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de composition et 29 de ce que le produit de composition de deux fonctions
monotones est encore une fonction monotone. On peut donner 3 (iv)

un énoncé modifié, mais équivalent, moyennant le passage aux dérivées,
& savoir: En posant

(A):fai'-‘ f(t)dt

il vient, pour toute fonetion feIL (—oo,00),

lim §/ W= max|g(3)],
n A

Wi= fi@ @id,  y(t)=1(1),

= [He=ni6as, @)= [B.0-s)1(5)as et
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Fourier transforms on perfect sets
by
HENRY HELSON?) (Yale University)

It is a classical fact that not every continuous periodic function
has an absolutely convergent Fourier series. The purpose of this note is
to establish a stronger theorem of the same kind. For convenience we
shall consider Fourier integrals instead of Fourier series. Let P be a boun-
ded perfect set on the line, and f(2) a summable function. The Fourier
transform of f(=)

wo)=] =iy

is a continuous function, and its restriection to the set P considered as a top-
ological space is continuous on P. Our result states for perfect sets P
of a certain type that mot every confinuous function on P is thus ob-
tained as the restriction of a Fourier transform.

The theory of the Fourier transform has been extended to arbitary lo-
cally compact abelian groups [5]. The result above on Fourier series, which
can be considered as a theorem about the compact circle group, was
stated and proved for arbitrary compact abelian. groups by Segal [4].
Interesting generalizations of Segal’s work by E. Hewitt and by R. E.
Edwards are to appear in the near future. In a different direction, but
still on a general type of group, H. Reiter discusses in a forthcoming
paper the restrictions .of Fourier transforms to a set P composed of de-
numerably many linearly independent group elements.

The theorem to be proved could be stated in a more general context;
since, however, it is new for the line and its main interest is for that case,
we shall not indulge in greater gemerality.

THEOREM. Let P be a bounded perfect set on the line, such that for
every function g defined and continuous on P, there exists a summable func-
tion f with

= J1ne=ay
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for all @ in P. For any function of bounded variation u consider the Fourier-
-Stieltjes transform

)= [ e du(a).

If u is constant on the intervals contiguous to P, or in other words the variation
of p s concentrated on P, then g does not tend to zero as |y| tends to infinity.

First we interpret the theorem in case P is an interval. Choose 2 sum-
mable function vanishing outside P and let u be its indefinite integral.
By the Riemann-Lebesgue theorem the Fourier-Stieltjes transform of
du tends to zero, and so the conclusion of the theorem fails for P. We
conclude that some continuous function on P does not coincide there
with a Fourier-Stieltjes transform.

This case was easy, and the theorem is sharper if P is thin in some
sense. Now the usual way of proving that a perfect sef is a set of multipli-
city for Fourier series or integrals is to construct a function u of bounded
variation, with variation concentrated on the set, whose transform tends
o zero [2,3]. We can assert that not every continuous function on such
a sebt coincides there with a Fourier transform, and the result seems to
be new for all these sets.

In the proof we shall refer to the following Banach spaces:

L' is the algebra of summable functions on the line;

L= is the space of bounded measurable functions on-the line, and
is the dual of IL';

C(P) is the space of continuous functions on P;

M(P) is the space of bounded complex Borel measures vanishing
outside P, and is the dual of C(P);

C is the space of continuous functions on the line tending to zero.

We take the usual definitions of the norms in these spaces. Since
M(P) is less well-known than the other cases, we recall that the norm
is given as

llall = 1dp ()],

which represents the total variation of the measure. We shall identify
an element of M(P) with the corresponding function of hounded varia-
tion,. constant on intervals contiguous to P.

LemMA. Suppose the hypothesis of the theorem holds for a perfect set P.
Then the set of functions which are the Fourier-Sticltjes transforms of measures
in M(P) is closed as a subspace of L™,

Proof. Let A be the closed subspace of L' consisting of those fune-
tions f for which

w(a)=[ 1 evay

icm
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vanishes for all # in P. Then the Fourier transform carries the quotient
space L'/4 one-one onfo C(P), and the transformation is continuous.
By the inversion theorem of Banach, the inverse operator is also con-
tinuous.

