On a theorem of W.F. Eberlein
by
V. PTAK (Praha)

Several years ago Eberlein [2] proved the following heautiful and
important theorem:

Let X be a complete normed lineawr space. Let A C X be countably com-
pact in the weak topology of the space X. Then the weak closure of A is
weakly compact.

This result has been strengthened by the author [7] in the following
manner:

L Let X be a complete conver topological linear space. Let ACX be
pseudocompact) in the weak topology of the space X. In such a case the
closed symmetrical convex envelope of the set A is weakly compact.

The proof of this result relies, however, on the original result of
Eberlein and is, besides, not very simple. The author believes that, in
view of the importance of this theorem, it will not be without some inte-
rest to give another simple proof, which at the same time admits a geome-
trical interpretation. This is exactly the purpose of the present note.
Here we limit ourselves to the proof of the following theorem:

II. Let X be a complete comvex topologioal linear space. Let ACX
be pseudocompact in the weak topology of the space X. Then the weak clo-
sure of A is weakly compact.

Unfortunately enough, the author has not succeeded in extending
the elementary method mentioned above also to the proof of the stronger
asgertion (I).

‘We begin with some remarks concerning terminology and notations.
At the same time we recapitulate some well known definitions and re-
sults of the theory of convex topological linear spaces.

As far as topology is concerned, terminology coincides with that
of N. Bourbaki. Completeness is taken in the sense of A. Weil.

) A eompletely regular topological space T is said to be pseudocompact if every
continuous function on 7T is bounded on 7.
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Let X be a convex topological linear space. We consider only real
spaces in this note. A real function r defined on X will be called a linear
funetion on X, if

F(A@y+Aymp)= Iy () + Jo 7(m)
for any two #,¢ X, #,¢ X and any two real numbers Ayy4s. A linear funection
on X will be called a linear functional on X if it is continuous on X.

Let X and ¥ be two convex topologieal linear spaces. We shall say
that the spaces X and Y are dual to each other [1] if, for every z#¢X and
for every ye¥ a real number 2y is defined so that the following condi-
tions are fulfilled:

(1) Let 7, be a fixed element of ¥. Then Yo, taken as a function of z,

becomes & linear functional on X, and every linear functional on X

may be obfained in this manner for a suitable Yo X.

(1') Let 2, be a fixed element of X. Then Loy, taken as a function of
¥, becomes a linear functional on ¥, and every linear functional on Y
may be obtained in this manner for a suitable s X.

(2) Let g, be a fixed element of Y. If @y,=0 for every ze X, then y,=0.
(2) Let x, be a fixed element of X. If @,y =0 for every ye ¥, then 2,=0-

Now let a convex topologieal linear space X be given. Let us denote
by Y the linear space of all linear functionals defined on X. We shall
write zy for the value of the functional y at the point #. Then it is possible
(see e. g. [1]) to define a fopology on Y in such a way that ¥ becomes
a convex topological linear space and that X and Y are dual to each
other. In the general case, this topology is not uniquely determined.

Let X and Y be dual convex topological spaces. If ACX, let us
denote by A* the set

A*=BlyeY,|4y|<1]
v

Here, of course, |Ay]<{1 means that |ay|<<1 for every aeAd.

Clearly the set 4* is a closed symmetrical convex subset of ¥ for
every ACX.

It is easy to see [4] that the set 4™ is the least closed symmetrical
convex subset of X which contains 4. It will be called the closed symmetri-
cal envelope of A.

Let a convex topological linear space X be given. The term neigh-
bourhood of zero is taken to mean a symmetrical convex and closed neigh-
bourhood of zero. ) )

Further we shall use some definitions and results concerning complete
convex topological linear spaces, which have heen obtained recently
by the author in [6].
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Let X and ¥ be dual convex topological linear spaces. A linear func-
tion 7 defined on ¥ will be called an almost continuous functional on ¥,
if, for every neighbourhood of zero U in X, the restriction of » on U*
is continuous.

Perhaps it will not be useless to add two remarks to this definition.
First of all, it might seem at first glance that the notion of an almost
continuous functional depends on the choice of the topology in Y. This
is only apparent, however; it is easy to see that the family of all almost
continuous functionals on ¥ remains the same for any choice of the top-
ology in ¥ (subject to the condition that X and ¥ be dual to each other).

