On approximation in real Banach spaces
by
J. KURZWEIL (Praha)

Many authors have studied analytic operations from a complex
Banach space to another complex Banach space. In their recent paper
Alexiewicz and Orlicz [1] introduced analytic operations defined
in real Banach spaces. In this paper I solve the question whether it is
possible to approximate uniformly continuous operations by analytic ones.

In section 1 I show that the answer to this question is positive if
a certain condition is satistied. This condition is satistied if the opera-
tions are defined in the space Z® or I, where p is an even positive integer,
or in the Cartesian product of these spaces. Section 2 is devoted to the
case where the operations are defined in the space ('<0,1>. In this case the
answer is negative and a real-valued continuous funetional is not in gen-
eral the uniform limit of a sequence of differentiable functionals.
A regularly differentiable tunctionall) f(2) defined in the unit sphere
of the space 0<0,1> has the following property:

(A) If &,r, and 7, are three given positive numbers, r,< r,< 1, then
there is always an @eCq0,1) tulfilling the relations

@) —1(O)|<s,
where @ is the zero element of the space C{0,1).

Apparently the identical operation defined in the space (<0,1)
has not the property (A) and the fact that the space of arguments is
richer than the space of values is essential. But the assertion remains
true if we replace functionals by operations having their values in
& weakly complete space.

In section 3 the results of section 2 are extended to the case where
the functionals are defined in the space L® or I, p=1 not being an even
integer. The main result of this section is that a P times regularly differ-

entiable functional has the property (A) if 7 denotes the least integer
greater than or equal to 7.

n<l||al|<ry,

') See section 2, definition 1,
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1. Let B be a Banach space. By B we denote the complex Banach
space, whose elements are couples of elements of the space B,

2= (,y) =211y, zeB, @,yeB,

with the usual definition of operations and with the norm

ll2}}= sup [|cosa-z—sina-yl
0<a<2n

Let @ be a subset of the space B and let a unique vector y=F(z)
from a real Banach space B, (a. unique number y=f(m)). eorrespo‘nd to
every xeG. Then we say that F(x) is an operation (f(m) s o funf;tzmﬁal).

‘If q(®) is a real polynomial®) in B then there is a polynomial g (z)
in B uniquely defined by the condition 7(2)=gq(z) if z=a-+1iy, y=0
(@ is the zero element of the space B).

TaEOREM 1. Let B be a separable real Banach space. Suppose that
there is a real polynomial ¢*(@) fulfilling the conditions

¢"(@)=0, inf ¢*(@)>0
zeB, |z}=1

Let @ be an open subset of B and let F(z) be a continuous operation
defined in G and having its values in an arbitrary .Bg,fnu.ah space B. )

Then there ewists such an operation H(z) analytic®) in @ that the in-
equality
1) | (@) —H (@) < 1
holds for ze@. .

Proof. ¢* () is a polynomial of degree m>>0. We writie

q*({”): q1($)+Q2(m)+ et Qm(w)a

where ¢;(z) is a homogeneous polynomial of degree i, 1=1,2,...,m.
Let
g(@)=g (@) + gG@)+ ...+ (@)
The polynomial g(z) is non negative, assumes the value zero only if m=.8,
and apparently there is such a positive number » that |j#||=1 implies

(z)>n. .
! If yeB, r>0, we define the sets K(y,r) and Cly,r):

K(y,)=E[xeB,qg@—y)<rl,

Oly,n)=ElzeB,qla—y)>r]

2) For the definition and properties of polynomials see [1], [2], [3].
3) See [1].
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We easily prove that K(y,r) is an open bounded set and that for every
positive number 7’ there is such a positive number » that ze K (@,r) im-
plies that [jzfl< 7’

For each point #,¢@ there is such a positive number »(z,) that the
relation K (w,,27(%,)) CG holds, and that zeX (5,27 (2,)) implies that

: 1
P () —F (aoll <

The sets K (#,r(2)),2 €@, cover the set ¢ As the space B is separable,
we can choose a countable covering of the set @:

K(mlyr(ml))aK(m237'(m2))5'-'7

Now we form the sets D,,D,,D,,... which cover the set G in a
locally finite manner. We choose 3 sequence of positive numbers &,

By, Byy... G

3e;<<r (), 1> 6> 5> 8> ...,

‘g=>0 with {—o0,
and write
D,=K (”177"(971)):
-Dz—_—o(ml7T(w1)*€2)mK(wz,7"(wz)))
D=0y (0) =) 1 (0]~ VI o, ),

