we shall apply the following lemma:

3.3. Let X be a By-space with the norm ||z and let liwll; denote pseudo-
norms in X such that [z,)|->0 if and only if, for every i, ||@,ll;—0. Let the
sequence {f,b(x;)} of linear functionals in X be bounded everywhere. Then

{a) the funciionals are equiconlinuous,
(B) there eaists an indew k and a constant K such that
[&n (@) <K sup{fizlh, @], -, |2/

Equicontinuity follows from a general theorem ([15], p. 153). By (a)
there exists 2 o>0 such that [|z)<<e implies |&,(x)<1. Now, for %k suffi-
ciently large and r sufficiently small, the inequalities [z, < el <r
llelx<<r imply x<<o — there follows (B) with K =1/r.

From 3.3 it follows immediately that

3.3.1. If the sequence {£,(x)} of linear functionals in a By-space X is
bounded everywhere and converges (converges to 0) in a set dense in this
space, then the sequence converges (converges to 0) everywhere and its limst
is @ linear functional in X (see [15]).

3.4. Let 4 be a permanent (permanent for null sequences) method,
consistent (consistent for sequences A-summable to 0) with every wmethod
not weaker than 4. Let C=(c;,) be a permanent (permanent for null sequen-
ces) method such that for every xe A* (zeAy) the transforms Cy(x) are boun-
ded. Then method € is not weaker than A.

It is sufficient to apply 2.6.1 and 3.3.1 setting Eu(w)= O, ().

We shall prove now a generalization of Theorem 3.4 by means of
an argument which avoids the use of the property (p).

3.4.1. Let the methods A, A*,... be such thai:

(«) these methods are convergence preserving (convergence preseroing
for null sequences),

for n=1,2,...

1oy

(B) every two of these methods are consistent for convergent sequences
(for sequences convergent to 0),

(v) if B is & convergence preserving (convergence preserving for null
sequences) method such that every sequence A*-summable to the same limit
b (lo b=0) for i=1,2,... is B-summable, then B(z)=b;

let the method C'= (¢;,) be such that

(3) every sequence », summable to the same value (to 0) by all the
methods A',A%,..., has bounded tramsforms C;(z).
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Under these hypotheses every sequence summable to the same value ¢
(to 0) by all the methods A? is C-summable to ¢ (to 0). \

Let X denofe the set of all sequences summable by all the methods 4*
to the same value; we define the norm in X as

o L el

llzf = > T[]’

n=1

where || |[* denotes norm (4) of 1.3.1 in the space A™. X is a By-space —
obviously separable, since the spaces A™ are such by 1.4.1 (the simplest
proof of this fact is by applying the general principle of [14], (I), p. 191,
proposition 1.41). Suppose that the theorem is false; then there exists
a sequence e X such that the sequence {Oi(a?o)} diverges, therefore, for
a sequence of indices {iz}, {0y, (%,)} converges to a limit different from o,
where ¢=A"(x,) for n=1,2,... The transforms C;(#) are, in virtue of
3.3.1, linear functionals in X since

0y(@)=lim O, (2)

n—00

for #eX,

and C;,(#) are obviously linear functionals in X. Separability of the spa-
ce X implies, by 3.3.1, the existence of a sequence {G,l(aé)} extracted
from {C’fk(m)}, convergent in. X. Then, as follows by (y), the method
c =(0;,,) is such that C(m,)==0¢, which is contradictory.

3.4.2. In Theorem 3.4, the hypothesis of the consistency of
method 4 with every method not weaker than A is essential.
Indeed, suppose that method B is not weaker than A4 and not consistent
with 4. All A-summable sequences # have bounded transforms C;(a),
where Uy_,(2)=A4;(n), Cy(x)=B;(w) — the assertion of Theorem 3.4,
however, is not satisfied.

3.5. Suppose that method A is convergence preserving for null sequen-
ces and let a,, have the same meaning as in («) of 1.1. If there ewists o sequen-

e, not converging to 0, which is A-summable to the value 3 a,t,, then there
1
s
ewist unbounded sequences A-summable to 3 a,t,.
1

Let a,=0 for n=1,2,... Suppose that only hounded sequences are
A-summable; taking 2s 0 an identical method, we find, in virtue of 2.6.1,
that the hypotheses of 3.4 are satisfied, therefore A,(x)—0 implies #,->0,
whence A; consists only of sequences convergent to 0, which contra-
diets the hypotheses. If not all a, are equal to 0, lef us choose a sequence

{kn} of positive integers in such a manner that i’ola,,] ke <<oo (this is pos-
1
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sible since, by (8) of 1.1, X' |a,|<<co). Let 0 denote the method correspon-
1 .
ding to the matrix (e;,) where

("ﬁ—l,n= iy, Oy 5

Gy — &, for is£n,

Gﬁ’"— 1 A
d,m—au+7‘;— for i=n.