On the other hand, it is to be noted that, given a convex topological
linear space ¥ and a linear function r defined on ¥, the expression ‘““» is
an almost continuous linear functional on ¥” has no sense in itself. In
fact the role played by the space ¥ in the foregoing definition is only
an auxiliary one. As we have seen, its topology is irrelevant, and its ele-
ments are uniquely determined by the space X, anyhow. We see thus
that, roughly speaking, to obtain the family of all almost continuous
functionals on ¥, it is sufficient to know the space X only.

‘We have shown in [6] that the completion of an arbitrary convex
topological linear space X consists of all almost continuous linear funetio-
nals on Y. Especially: a convex topological linear space X is complete
if and only if every almost continuous funectional on Y is continuous.

The proof of these facts is given in [6]. To this paper the reader is
referred as far as other properties of almost continuous functionals are
concerned.

1. Auxiliary results. In this section we intend to collect some pre-
liminary remarks, which will be used in the proof of our theorem. Most
of them are nearly obvious and proofs will be added for the sake of comple-
teness only.

Let T be a completely regular topological space. Let » be a function
defined on T. If is sometimes useful to consider functions » which fulfil
the following weakened condition of continuity :

Let 1, be a limit point?) of the sequence %,¢7T. In such a case the num-
ber r(f,) is a limit point of the sequence r(%,).

It is easy - to see that this condition is equivalent to the postulate
that #(8)Cr(§) be fulfilled for every countable SCZ7. For the sake of
brevity, functions on 7 fulfilling this condition will be called countably
continuous funatwns The following lemma is obvious:

*) A point #, of a topological space is said to be a limit point of a sequence
t,, if, for every nmghbouthood U of ¢, the inclusion #,¢ U is fulfilled for infinitely
many n,
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(1.1) Let T be o completely regular topological space. Let r be o countably
continuous function on I. Let WCT be countably compact. Then r is
bounded on W and attains its mazimum value af a suitable point
weW.

Proof. Suppose first that r is not bounded on W. Then there exist
wye W such that |r(a,)|>>n. The set W being countably compact, the
sequence w, has at least one limit point w,e W. It follows that the number
r(wp) is a limit point of the sequence r(w,), which is impossible. This
contradiction proves that r is bounded on W. Now, if g=supr(W), a se-
quence w,e¢ W can be found such that r(w,)>u—1/n. Let wee W be a li-
mit point of the sequence w,. The value of r at w,, being a limit -point
of the sequence r(w,), cannot be different from x since, in this case, B is
the only limit point of the sequence r(w,).

Let X and Y be dual convex topological linear spaces. Liet r be a linear
function defined on ¥. We shall call r a weakly countably continuous function-
al if r is countably continuoms in the weak topology of the space Y.

The interest of functionals fulfilling this weakened form of conti-
nuity lies in the fact that, in some supplementary conditions, it is possi-
ble to prove their continuity. This is shown in the following simple lemma:

(1.2) Let X and Y be dual conver topological linear spaces. Let r be
a weakly countably continuous functional on Y. Suppose that, for
every neighbourhood of zero U in X, there exists & countable set HC X
such that the relation ry=0 holds for every ye U* which fulfills Hy=0.
Then r is an almost continuous functional on Y.

Proof. Let us take an arbitrary neighbourhood of zero U in X.

We shall prove that r is weakly continuous on U™.
Let H be a countable subset of X which fulfils the above condition with

respect to U. Let h, be a sequence which contains all elements of H. We are

going to show that, for every e > 0, a natural m can be found such that
1 .
ye U™, lh‘-ylgz for i=1,2,...,m implies |ry|<e.

Suppose that this assertion is not true. Then there exists a positive
o and a sequence y,e U* such that, for every natural m, the following
inequalities are fulfilled:

1 )
]hiy"{<7—1 (1=1,2,...,n), [Py, = 0.

The set U* being weakly compact, there exists a point 4,¢ U* which is
a weak limit point of the sequence y,. Now, r is weakly countably con-
tinuous. It follows that |ry,|> e,
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Now, let ¢ be a fixed natural number and let e> 0. The point y, being
a weak limit point of the sequence y,, & natural m>=>max(1/e,%) can be
found such that |k (Y,— ¥o)| <& Since m>4, we have |h;y,|<1/m<e, so
that [hyy,] < 2e.

Here, however, both ¢ and ¢ are arbitrary. It follows that h;y,=0
for all 4 and, in view of our assumption, ry,=0. We have thus obtained
a confradiction which proves that r is almost continuous.