Let us choose a point ye@. There is such an index % that
yeK(a:,’,,r(mk)),yéK(ml,4’(:01)), . ,y;K(mk_l,r(wk_l)).
Further there is such an index I > & that yeK (mk,r(mk)——Se,). As
K (5,7 () — 8e5) N O (a7 (@) — &)= 0, J=4L1+1,1+2,...,
we get
K (ag,r(@)—36) N Dy=0,  j=1,1+1,1+2,...,

:;md we find a neighbourhood K (m,,,r(mk)—&,) of the point y that
intersects only a finite number of the sets Dy, §=1,2,3,... As the point
¥ is arbitrary, the covering D;, j=1 32,3,..., is locally finite.
‘We define another open covering of the set @ by means of the rela-
tions
D;:K(mnr(ml) + 251);
D;:C(wl,r(ml)—3az)ﬂK(mz,r(w2)+2ez),

Di= 0o, ()= 365) (10 (23,7 (@) — 325) (1K (3,7 () +-265)

L I R T . e L I I I vy
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We have D,CD;C@, j=1,2,3,..., and the sets D; cover the set @.
We find again that the set K (mk,'r(m,,)——?»el), I>Fk, is contained in the
complement of the set Dj, j=1,I+1,I4+2,..., and consequently the
covering Dj, j=1,2,3,..., is locally finite.
Let E, be the n-dimensional Euclidean space. We define the sets
I,CE,,T,CH,,..., '
Ni=EB[—-1<u<r(m)+ 5],
1
To= E [r(a)— 26, <1<V, — 1< 1, <1 ()
(71, 72)

+
Ty= B [r(@)—25<n<V;, (@) —26< <V, —1<n <r(@)+ &),

(71,7a,78)

82]7

where the number V, fulfils the condition
it zeK(m,,2r(z,)), then g(z—ax)<Vo—1,
the number V, fulfils the condition

it @ek (n5,2r(m)), then gq(o—&)<Vy—1, ¢la—a)<V,—1,
and so on. 4
Now we define the functionals

F1(2) = (1F (2] + 1) », 'Tf exp{—ta(G(z— ) —n)}dr,  2eB,
ga(3)=(IF ()l + 1)
. U exp { —t[a; (i(z‘“ »)— f1)2+ az(é(z” By)— Tz)z]}dfl dr,,
Ta
Ts(‘”")=(“F(1"3)”+1) ¥3X
ij[f exp { —1 [al (q(s—a)— 71)2‘}' a5 {q(5— 2,) — Tz)+ G (ﬁ(z—— ‘7"3)_‘73)2]}

dt,dr,dr,,

where

L [exp | —tya, 73} dv, =B, 72,
"R

1 .
— __U eXP{ — 1y [0y 7+ aﬂi]} dridr,=byty™,
Ey

o

and by,b,,... are positive numbers depending on the constants a;,a,,...

The positive constants a;,a,...,1,%,... will be chosen later,
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The functionals ¢;(#) are analytic in 3, j=1,2,... This follows from
the fact that the functional ¢;(2) is a superposition of the operation

(é(z“ml)ﬂ&(z —.)?ﬁ,...,&(ﬁ—:fij)),
whieh is analytic in B and of an analytic function of § complex variables.

We choose the sequence of positive numbers a, (n=1,2,...) in

such a way that the series
0

(2) Zan(l"i"”w—mﬂ”)wm

=1
nonvergeé for any weB. (Here m is the degree of the polynomial q*(z)).
This is possible. If, for example,
1
“T ™
we have
(L [lil)*™

a’n(l + Hm - wn”)“m< 7l

e
and the series (2) converges for every zeB.
The numbers i, are chosen sufficiently great for the three conditions
(8), (4) and (8) be fulfilled:

b

) 1 2
(3) = () IT(!U"(%)H-F I VISES
n
(|T,] is the Lebesgue measure of the set 7, in H,),

(4) ule) @I -1< 3 for weD,,

(5) lpn (@< P for aeD:.