Then *CA* and G’(w):i(m)—-ga,,t,, T, A*CO*. Suppose that every

sequence A-summable to Ya,t, is bounded. A sequence nof converging
1

to 0 and 4-summable to g‘a,,t,,, which exists by hypothesis, is C-sum-
1
mable to 0. Since method € is permanent for null sequences, there exists

o
in 7 an unbounded sequence z, whence 4 (z)=Ya,1,, and this leads to
a contradiction. !

3.5.1. TEEOREM 7. Let method A be convergence preserving. Then
there ewists an unbounded A-summable sequence if one of the following con-
ditions is satisfied:

(a) x(d)=0,

(b) x(4)5=0 and_ there ewists a bounded divergent A-swmmable se-
quence.

If the sequence #={t,} converges to ¢ and method 4 is convergence
preserving, then

A(z)= a,i,+ z(4)1,
R=1

oo
whence in virtue of hypothesis (a) the sequence ¢ is A-summable to X'a,
1

and it suffices to apply 3.5. In the case (b) lef the sequence m={t,,} be
bounded, divergent, and A4-summable. Setting

A(w) - 2 antn
n=1
. z(4)
we see that the sequence {t,—o} is A-summable to Y a,(f,—¢) and it
suffices to apply 3.5. !
Applying Theorems 3.4.1 and 1’ we can similarly prove

THEOREM 7. (a) Let the methods A, A%,...,A™, ... be permanent for
nwull sequences. If there exists a sequence, mol comverging to 0, which is
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A™-summable to 0 for every m, then there emists an unbounded sequence
A™ summable to 0 for every mn.

(b) Suppose that the methods A, A%,...,A™,... are comvergence pre-
serving and such that every two of them are consistent for convergent sequen-
ces. If there ewists a bounded sequence A™-swmmable for every n to a value
not depending on n, then there ewists an unbounded sequence A™-swmmable
to the same value for every n (see [13], théoréme 3, and [23]).

3.5.2. As a simple application of Theorem 7 we shall prove that
If method A is mormal, convergence preserving, and such that

- 41
Hm {jag — 3 g/} >0,
i—>00 n=1

then A*=I* (see [1], [3] and [13]).

In the contrary case there would exist, by Theorem 7, an unbounded
A-summable sequence. Choose an increasing sequence {@L} of indices
in such a manner that |ig|>sup(tl,[tsl,..., t,_l) for =2,3,...; then
[z} =00 and
=1 '

2 [@ign]),
n=1

[ A1, (2)] 2 @a3, 1t,] 2 [Gintal 2

)|=o0 — which is contradictory.

ulkl lalﬂlc
whence lim|4;(x

3.6. Suppose that method A is permanent for null sequences. If there
exists a bounded divergent sequénce A-summable to 0, then there exists a se-
quence of indices {my,} such that for every bounded sequenoe {u;} there is
an element p=={t,} e Ay T, such that tm,=u, for p=1,2,...

By 2.3 we can suppose that method A is a normal one. We shall
prove first that if there exists a bounded divergent sequence {f,} A-sum-
mable to 0, then there is a sequence of indices {n,} with n, =1 and a di-
vergent sequence {i5}, A-summable to 0, such that |f|<1, #, =1 for
r=0,1,... To see this, write s,=sup(|#l,|#k.l,...); then obviously

Tim | %, | = lims;= s>0, Tim |7 85" =1im || s~ =1.
X [ 2 k
Therefore we can choose a sequence of “indices {nr} in such a manner
that %, are of the same sign, n,,=1 and

1]

Sne

=1—z, for r=0,1,2,

where

o0

' lerkéo, i‘(%— = )<oo.

r=0 r=0
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To define the sequence [} we set 1, =I, signi, s;'+2= 1
=1, signi, s3* for n,<n<n.,, r=0,1,...
Suppose, for instance that signi, =1 for r=0,1,...; then

.:—Za, i —Zami = yblgllt (A —-——)&Elamt —}-Zaw,z,
n=NRr r=0

The conditions («’) and (B) of 1.1 are satisfied, whence v;—+0. Therefore
the sequence {f}} is A-summable to 0, moreover |f|<1,=1 and # =1.
An analogous statement holds if signi, =—1. Applying Lemma 2.2 and
the remark belonging to it we can select from the sequence {n,— 1} a sub-
sequence which will again be denoted by {s;} and find a sequence =,
of elements of the form () of 2.4 (setting therein f,=15) where 0 ;<{1,
a;=1 and a,,,=1 for i=1,2,..., and

1

[}:c,,,~—.w;{1’<$ for n=1,2,...