Let X be a convex topological linear space in its weak topology. Accor-
ding to a well known theorem [5], [6], the complete closure of X coinci-
des with the space R of all linear functions defined on the space ¥ dual
to X. Let 4 bean algebraic basis of the space Y, i. e. a set A CY consist-
ing of linearly independent elements and such that every yeY can be
expressed as a linear combination of a finite number of elements of A.
Let § denote the linear space of all “sequences” of real numbers s={s“}
indexed by 4.

In 8, let us introduce the topology of a Cartesian product of real
lines. To every re R let us assign the ‘“‘sequence’ s*=ra. It is easy to see
that the mapping of B upon § obtained in this manner is an isomorphism
both in the sense of algebra and topology.

Now if B is a bounded subset of X, we shall have for every aed

o(a)=rup|Ba|< co.

It follows that the set B is mapped into a Oartesian product of line

segments. ‘We have thus proved that, given an arbitrary bounded BC X,

the set B (closure in R) is compact. Following Hewitt [3], we shall call

a_completely regular topological space T pseudocompact if every .conti-

nuous funetion on 7' is bounded on 7.

(1.3) Let X and Y be dual convex topological linear spaces. Let BC X be
pseudocompact in the weak topology of the space X. Let re R be contained

@n the weak closure of the set B. Then r is weakly coumtably continuous.

Proof. Ourlemma will be proved if we show that for every sequence
y,€Y a point beB can be found such that ry,= by, for all .

To see that, let us fake a sequence y,e¢ Y and let y, be a weak limit
point of y,. We are to show that »y, is & limit point of the sequence ry,.
Suppose we have found a beB such that by,=ry, and by,=ry, for all
natural #. Since b is a continuous functional on ¥, the number ry,= by,
is a limit point of the sequence ry, =by,. Hence it is sufficient to prove
the following lemma:

(1.4) Let X and Y be dual conver topological linear spaces. Let BCX be
pseudocompact in the weak topology of the space X. Let re R be contained

“in the weak closure of the set B. Let y,, be a sequence of points of Y.

Then there emists a point beB such that ry,=by, for oll n.
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Proof. For every natural # and every beB let f,(b)=|[(b—r)y,].
Clearly f, is & sequence of continuous funections on B. The space B
being pseudocompact, there exists a sequence of positive numbers g,
such that beB implies |f,(0)|<f,. Now

1
= g, Bal®)

is clearly a non-negative continuous funection on B. It is easy to see
that

inf f(b)=
beB

Let us suppose now that f(b)>0 for all beB. Let us define a function
g(b) on B by the relation g(b)f(b)=1. Now the value f(b) can be arbi-
trarily small, so that g cannot be bounded on B. This, however, is not
possible, since g is clearly continmous. This contradiction proves the
existence of a beB, such that f(b)=0. This point b evidently fulfills
the relation ry,=>by, for all n.

To simplify some formulae which we shall need in the following
section, it will be convenient to introduce the following notation: if g(y)
is a linear function defined on Y, let Z(g) be the set of all ye¥ for which
9(y)=0.

2. Weakly compaet sets. In this section we shall give the non-tri-
vial part of the proof of our theorem. We sghall begin with some
remarks.

Let X and Y be dual convex topological linear spaces. Let us denote
by R the space of all linear functions defined on Y. The space R will be
taken in the weak topology corresponding to ¥. The space X taken in
its weak ftopology, is thus imbedded in R.

Now let BCX be pseadocompact in the weak topology of the space
X. Since B is clearly bounded in X, it follows from the considerations
of the preceding paragraph that the closure of B in R is compact.

It follows that the weak closure of B in X will be compact if and
only if the closure of B in R is contained already in X. In other words,
our theorem will be proved if we show that every reR which lies in the
closure of B is a continuous linear functional on Y, since, in such a case,
r coincides with an element of X.

Now let X be a complete space. It is shown in [6] that, in this case,
the family of all continuous linear functionals on Y coincides with that
of all almost continuous linear functionals on Y.

‘We see thus that the proof of our theorem is reduced to the proof of
the following assertion:
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(2.1) Let X be a conves topological linear space. Let BCX be pseudcompact
in the weak topology of the space X. Let reR be contained in the
weak closure of the set B. Then r is an almost continuous functional
on Y. -

Proof. First of all it follows from lemma (1.3) that r is weakly coun-
tably continuous.