1
1 (2, + 1)
This is possible. If zeD,, we have
0<Q(‘”‘“”ﬂ)<r($n)7

q(@— ;> 7 (2;) — & (j=1,2,...,n—1)
and

gz—ao)<V,—1 (j=1,2,...,n—1).
Recalling the definition of the set T, we find that for every wzeD,

the spherein B, with the centre at the point (¢(# —a,),¢(z—a,),...,q (2 —,))
. and with the radius ¢, is contained in T,.
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If z&Dj, then at least one of the inequalities
Q(m'_ mn)< T(ﬁﬂ)—{— 28117

q{a— a;)> r{z;)— 3e, (j=1,2,...,n—-1)

is false. Recalling the definition of the set 7', we find that for every ¢ D}
the sphere in F, with the radius &, and with the centre at the point
(g@—=)),q(@—2y),...,q(w—m,)) has an empty intersection with the set
T,. Now it is easy to prove that there is a 1, satisfying the required
conditions.

Let

p(g)=og(8)+ g (2)+ ...,
H* (2y=F (). (2)+ F (m) o () + . .5

we prove that the operations g(z) and H*(z) are analytic.

This fact is an easy consequence of the following proposition (since
the uniform limit of a sequence of analytic operations in complex Ba-
nach spaces is analytic®):

To every x,e@ there correspond a positive number & and an integer
7, in sueh a way that the inequality

1
(6) (1 ()| 4 1) [ g (0 +2)] < o7
holds for zeB, |lz] <8, w>n,.

Let us fix a point @,eG. There is an index j, fulfilling the conditions

Zoe K (25,7 (25,)), xye K (z;,7 (27)) (i=1,2,...,jo—1)-

Consequently there are a positive number ¢ and an index »n’ such that
the inequality 7;, — ¢(#,— #;,)> o holds for every point (v,,7y,...,7,)€T,,
n>n'.

‘We find a lower bound of the expression

Re{_Zla,-(g(mo+z~w,-)~rj)’},
=
As g(2) is a polynomial of degree 2m, we have
q (3o — 254+2) =g (Bg— )+ Z;,
1Z < M (1+ e — m )™ lell, el <1,

where M is a constant®).

4) See [2], p. 83, Theorem 4, 6, 2,
) See [2], p. 69,
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It follows )
(é (g2 — &) — T:i)2= (q(wof &) — Tj‘l'Za‘)z
= (g(@— ;) — ) — 2 (q(@wo— ) — 7)) Z; + Z3,

Re { ((1 (#o4 2 — &) —‘Tj) }> (él L) — fj)zv 2\q(we— a;) — 75| 2] — |2,
= (lglao— ) — 7| — 1Z;| — 21%". ‘
We write

Re{j;;ai(q(m0+ #—

wf)f’i)z}
>— % as1Z; * +070(\Q( o— @) — ol —1%5,)*

= 23121|:}{22:aj(1+ lan — o 1)*" - g, (ot — B (14| — o )™ | 2 ),
=

where (7,,75,...,7,)¢T, and « is positive. As the series

3 (14 Jizg— ;)™

j=1

converges, we can find such positive numbers g and 6 that the inequa-
lity

Re( X a5{a(oo+a— a) —5)}>
<

holds for z¢B, {2]<6, (¥1,72,..., 7)€
We easily get

’
ny >N,

(1P @)+ 1) g @0+ 2] < ”UW WL T

P@)IHIP 1T n! _ (P@)l+ 1P 1T 1 1
R Ty
bn. ﬂ"tﬂ, bn ﬁﬂ'tﬂa ,nl! ﬁ
and consequently there is such an index %, that the inequality (6) holds

for # > ny, [|2]|<é.
Now let

\

H ()

Hz)=
() p{z)
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The operation H(#) is analytic and we prove that it fulfils the inequa-
lity (1). Let us fix a point ze¢G. We write

< @i (@) - F(2;) i (x)
F(x)—H (z)=F(: —_
() w)(qﬂﬂm g e

—F(x;) - i ()

- j ;U)q1

’ i=1

A x

‘P

By I, (I,) we denote the set of the indieces j fulfilling the relation
weD] (zeDj). We have

IF(2)— H (a)]| < 7-21( — P(a))g;(=)
eIy
W )l
gf: (m){g“F zy)llgs (=
It jeI;, then zeDfCK (2;,2r(x;)) and

1
IIF () — F (@)l < -
Further, we have zeD,; for a suitable I,

1 1
IF@)—F@l<-r, @) >F@l+ 5

and
' 1 I (@)l
)= Fi(x i Ealasdl
p@>pla)>Fa),  g@)>5, s
Finally we use the inequalities
v o 1 1
Z ‘Pi(m) < Z oit3 'g': 2 ”F Ly ”%’ —'8'
jelo j=1 ~ jela

and get the required inequality

Fir)—Haz:]<i L 2 1
IF@) - H@l <] +3 +5 <L

From the theorem 1 we easily deduce the following

THEOREM 2. Let the space B satisfy the same assumptions as in the-
orem 1. Let' F(x) be an operation defined and continuous in an open set
GCB. Let p(z) be a positive continuous functional in G (p(x)>0 if ze@).
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Then there is an operation H(x) analytic in G and fulfilling the inequa-
ity
IF (2)— H(@)|< p(z).

