284

V. Pták

[7] — Weak compactness in convex topological linear spaces, Čechosl. Mat. Žurnal 79 (1954), p. 175-186.

[8] J. Dieudonné, Sur un théorème de Šmulian, Archiv der Math. 3 (1952), p. 436-440.

[9] A. Grothendieck, Critères de compacité dans les espaces fonctionnels généraux, Am. Journ. of Math. 74 (1952), p. 168-186.

(Reçu par la Rédaction le 14.11.1953)

On a class of operations over the space of continuous vector valued functions

by W. ORLICZ (Poznań)

1. By $\omega(u)$ we shall denote a non decreasing function, defined for $u \ge 0$, positive for u > 0, vanishing for u = 0 and such that $\lim_{n \to \infty} \omega(u) = 0$.

We shall say that the function $\omega(u)$ satisfies the condition (m) if

(a)
$$\omega(uv) \leqslant c \omega(u) \omega(v)$$
,

(b)
$$\frac{\omega(u)}{u} \to 0$$
 as $u \to \infty$.

The condition (m) implies

(b')
$$\frac{\omega(u)}{u} \to \infty \quad \text{as} \quad u \to 0$$

Indeed, by (a)

$$\frac{\omega(u)}{u} > \frac{\omega(1)}{cu\,\omega(1/u)}.$$

The functions $\omega(u)=u^{\alpha}$ or $\omega(u)=u^{\alpha}(|\ln u|+1/a)$, where $0<\alpha<1$, satisfy the condition (m).

X will denote a Banach space. $\mathcal{O}(X)$ will stand for the Banach space of continuous X-valued functions x(t) defined in $\Delta = \langle a,b \rangle$ under the usual definitions of addition and multiplication by scalars and with the norm

$$||x||_C = \max_{A} ||x(t)||.$$

By $C(X)_p$ we shall denote the space of continuous X-valued functions x(t) defined for $-\infty < t < \infty$ and of period p; $C(X)_p$ may become, as above, Banach space (if we define the norm by the above formula with $\Delta = \langle 0, p \rangle$).

Given a function $\omega(u)$, we denote for $\pi(t)$ belonging to C(X) or $C(X)_p$

$$\sup_{t,h} \frac{\|x(t+h)-x(t)\|}{\omega(|h|)} = \mu,$$

where in the case if $x \in C(X)$ the supremum is taken for $t \in \Delta, a-t \leq h \leq b-t$, and if $x \in C(X)_p$, for arbitrary t, h.

By $L_{\omega}(X)$ or $L_{\omega}(X)_p$ respectively we shall denote the linear space of functions of C(X) or $C(X)_p$ respectively, for which $\mu < \infty$. Under the usual definitions of addition and multiplication by scalars, and with the norm

$$||x||_{\omega} = \max_{t} ||x(t)|| + \mu,$$

they are Banach spaces.

If $\omega(u)=u^a$, $0<\alpha\leqslant 1$, we shall write $L_a(X)$ instead of $L_{\omega}(X)$, and $\|x\|_a$ instead of $\|x\|_{\omega}$. The functions of $L_{\alpha}(X)$ with $0<\alpha<1$ are said to satisfy the Hölder condition with the exponent a, the functions of $L_1(X)$ are said to satisfy the Lipschitz condition. In the last case the constant k, such that for $a-t\leqslant k\leqslant b-t$

$$||x(t+h)-x(t)|| \leq k|h|$$

is called the *Lipschitz constant*. Analogous terminology will be used for spaces of periodic functions.

Obviously $C(X) \supset L_{\alpha}(X) \supset L_{\beta}(X)$ if $\alpha < \beta$.

By $C_0(X)$ or $C_0(X)_p$ we shall denote a complete subspace of C(X) or $C(X)_p$ respectively. If we restrict the functions x(t) to run over the space $C_0(X)$ then we obtain a complete subspace $C_0(X)L_w(X)$ of the space $L_w(X)$.

We shall say that the space $C_0(X)_p$ is translation-invariant if $x(t) \in C_0(X)_p$ implies, for every τ , $x(t+\tau) \in C_0(X)_p$.

LEMMA. If for every $\tau \in \langle \tau', \tau'' \rangle$ the function $x(\tau;t)$ belongs to $C_0(X)$ [to $C_0(X)_p$] and $x(\tau;:)$ depends continuously on the parameter τ , then the function

$$y(t) = \int_{\tau'}^{\tau''} x(\tau;t) d\tau$$

also belongs to $C_0(x)$ [to $C_0(X)_p$]. The integral is taken in the sense of Riemann-Graves.