We have seen in lemma (1.2) that a weakly countably continuous
functional can be shown to be almost continuous if certain supplemen-
tary conditions are fulfilled.

In view of these remarks the proof of our theorem will be concluded
if we succeed in proving the following assertion:

For every neighbourhood of zero U in X, there exists a sequence
b,eB with the following property: if yeU* and by=0 for all n, then
ry=0.

To prove this, let us take an arbitrary neighbourhood of zero U in X.
The construction of the sequence b, will proceed by a simple induction.

(1) Let b, be an arbitrary point of B. The set U*(\Z (b,) being weakly
compact, a point y,e U*() Z(b,) can be found such thab

Y= maxry, ye U Z(by).
This follows easily from lemma (1.1) if we take into account the
fact that r is weakly countably continuous.
(2) According to (1.4) there exists a point b, e B such that byyy=ry;.

Now, using a similar argument as in the preceding case, we conclude
that there exists a point y,e U*NZ(b;)\Z(bs) such that

' ye UV Z (b)) N Z (by).

(n+1) Let us suppose now that the elements Diyeeisbny Wpyenn,y™
have been defined so that the following relations are fulfilled :

TYo==MAX 1Y,

byj=ry;  for j<<i
by;=0 for i<y,
PYY;==INaX 7Y, yeU*NZ@)YN...N Z (by).
First of all let us choose b,,,¢B such that
bpty=ry; for j=1,2;... m,

To obtain y,,,,;, we recollect that » abtains its maximum value on the
weakly compact set U*NZ(5,)N...N Z(byyy). Now it is sufficient to
take Y, e T*N Z(b)N..." Z(by,) such that )

Pl 41 =IAX Y, yeU*NZ,) ... N Z(byy,).
This completes the induction.
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Now we are going to show that lim ry,=0. Clearly ry, is a non-in-
creasing sequence of non-negative numbers. Let e=infry,. Suppose
that ¢>0.

Let yoe U* be a weak limit point of the sequence y,. Since b;y,=0
for.n>=14, we have b;y,=0 for all ¢. For beB let

Yo (b)=e—min(|b (yn— o)l ¢)-
The functions y,(b) are continuous funetions on B. We have 0y, (b)< ¢
and the relation y,(b)=0 holds if and only if |{b(y,— y,)|>=¢. For beB
let us define further

Led

1
p(b)= S’?, P ().

The function p() is continuous and non-negative. Let us estimate the
value p(b;). For n<<é we have b;y,=1ry,>¢, 50 that

bi(yn" yo) = bi%;} &

which implies 1, (b;)=0. It follows that p(b;)<<e/2""". The space B being
pseudocompact, we can easily conclude the existence of a point beB
such. that (b)=0 or, which is the same, such that v,(b)=0 for all n.

Tt follows that |b(y,— ¥,)|=e¢ for all n, which is & contradietion, y,
being a limit point of 4, in the weak topology. This contradiction shows
that e cannot be positive. We have thus proved that limry,=e=0.

Now let us take a point ye U* such that b;y=0 for all 2. We are going
to show that ry==0. To see that, let m be an arbitrary natural number.
Since ye U*NZ (b)) ..V Z(b,), we have

Iry}< max ry, ye* (1 ZB) ... N Z(by),

50 that |ry|<ry,,. Since m was arbitrary, we have ry=0, which conclu-
des the proof.
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On a class of operations over the space of continnous
vector valued functions
by
W. ORLICZ (Pornat)

1. By o(u) we shall denote a non decreasing function, defined for
>0, positive for >0, vanishing for x=0 and such that limw(u)=0.

U—>0

‘We shall say that the function w(u) satisfies the eondition (m) if
(2) ‘ w(w)<do(u)w(v),

(b) ————m(u)—w as  #->oo.
a

The condition (m) implies

(b’) wzu) >o0 as u—>0.
Indeed, by (a) ,
wlu) (1)
% cuo(lju)

The functions w(u)=u" or w(u)=u*(|Inu|+1/a), where 0<a<1, satisfy
the condition (m).

X will denote a Banach space. ¢(X) will stand for the Banach space
of continuous X-valued functions x(t) defined in A= (g,b) under the
usual definitions of addition and multiplication by scalars and with the
norm

l#lle =Tax i (M-

By C(X), we shall denote the space of continuous X-valued functions
#(t) defined for —oo<t<oo and of period p; C(X), may become, as
above, Banach space (1f we define the norm by the above formula with
A=(0,p)).
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