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Let us consider a Bernoulli schema with » possible outcomes (r>>2)
and let the probability ., (m=1,...,r) of the occurence of the m-th
outcome depend on the number » of observations. We suppose that
0< <1 for all # and m. Let ,, denote the number of occurrences of
the m-th outeome in n observations. Then
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where .k, are non-negative integers satisfying the equality
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m=1
In view of the last relation the variable (#,;,%n,...,%,) can be?) redu-
ced with probability 1 to an (r—1)-dimensional variable. The formula (1)
is the distribution function of the multinomial distribution.

The aim of this paper is to find the class of all possible limiting dis-
tributions of (1) where the p-s may be arbitrary functions of n2). The
solution of this question for r=2 has been given by Kozuliajev [2].

The following theorem will be proved:

TruuorEM 1. Let the sequence of distribution functions of the random
variables (Apy®ay-+ Baps Ape®ns+ Bray- -y Apy®pe+Byy), where A,y >0 and
B (m=1,...,7) are some sequences of real numbers, converge as n—>co {0 &
distribution function of « non-singular (r—1L)-dimensional variable. Then
this variable is necessarily of the form (&,n), where & is a j-dimensional
Poisson variable®) and n is an (r—j— 1)-dimensionsl normal variable
(0<j<r—1), & and n being independent.

1y Cf[1], §22.5.
*) The problem was suggested to me by A. N.Kolmogorov during the VIII
Congress of Polish Mathematicians at Warsaw.
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Proof. The characteristic function of (1) is given by the formula

(2) Ptytaye e osbr)= (Pur €+ Pro 6™+ ...+ Py,

Let us suppose that .y, Pumas-+ - s Pmny 8abisfy the relation

(3) L == Ay

n—>00
where 0<<i,<oco. Clearly 0<j<<r—1. Withous restrmtmg the generality
of our considerations we can assume m,=% (k= =1,...,7). Let the remain-
ing np,, satisfy the relations
(4) ]jmpnm=pms ]jmnpmzoo.

L] 00

We shall introduce new variables

Ynm= Tpm ('M'—‘-‘l,...,j),
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l'/'npnm

The characteristic function of the variable (
by the formula

(m=j-+1,...,7).

Ynm =
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Taking into account (3) and (4) we obtain

08 7,=— V03V puntat log[1.+pm(e“1—1>+...+p,.1(e"‘*—1>

]/pnmt Lo o (1)]
m—1+1 2n n

ne= 1+1

= Z ”pnm(eit”‘l)— 2 e +_ 2 pnm '

Ml m=1+1 2 m=j+r

r—1 r
+ 2 2 V/pnmpni tmbi+0(1),

m=F+1 l=m 41
3) A j-dimensional variable (y;,y, y,) is called a Poisson variable if
sY2s0ees its
probability distribution funetion is given by tile formula
i Ko
P(y1=A1k1+B1:’.‘la=Azkx+Bs;n'sf'/y':A;ky‘!‘B;):He_A”’%,
el ‘m*

where %,=0,1,2,... and 4,>0, 4,50 and B, are real constants.
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and finally
] .
lim log gy= 3 Apn(d—1)
n—>00 m=1
(6) 1 r . r—1 r
~3LSo-mt-2 3 S Vo).
2 Imifn Mm=F+1 l=m+1

The first expression on the right side of (6) is the logarithm of a cha-
racteristic function of a j-dimensional Poisson variable, the second one
is the logarithm of a characteristic function of an (r—j—1)-dimensional
normal variable, since the rank of the matrix*) of the quadratic form in
the squared brackets is equal to »—j—1.

Let us now suppose that the assumption of the theorem is satisfied.
Following the method of Cantor we can choose such a subsequence of
indices %, that p,,,— Py for m=1,...,7 and P, m—>4,, Where 0<p, <1
and 0<<A, oo, Without restricting the generality of our considerations
we assume that the same holds for the sequences of indices .

Let us assume that for each value of m=1,2,...,r relation (3) or
(4) holds. Then the assumption of our theorem, formula (6) and a gen-
eralization of a theorem of Khintchin (see [3]) imply that in the limit,
as n—>oo, only a distribution of a variable of the form required in the
assertion of the theorem can be obtained.

Let us now suppose that the assumption of the theorem is satisfied
and that at least for one of the p,,-s, say for p,,, the following relation
holds:

(7 lim np,, = 0.

N—>00

Let us introduce new variables:
Znm = Ay Bom~+ B (m=1,2,...,7).

For the characteristic function g,(f,...,t,) of the variable (2.,...,%.,)
the relation

r r
(8) log @a=1 3 Bumtm+n10g[L + 3 Py (d4mi —1)]
m=1 Me==1
holds. Further, for some m, let 0<<p,,<<1. We have

log ¢2(0,0,...,1,,0,...,0)=iB,, 4% 10g[1 4 P (4m=—1)].

Since log @, converges with n—>oco t0 a characteristic function and P 70,
it follows from the last equality that 4,,—4,,==0. The logarithm in

4) Loe. cit.1).
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formula (8) can thus be expanded in the neighbourhood of the number 1.
To the same conclusion leads the assumption that for some m, say m=r,
p,=1. This is immediately seen if we take in (8) t,=0, since for
m=1,2,...,r—1 we have p,, 0. Then it follows from formula (7) that
the term depending on #, will vanish. On the other hand B,;—~ By,
where B, is finite. Then we obtain in the limit a distribution of a singular
variable whose number of dimensions is at most r—2.

The theorem is thus completely proved.

Let us finally remark that the assertion of the theorem remains
true if the assumption 4,,>0 is replaced by A4,,7#0.
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