Proof. By theorem 1 there is a functional y(#) that is analytic
in @ and fulfils the inequality

1
—— - 1—p2)| <1
R
for ze@. Evidently we have
1
p(®) > ———.
o(x)

By the same theorem there is an operation H*(#) analytic in & and ful-
filling the inequality

lp(@) F(2)— H*@)|<1, =66
We write H(2)=H"(z)/y(z) and get

1
17 (@) — H(@)]| < —— < g ().
v (@) P (@)

) Espgcia.lly, theorem 2 holds if B=L® or B=I® where p is an even
pos.mve: integer, as in this case the p-th power of the norm is a polyn-
o‘n?Ja.l; 1t.holds al.m if B is the Cartesian product of these spaces. One ve-
rifies easily that if the spaces B, and B, satisfy the agsumptions of the-

grem 1, then their Carfesian product B,x B, satisfies these assumptions
00. i

Theorem 2 has the following

) OOR.OLLA:'R.Y. .Suppose that @ is an open subset of E,,, that f(z) is a con-
tinuous funo.twn in G and that ¢(x) is a positive continuous function in G.
?’hem ﬂfere 18 such a function h(w)=h(&, &,...,&,) analytic in G that the
inequality '

[f(2)— hiz) | < (o)
holds for zeG.

This 110 S cas
hi COIO]J)&I'Y is at the same § e a peclal ase of o result due tio

) 2. We‘tum to thts negative results. In this section we consider ope-
?a.tlons which are defined in the space C<0,1) and have their values
in a weakly complete Banach space.

%) See [56], Lemma 6.
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By Ef we denote the halfline of non negative numbers.

Let the operation F(z) be defined in an open subset G of a real Ba-
nach space B.

Let & be a fixed positive integer. By P(x,k) we denote an operation
depending on two variables #e@, heB provided that for any fixed ze(@,
P(z,k) is a polynomial of degree at most % in the variable h and that
P(x,0)=0. We introduce

DEFINITION 1. The operation F(z) 48 k times regularly differen-
tiable, if there is an operation P(w,h) fulfilling the inequality

P (z-+1) —F (2)—P (2, B)[[<a(, ]| Bl - | 2 |*

whenever both sides of the imequality are defined.

‘We suppose that a(z,7) is a non negative functional which is de-
fined in an open subset of the space 0¢0,1)xEf and fulfils the follow-
ing condition: for any given #,e@ and >0 there is such a 6>0 that
the inequalities || —,[|<d and 0<{y< 6 imply that a(z,7) is defined and
fulfils the inequality 0<a(z,7)<e.

Note. If k=1, then the operation P(z,h) is usually called the dif-
ferential of F(z) and denoted by 46F(z,k).

A regularly differentiable operation apparently possesses a Fréchet
differential, and it is easy to prove (by means of the extension to the
complex case and of the Cauchy formmlae) that an analytic operation
is & times (k=1,2,3,...) regularly differentiable.

Now we state

TEROREM 3. Let the operation F(x) be defined in the sphere eC{0,13,
|z <R (R>0) and regularly differentiable (once) there. Let the values of the
operation F(x) belong to a weakly complete space. R

If ¢ and r are two given positive numbers, r+e< R, then there is such
a point x€CL0,1> that the inequalities

r<lioli<ets,  |F(@)— F(O)<e

are satisfied.
From this theorem we deduce that the functional |l#, #¢C<0,1>,
is not the uniform limit of a sequence of regularly differentiable funectio-

nals in the sphere |[z]]<1. Let us suppose that there is such a regularly
differentiable functional f(#) that the inequality

‘ .1
G [Ha)—llzllj<
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Tholds for @eG<0,1), | <1. In theorem 3 let 1r=3/4, e=1[4. The theorem
states that there is such a point », that

3 <wl<t,  fo-10)<

But inequality (7) implies that

1 ;1
Wey<—,  [f@)—leli<-

and we arrive at a contradietion.