Now, {Z‘} being an arbitrary bounded sequence, the series (5) of 2.4 con-
verges in Aj, and — as in the proof of Theorem 2.4 — we can write the
terms of this series in the form (++) of 2.4. Since #, =1, we get

i s 0 5 0 __ 1
b=ty gt ot el — ay ) ln = A, =",

whence it suffices to set m,=n,+1, w= 1Ay, s=|t}].
Let us notice that the formulae (¥+) of 2.4 define a one-to-one li-

near mapping of bounded sequences onto a linear subset of the space,
composed of the sequences of the form {i}} e A}. Moreover,

sup [t} = sup |,

therefore we get the following theorem:

3.6.1. THEOREM 8. Suppose that method A is permanent for null
sequences and that there are bounded divergent sequences A-summable to 0.
Then the set of bounded sequences A-summable to 0, considered as a linear
subset of the space Ty, contains a linear subset equivalent to the space T'.

Theorem 8 implies immediately that

3.6.2. Under the hypotheses of Theorem 8 the set of bounded sequences
A-summable to 0, considered as elements of the space Ty, is non-separable
in T, (see [13], théoréme (5), and [2]).

3.7. If the system of equations
o0 o0
(3" S amly=0 where 3 |ayl<oo (i=1,2,...)
n=1 n=1

has no bounded divergent solution, then it has a finite number of linearly
independent solutions in Ty.
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Denote by R the set of the solutions of the system (3') belonging
to T, and suppose that R is infinitely dimensional. Then for every posi-
tive integer % there exists an element #=(t,} eR, different from 0 and
such that t)=t,=...=1f,=0.

Indeed, choose k41 linearly independent elements @,,@,,...,%,, of R
and write @;=[t5). Vectors (&,8,...,1%), (#,%,...,18),..., (5, 5+ . b+
are linearly dependent, therefore there are numbers a;,ay,...,0%,,, noN-
-vanishing simultaneously, such that

K41
Z;«»g;:o for n=1,2,...,k
i<
The element
B+l
B= a;w;
i=1

is different from 0 and its first & terms are 0, whence # has the desired
properties. Let us choose the elements #,—{f;} ¢ R in such & manner that
t#=0 for 1<k, k=1,2,..., and

supltfl=1 for %k=1,2,...
n

Applying Temma 1.2.2 to the matrix (#) we shall prove that there is
a sequence of indices {ix) and a bounded sequence {1} such that

4) sup 3| %[ < oo
n k=1
and the sequence with terms
00
(5) ta= 3 Wlit
k=1
diverges. The sequence {t,} is bounded and, as may easily be seen, satis-

fies the equations (3'), which leads to a contradiction.

3.7.1. Let A= (ay,) be a U-method for bounded sequences which is per-
wg,tmcw:t for null sequences. The following condition is mecessary and suffi-
ctent in order that no bounded divergemt sequemce be A-summable to 0:

there is @& positive constant o such that for every system Ay, 2y,...,2%, of
numbers

b
(6) SUp| > @gndy|= 0 5Up (A,
i n=1 n

) It]'e.cessity. Suppose there exists no constant ¢>0 such that (6)
is .sa.tlsﬁed for every system 4;,4,...,1, of numbers. Then we can deter-
mine sequences z;={f;} such that =0 for almost all ',

sup fal=1,  lim sup |4;(@)|=0.
k
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We can suppose freely that the limits

lim =1,
k N

exist for n=1,2,... Taking into account the condition (8) of 1.1, we see,
in virtue of

lim 14 (ag)| =0,

that A;(#)=0 for £=1,2,... where m:{t,,}. The sequence & being
bounded, £,==0. Applying Lemma 1.2.2 we can determine a subsequence
{2} and a bounded sequence {%) in such & manner that the sequence x
with the terms (5) of 3.7 is divergent, that condition (4) of 3.7 is
satistied and, moreover, that

1
(7 sup |4 (@)l < 5% for k=1,2,...
The condition (4) of 3.7 implies
el
ﬁ;(m)=k._5,;7vai(%,),

and since lim|d;(z,)|=0, it follows by (7) that the sequence z is
i
A4 -summable to 0, and this leads to a contradiction.
Sufficiency. Let us denote by R and R, respectively the set of
all sequences {Ai(m)} where #eT, A5 or zeT, respectively. The inequal-
ity (6) implies, for every hounded sequence {i,},

o0
sup | 3 tgt,| =0 sup
i n=1 o

The set R, is closed in T,. Indeed, let yy={4:(m)}eRy, m={ti},
sup |4 (#g) —t] >0, y=|t,). Then the inequality

sl -
sup | Dag, (15— 1)) >0 sup 2 — 4]
i m=l ' n
is satisfied, and hence the sequence @ converges in Ty; denoting by
the limit of this sequence, we see that

Ay (@)= ]i]’glAi(mk) =1,

whence yeR,. By 2.2 the set R, is dense in R (for the topology of the
space T); therefore Ry=ER.