Let us caleulate the linear functionals on L'/4 in two ways. Firgt
they are exactly those functionals on L' which vanish on A; these are
functions « in L*® with

a[f]:aff(y)a(—y)dy for every f in K

On the other hand L'[d4 is isomorphic to C(P) and so has the same
functionals. Thus we can also write

a[f]= [ p(x)du(z)
P

for a uniquely determined y in M(P). Insert the definition of @ in this
formula:

oo

alfi=[ [ 10 dyante)= ] ) [ ap(erar=] 10— nav
Thus for every f in L'
Jitnla(=n—~i(-play=0,
from which we conclude almost everywhere that

a(y)=p(y).
That is to say, the fransforms of the measures in M( P) coincide with the
functions in L™ orthogonal to 4. Since this is a closed (and even weakly
closed) subspace, the lemma is proved.
Assuming the theorem is false, let M,(P) be the linear set of measu-
res u in M(P) for which

a(y)—>0  for

|y]—>o0.

By the lemma, a uniform limit of such functions iy, 18 again the transform
of a measure in M(P), which must moreover tend to zero. Consequently
the transforms of measures in M, (P) form a closed subspace of L%, which
we shall denote by 8. Observe at the same time that M,(P) is complete
in its own norm; for if a sequence of measures in M,(P) converges, the
corresponding transforms converge uniformly to a limit function which
is still in 8, so that the limit of the sequence of measures belongs to
M,(P). By the inversion theorem M,(P) and S are equivalent Banach
spaces.
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Now & is a closed subspace of C,, as well as of L®. A linear func-
tional 1 on § can be extended to all of C, and so has the form

Alg] =_.°f°!l( —y)@A(y),

where 1 is a bounded complex-valued Borel measure on the line. If ¢ is
the transform of the measure g in M,(P), this can be written

l[g]:_z g:e“’”(l,u(m)dl(y) = )fﬁfemv(u (?/)(1/1,(.’12)21_! Jm)dg ().

This shows that the most general linear functional in M,(P) is given
by integration with a continuous function. We shall derive & contra-
diction by finding a functional which cannot be expressed in this form.

Tet us fix 2 non-trivial measure x in M, (P). Since z tends to zero,
 is not a purely discrete measure. We assert thatb for some point # in P,
the open intervals of the form (z—4,s) and (#,2--6) for 6>0 all contain
paxt of the mass of x. Indeed, form the maximal open set on fhe line in
which p vanishes identically. Tts complement in non-denumerable, since
the mass of u is not concentrated on any countable set. Because it is
open it is the union of countably many open intervals. Choose a point
in P which is not the end-poinv of any such interval, nor contained in
any of them; evidently every one-sided neighbourhood contains mass,
as we had to show.

Define the function

o for =<a,
\1 for 2>,

and consider the functional in M,(P) given by integration withva:
a[M]=Pfa(w)d/L(w)-
If there is a confinuous function y defining the same funetional, then
Pf[a(a:)—y(w)]dy(:o):() for every fin 4.
But for any fixed real number gy, the measure defined by
dv(z)=e"™ du(x)

belongs to M,(P) (since it is concentrated on P and its transform tends
to zero). Hence for all g

z[6‘"”"[(1(ﬂb‘)—v(ﬂf)ldﬂ(fl’f’)=0-
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By the unicity theorem for Fourier-Stieltjes transforms, the two mea-
sures a(z)du(z), y(z)du(z) are the same.

Now u has a mass in every neighbourhood (#— 6,), whereas adu va-
nishes to the left of #. Consequently y assumes zero values at points arbi-
trarily close to 2 on the left. By the same kind of reasoning, y assumes
the value one at points as close as we please to # on the right. This is
impossible, as y is supposed to be continuous. So the functional in My(P)
given by integration with a is not the same as that defined by any contin-
nous function, and this completes the proof of the theorem.

Tt may be of interest to remark that the lemnma used in the proof
can be completed to the following assertion:

For a bounded perfect set P, three conditions are equivalent:

a) The transforms of functions in L', when restricted to P, eover
C(P);

b) The transforms of measures in M(P) form a closed subspace of
L>;

¢) The transforms of measures in M(P) form a weakly closed sub-
space of L* considered as the dual of L.

The remaining parts of the proof can be carried through using theo-
rems about Banach spaces. A related result is proved in & paper of Car-
leson [1] by different methods.
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