Proof of theorem 3. If £e0¢0,1), |#|<R, let V(z) be the set
of positive numbers # having the following property: there is an open
subset H (x,7) of the space 0(0,1) x Bf, containing all the points (z,é),
0<<E<<n, and such that the inclusion (z',&') e H(2,7) implies that a(x’, &)
is defined and that «(a’,&')<e/2.

We define

B(w)=sup 7,  ylx)=min(f(x),)

ne V(@)
and prove the following

Lemma 1. The functional y(x) is positive and lower semicontinuous
for £e0<0,1), |al| <R.

‘We prove only that the functional f(x) is lower semicontinuous.

Let us fix a point #,6C ¢0,1)> and a number &,0<E<f(z,) -We choose
a number &', £< & < B(,). The set H (%,, ') is open in the space (0,1 xBf
and contains all the points (@,,8), 0 <<{<<&'. As the interval <(0,&) is
a compact set, there is such an open subset U of the space 0{0,1)> that
z,e U, that all the points (z,£),e U, 0<E <&, are contained in the set
H(z,&) and that |z||l<R if zeT.

Tt follows that p(#)>£ for ze U and that the funetional f()
semicontinuous in the point .

Now we shall prove another lemma. Let us suppose that @=@(x)
is & homogeneous polynomial of degree one, defined in the space (0,1}
and having its values in a weakly complete Banach space.

Let us fix an ¢ >0. By T(¢',Q) we denote the set of numbers ¢ from
the interval <0,1)> which have the following property:

if U iz an open interval containing the point ¢, then there is a fun-
ction w=2(r)e({0,1) fulfilling the conditions

is lower

2()=0 it 7e0, [ol<l, [Q@)I>¢"

LeMMA 6. The set T(e',Q) is finite.
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‘ Proof. Let us suppose that the set T(e',Q) is infinite. Then there
is a sequence of numbers {,eT(¢',Q), open intervals T, C<(0,1>, and
functions #,=2,(¢)¢0<0,1>, n=1,2,3,..., such that the following con-
ditions are fulfilled:

tne Uy,

U;NU;=0 for i#j,
1@ ()l > &,

z,(z)=0 if zeU,,
lewl<1.”

‘We apply the following theorem due to 'W. Orliez”):
I 7,,%,,7,... are elements of a weakly complete Banach space
and if there is such a number K that
IZy+ 7+ .+ EI<E
for every finite sequence of integers 1<i<i<...<#, k=1,2,3,...,
then the series Z;4Z,+ Z;+ ... converges (conditionlessly).
Let x,, Q(z,) (K=]|QJl). According to the theorem of W.Orlicz

the series Z’x, converges and we get a contradiction with the assumption

that llw;ll—l]Q(wf I>¢, j=1,2,3,.
‘We are in a position to prove theorem 3.

‘We define a sequence #,eCX0,1), = 6. If we have defined a point
w, folfilling the conditions

[ (@)l ellally

then we choose the point «,,., in such a way that

l#all<<r,

(8) Y(mn)>"wn+] '—m‘n”?

1
(9) 5 7 @) <21l 2l
(10) 1F (@ ) < 8l 2 gl

‘We shall prove that this sequence is necessarily finite.
The point #,,; will be found in the following way (we suppose that
e<1):

7) See [4], p. 247, Theorem 3.
Studia Mathematica XIV . 15.
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“We choose such a number #'e(0,1> that
. o
el —gﬁy(wn)ap(wn’m)
and that

1
Iwn(tl)I > ”wnu - —4: Y (mﬂ.)

(P(@n,®) is the differential of the operation F(z), see definition 1).
Tt follows that there is an open interval U, containing the number ¢’
and such that :
- 1
“P(a"m?/)“<§ 87(“’%);
provided that the funetion y(t) fulfils the conditions
ly@®I<1 if 10,1, y(ty=0 it teU.