Remark. The hypothesis that 4 is & U-method is superfluous for
the proof of the sufficiency of the condition. This hypothesis is implied
by condition (6).
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3.7.2. THEOREM 9. Let the method A= (ay) be permanent ;for'null
sequences. The following condition is mnecessary and sufficient for every
sequence A-swmmable to O to be either convergent or unbounded:

There exists @ positive constant ¢ and a positive integer r such that ‘for
every system Ay, 2s,...,4, of numbers the inequality

»
(8) SUD | Y @iy | = 050D | )
3 =1 k)
s satisfied.

Necessity. If there exist no bounded divergent sequences A-sum-
mable to 0, then the system (3‘) of 3.7 has in 7T, only a finite number
of linearly independent solutions, say %. Hence by the adjunction to the
matbrix (ay) of k initial rows — asin Lemma 3.2.2 — we obtain 2 method B
which is both a U-method for bounded sequences and equivalent to A.
Choosing r sufficiently large and applying Lemma 3.7.1 to the method B
we get (8) for every system 1,,24,,...,4,.

Sufficiency. The method B corresponding to the matrix (a,, )
obviously satisfies the conditions of Lemma 3.7.1, whence the sequences
B-summable to 0 are either convergent or unbounded. The method 4,
a8 easily seen, has the same property.

A permanent method is called perfectly inconsisteyt it for every div-
ergent sequence med® there exists a permanent method B not weaker
than 4 and such that 4 (z)sB(2).

THEOREM 10. 4 permanent method A is perfectly inconsistent if and
only if every A-summable sequence is either comvergemt or unbounded.

The necessity of the condition follows from 2.6.1 and Theorem 4
of 2.6.2.

Sufficiency. Let us apply Theorem 9, let » have the same mea-
ning as in that theorem. Let B denote the method corresponding to the
matrix whose ¢-th row is 0,0,...,0,8,,,1,4;,,,...; the set of convergent
sequences is closed in B*. Indeed, let #,=|tf}eT,, y={t,}; inequality
(8) of 3.7.2 implies

sup |7 —#f| ¢ << sup | B; (#”) — By(a9)].
r<i i
If |#°—y]|>0 as p->oo, then
sup [ — t;] ¢ <sup | B;(2%) — B,(y)],
r<i 1
and there follows {tn} €T,; the method 4 and B are equivalent, whence
it suffices to apply Theorem 4.

4. In this section we shall give some further theorems of structural
character.
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4.1. Let A',A%,...,A%,... be arbitrary methods of summabilily such
that A™ is properly contained in A™™ for n=1,2,... Then there exwisis
no method B such that

B*= Y 4™,
n=1

This theorem was found independently by Zeller ([21], p. 483) who
was the first to publish its proof. As compared with our proof, which is
based on theorems concerning linear Borel sets, the proof of Zeller is
more elegant and reduces the problem to 2 general theorem on increasing
sequences of By-spaces; therefore we omit our proof.

4.2. Let the methods A, A%,..., A" ... be permanent and such thai
A™™ g properly contained in A™ for n=1,2,... Let the method A", for
every m, be consistent with every method not weaker than it. Then there ewists
no row-finite method B swch that

o0
(1) B*=T]] 4™
n=1

Also this theotem has not been given in our note [13]. It has been
found independently by Zeller [22].