Now we fix a function y(2)e('<0,1> and suppose the following con-
ditions to be satisfied:

Ol< @) i 10D,

y)= 3 7(@) senan(t)
y(#)=0 it teU.
Let #,,,=a,+y. The relat'i;)ns (8), (9) ﬁre evidently fulﬁ]]e(i as
a1 )| =lan )1 (@l 5 (22,
and from definition 1 we get

I (00 ) | <IP (@) 1P 0, - et D
1 1 '
<ellagl+ - e(an) + o » @) = o Il 7(o2)] <elltasal

There ig necessarily an #,, satistying r<||»,|<r-+e¢ Otherwise there would
be an infinite sequence of points @, fulfilling the relations. (8), (9), (10)
and |, ll<r, #=1,2,3,... From inequalities (8), (9) it follows that the

series Zly(mn) coriverges and that z,, is a Cauchy sequence, @, >, [|#||<r<XR.
i
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The relations y(z;)->0, y()>0 contradict the fact that the functional
»(®) is lower semieontinuous and this contradiction completes the proof
of theorem 3.

Note. Theorem 3 remains true if we replace the space 0<0,1)> by
the space of all bounded continuous functions which are defined in a com-
pletely regular topological space without isolated points.

3. We shall apply the same method to the case of the spaces I or
I®, p>1, p#2,4,6,... Therefore the steps that are analogous fo those
taken in the case of the space C{0,1) will be discussed only briefly.

‘We suppose that p is a fixed number, p>1, p#2,4,6,..., that p
is the least integer greater than or equal to p, and that B is the space A2
or I” . If yeB, R>0, then 8(y,R) denotes the sphere in the space B which
has the centre at the point y and the radius R. The main result is contained
in the following

THEOREM 4. Let R,r,s be three positive numbers, R>7-+e. Le the
functional §(z) be defined in 8(0,R) and P times regularly differentiable
there.

Then there is an xeB fulfilling the inequalities
f@)— (@) <&l

As in the previous case, we can easily deduce from this theorem
that the functional |jz]| is not the uniform limit of a sequence of p times
regularly differentiable functionals in the unit sphere of the space 1@
or L®, .

‘We shall prove theorem 4 in two steps. First we prove the following
theorem 5, then we use theorem 5 to prove theorem 4.

TrEOREM 5. Let R,r,& be three positive numbers, R=r+e and let
the functional f(x) be defined in the sphere 8(0, R) (;l‘p’, p>=1, p#2,4,6,...,
and have the. following property: ‘

There is such a funciional w(x,k),which is defined for wel (6,R)CI®,
hel®, and which is a polynomial of degree ai most p in the variable h if =
is fized, thet the inequality

f(@-+B)—f (@) — w(@,h)| < alz, [RDIRP

is satisfied whenever both sides are defined. We suppose again that the functio-
nal a(z,n) is defined in an open subset of the space 8 (0,R)XEi and has
the following property: for any given %,e8 (0, R) ande'>0 there is such a 6>0
that the inequalities o —a|l<<8 and 0<{n<<d imply that a(z,n) is defined
and fulfils the inequality 0<a(z,n)<s"

Then there is a point £el® fulfilling the relations

r<flell<rt+e  If(@)—F(O)<e]al.

r<ljgli<r+s

15*
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In order to prove theorem 5 we shall need the following

TEmMA 3. Let & and Q be two positive numbers and let p be the greatest
integer less than or equal to p. Suppose that q(x) is & polynomial in I
(with numerical values) of degree at most p.

Then there is a point xel® fulfilling the conditions :

(1) llo]= @,
(12) lg(2)—4(0) <,
(18) = has only & finite number of coordinates different from zero.

This lemma is an easy consequence of the following
LeMMA 4. Let V(x) be a real valued homogeneous polynomial in 1®
of degree v<p. If y={¥1,%ss--+,¥s,0,0,...}, then
Viy)= Oy i Y Yige o Yy
ISH<IS St
(the numbers a;;, . ;, 4o not depend on n and are defined uniquely).
The following relations hold:

(14.1) Bij, .. ey g >0 08 ->00,
(14.2) Uiy gy iangd >0 8 00,
(14.0--1) ;4,0 >0 a8 j>o0,
(14.) 44 ..5>0 as j->oo.

This lemma is proved by complete. induction. Lemma 4 evidently
holds if #=1. Let us suppose that lemma 4 holds for polynomials of degree
v—1; 9<p. Leb

n={1,0,0,0,...},
hy={0,1,0,0,...},

hy=1{0,0,1,0,...},

The differentials 8V (x,h;) (see the note after definition 1) are ho-
mogeneous polynomials®) of degree »—1 in the variable . Since we have

8V (y,h)=—— "'i;,...,i. Ya.te

A<ign)
0 1< inn

*) See [2], p. 74, Theorem 4, 2,9 or [3], IL
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the relations (14.1), (14.2),...,(14.9—1) hold. If the relation (14.1v)
were false, we could find a sequence of indices f;,f5,5;,... having the
following property: :

If we define the vectors e;,e,,6s,...,

o= {ak,liak,zrak,zs . -};
‘where

1
ak’ﬁ= a,,_,-,: ak,,-,=. o= ak,,-‘= )
VE

ak,ir‘o if j:,éj”j“_ . '7f;k’
then

V(ep)>oco with k—oo.

This contradiction completes the proof of lemma 4. Lemma 3 now follows
trivially ((22.v)) if » is not an integer. If p is an integer then p is odd and
we can write

g(x)= g1 (%) + g (),

where g;(¢) is a polynomial of degree at most p—1 and g,(#) is & homo-
geneous polynomial of degree p. Now we again easily prove lemma 3
using the fact that g,(#) is a continuous odd funetional.
- This being established we turn to the proof of theorem 5. (We sup-

pose again that e<1).

If z¢l®, x| <R, we denote by V(z) the set of positive numbers 75
having the following property:

There is an open subset H(z,7) of the space I x B, containing
all the points (x, £),0<<E<y, and such that the inclusion (»', &) e H (z,n)
implies that a(wx',£’) is defined and that

! 4 s
) < (Lo P
We write
Pl smp 1, plo)=min(S(o)s)

In the same manner as in the preceeding section we prove that the
funectional y(#) is positive and lower semicontinuous. We again define
a sequence #,¢l®. Let #,—6. Having defined an s, fulfilling the con-
ditions

(13) [F{ea)| < sllals

(16) $n={§§n);E(zn)s"‘yégz):oyor“})

[l <7y
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we choose @,,; in such a way that

17 mn+1={fgn)’ gy 5&?7 52.1:11)3 ER) 55:’;‘),0,0, . -}7
1) )| <ol

1 )
(1) fonsalP =+ (5 7 @)

The point #,,, will be found as follows: we write @,,1=,+h, and
have :

f(wn-}-l) =f(2,) +_-w.(wm hg) 7 (% hy),
[P (@as W) <algaIRIIBE i (IR]<y(@n)-
By lemma 3 there is a vector b, fulfilling the conditions

. : v 1 .
hn={0:0y'-~:0,§5:';+11):---;55,',?{1),0,-'-}7 llhn1|=§y(_wn)7
ol 1< g e (3700
e s e P 3 )

As we have S :

.
alom Il < 3 e T TP

we get

(20) lf(wn+1>—f(w,,>x<—-—‘f—-—:—(i y(wn>)p~
p ax {1, [z, {77} \2

The relation (17) gives

1

, pmax (1,2, [} (’2‘”’”")) ’
and from inequalities (15), (20), (21) we get
(@ 1) [l Bl

The point ®,,, satisfies all the relations (17), (18), (19).
There is necessarily an x, satisfying

21 N@npall Zlwall 4

<l <r -

Otherwise there would be an infinite sequence of points }un fulfilling the
relations (17), (18), (19) and [o,] <r. Relatiqn (19) implies that the series

3 (% y @;))p

n=1
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converges and from relations (17), (19) it follows that @, is a Cauchy
sequence, @,—>#, ||#|<{r<R. Consequently we have y(z,)—>0, y()>0,
and the contradiction resulting from the lower semicontinuity of the
function y(») eompletes the proof of theorem 5.

One verifies easily that every polynomial safisfties the conditions
of theorem 5, and consequently we have

LeMMA 5. Let &,7,,7, be three positive numbers, ri<<r,. Suppose that
q(a) is a polynomial in 1® with numerical values, ils degroe being arbit-
rary (p>=1, p#2,4,6,...).

Then there is a point xel® satisfying the conditions

(22) r<|jsf}<ry,
(23) lg(x)—4(0)|<s,
(24) the point @ has only & finite number of coordinates different from zero.

Proof. Tt follows from theorem 5 that there is a point yel® satis-
fying the conditions (22), (23). As the polynomial g{z) is a continuous
functional, there is 2 point » satisfying 2ll the conditions (22), (23), (24).

Now we shall prove theorem 4 in the case where B=I®. We repeat
line after line the proof of theorem 5 with & slight modification due to
the fact that we have o use lemma 5 instead of lemma 3. As the space L®
contains a subspace isometric to the space I, theorem 4 holds in the
case where B=L® too.
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