Let us denote by |#|i*, 2" and |jz|** the pseudonorms (1)-(3) of
1.3 for the method A™ By 1.3.1 A} is a By-space under the norm

e I e o e o i
where )
vl el

Bl

— for §=1,2,..., n=1,2,...
<~ 20 1" e ”

Therefore B* (supposing that (1) holds for a row-finite method B) is
2 By-space under the norm

w1l Jzl* |
1]::1!.,:11213—,; THa’

in this space the convergence implied by the norm |al, is (zqm.valent to
the convergence implied by all pseudonorms [jz]i* and ||z ” s1mu1.tane;
ously. By hypothesis the transforms B;(x) are linear fu.nctlona,ls in B
under the norm jjz],,. By the proposition (B) of 3.3 there is a constant K
and a positive integer k such that

(=) IBy(@)| <K sup (lli", l=li", #]™)
1<i, n<k

for j =1,2,...,msB*. This is true in particular for convergent sequences.
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On the other hand, the convergent sequences lie dense in the space 4™
(with the norm [l |[*= sup(fla|", ||z, .., #]*)). Indeed, the method D=(d,,)
arising by the juxtaposition of all rows of the methods A',4%,..., 4% ig
equivalent to the method 4%, whence it is consistent with every method,
not weaker than it, and it suffices to apply 2.6.3. Since the inequality (1)
is satistied in & set dense in the space 4™ with the norm ||*, and since
By(x) i$ a linear functional under this norm, (2) holds for every xeA™
and the sequence B;(#) converges in a set dense in A™. By 3.3.1 this
would imply 4* CB* which is impossible.

4.3. There emisis no sequence A', A% ...
ing property:

() I*=ﬁAz:* (see [137).
n=1

of methods having the follow-

By (a) the methods 4" are permanent for null sequences and the
sequence ¢ is A™-summable to 0. It suffices to apply Theorem 7', part (a).

The last theorem has the following meaning. Let A({p,},{q.}), where
Pn~>00,gy~> 00, be the method of summability whose 4-th transform is
Ip—tq. Cauchy’s test of convergence states that the sequence {t,} is
convergent if and only if it is summable to 0 by every method A ({p,},
{4,)) (which is obviously permanent for null sequences). The set of these
methods is uncountable and this is essential. Indeed, 4.3 implies that it is
imposgible to determine a countable set of generalized conditions of
Cauchy’s type the totality of which would give a test of convergence.

4.4 TEHEOREM 11. (x) Let the method A be convergence preserving and
such that @={u,} e 4*, y={v,} e A* implies {u,v,} e A*. Then there ewists an
inoreasing sequence of indices {k,} such that the fidld A* is identical with
the set of the sequences {t,] for which there emists limt,,.

n

(B) If the method A is permanent and such that a={u,} e A*, y={v,} e A*,
v #E0 (n=1,2,...), A(y)#0 implies {u,[v,}e A", then the conclusion of
() holds too (see [13], [23]).

In both ecases, from #={i,}e 4" 0,0 follows {,v,}ed* In the
cage (o) this is trivial, and in the case (B) it may be shown as follows.

Let v,-0; let » be such that v£0, v4-v,7 0 for every n. By hypothe-
sis

{(vat0)}ed”, whence {t,0,)= {t,(v,+v))— {t,0} 4.

Denote by B the method' corresponding to the matrix (@,t,); in
both cases ifi is convergence preserving and hence, by (8) of 1.1,

(3) , lea‘inlltn!<K(m) for i=1,2,...
=z :
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and for z={i,} e A*. Let
Oy =suplag,| for »=1,2,...
i

and denote successively by k;,k,,... all indices for which o, 0. The
theorem will follow from the inequality infa;, =y >0. In fact, (3) implies
"

[t <K (2) y~' and it follows immediately that the method ={ay} is
such that only bounded sequences are A-summable. It suffices to make
use of Theorem 7.

‘We shall prove y>0 firsf in the case («). In the contrary case there
would exist an increasing sequence of indices {k,,} such that Y aff* < oco.
Let *

ai®  for m=k,, s=1,2,...,

t,=
0 elsewhere.

The sequence m:{t,,} is A-summable, for the series
o0

2 ik, O

8=1
converges uniformly in 4. By hypothesis the sequence 2,= {3} is also 4-
-summable, and applying to it the inequality (3) we obtain |ay, | <E () ak"":,
whence ay, <K () ofS, 0z, > [K (#,)]7°, which is impossible. Proceeding
now to the case (), suppose that y=0. Then there must exist a sequence
of indices {k,} such that } g, <<co. Let
8

. ai,_ for n=k,,s=1,2,...,
S elsewhere.

The sequence z={t,} is A-summable, for
Ay(@)=44(e)+ Z;%(GL,—l),
§=
and since [aw_'(ai“——l)lgak"‘]ai.‘—lj and

oo
Z e,y tai. —1|<°°)
8=l ¢ *
we obtain
lim 2 auﬁn‘(a?,,‘—l) =0.

i—00 8=1
Now mp={t;"} e A* for 1,50 and A (z)=1; applying (3) to thi.s sequence,
we got |ag, | <K (%o} ok, and o, >[E (2,)17", which is impossible.
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