Proof. Given a partition $\pi: \tau' = \tau_0 < \tau_1 < ... < \tau_n = \tau''$, let us write

$$z(\pi,t) = \sum_{i=1}^{n} x(\tau_{i-1};t)(\tau_{i} - \tau_{i-1}).$$

The function of two variables $x(\tau;:)=x(\tau,t)$ is uniformly continuous in $\langle \tau',\tau''\rangle \times \Delta$. Let $\Omega(\delta)$ be the modulus of continuity of $x(\tau,t)$; then, for every partition π .

$$||z(\pi,t')-z(\pi,t'')|| \leq (\tau''-\tau') \Omega(\delta),$$

if $|t'-t''| \le \delta$. Given a normal sequence of partitions $\{\pi_n\}$, we see that $z_n = z(\pi_n, t) \to y(t)$ uniformly in $\langle a, b \rangle$, for $z(\pi_n, t) \to y(t)$ at every $t \in \langle a, b \rangle$, and the functions $z(\pi_n, t)$ are uniformly continuous. Hence

$$||z_n-y||_C \rightarrow 0, \quad y \in C_0(X).$$

THEOREM 1. Let the space $C_0(X)_p$ be translation-invariant; then it is possible to define linear operations $T_n(x)$ from $C_0(X)_p$ to $C_0(X)_p L_1(X)_p$ is such a manner that:

(a) if $x \in C_0(X)_p L_\omega(X)_p$, $\omega = \omega(u)$ being fixed, then the functions $x_n(t) = T_n(x)$ satisfy the Lipschitz condition with the constant

$$(1) k_n = Bn \omega \left(\frac{1}{n}\right),$$

(b) for n=1,2,...

$$||x - x_n||_C \leqslant A \omega \left(\frac{1}{n}\right),$$

(c) the constants A, B in (1) and (2) do not depend on n. It is possible to define $T_n(x)$ such that

$$A = ||x||_{\omega}, \qquad B = ||x||_{\omega}.$$

The theorem remains true if we remove the condition of translation-invariance of the space and replace the space $C_0(X)_p$ by the space C(X). In this case we may set $A=2\|x\|_p$, $B=\|x\|_p$.

Proof. The particular case where X is the space of real numbers and $C_0(X)_p$ is identical with $C(X)_p$ is well known. In this case the operations $T_n(x)$ may be defined in several ways, $e.\ g.$ by means of singular integrals. This device may be adapted to the space $C_0(X)_p$ satisfying the translation condition.

As an example we present three kinds of the introduction of $T_n(x)$, taking $p=2\pi$.

1. Let us write

$$x_n(t) = T_n(x) = n \int_t^{t+1/n} x(\tau) d\tau = n \int_0^{1/n} x(\tau+t) d\tau.$$

By our Lemma $T_n(x) \in C_0(X)_p$. Since $x_n'(t) = n \left[x \left(t + \frac{1}{n} \right) - x(t) \right]$, we get

$$||x'_{n}(t)|| \leq n||x||_{\omega} \omega\left(\frac{1}{n}\right), \qquad ||x'_{n}(t)|| \leq 2n||x||_{C}.$$

Hence $x_n(t)$ satisfies the Lipschitz condition with the constant (1), where $B = ||x||_{\omega}$ and $T_n(x)$ is a continuous operation from $C_0(X)_p$ to $C_0(X)_p L_1(X)$ moreover

$$\|x(t)-x_n(t)\|\leqslant n\int\limits_0^1\|x(t)-x(t+\tau)\|\,d\tau\leqslant \|x\|_{\omega}\,\omega\left(\frac{1}{n}\right).$$

This implies the condition (b) with $A = ||x||_{\alpha}$

2. Set

$$k_n(t) = \left(\sin\frac{nt}{2}\operatorname{cosec}\frac{t}{2}\right)^4, \qquad \gamma_n = \int\limits_{-\pi}^{\pi} k_n(t)\,dt = 2\pi\frac{n(2n^2+1)}{3}\;.$$

We define first the Jackson integrals 1) for $n=1,2,\ldots$ as

$$s_n(t) = S_{2n-2}(x) = \frac{1}{\gamma_n} \int_{-\pi}^{\pi} x(\tau) k_n(\tau - t) d\tau = \frac{1}{\gamma_n} \int_{-\pi}^{\pi} x(\tau + t) k_n(\tau) d\tau.$$

If $x(t) \in C_0(X)_p$ then, by our Lemma, $s_n(t) \in C_0(X)_p$. The same estimations as in the case of real functions x(t) give

$$||x - s_n||_C \leqslant 6||x||_{\omega} \omega \left(\frac{1}{n}\right),$$

$$||s_n||_C \leqslant ||x||_C.$$

If x(t) satisfies the Lipschitz condition with the constant K, then $s_n(t)$ satisfies this condition with the same constant, for

$$\|s_n(t+h)-s_n(t)\|\leqslant \frac{1}{\gamma_n}\int\limits_{-\pi}^{\pi}\|x(t+\tau+h)-x(t+\tau)\|\,k_n(\tau)\,d\tau\leqslant K|t|.$$

Choosing an arbitrary sequence of operations $a_n^*(t) = T_n^*(x)$ satisfying the condition (a), (b) with constants $A = B = ||x||_{\infty}$ and setting

$$\begin{split} T_{2n-1}(x) &= S_{4n-2} \big(T^{\star}_{2n-1}(x) \big), \\ T_{2n}(x) &= S_{4n-2} \big(T^{\star}_{2n}(x) \big) & \text{for} \quad n = 1\,, 2\,, \ldots\,, \end{split}$$

we see that the functions $T_{2n}(x)$ and $T_{2n-1}(x)$ satisfy the Lipschitz condition with the constants $\|x\|_{\omega} 2n\omega(1/2n)$ or $\|x\|_{\omega}(2n-1)\omega(1/(2n-1))$ respectively. Since

$$\|x-T_{2n}^{\star}(x)\|_{C} \leqslant \|x\|_{\omega} \omega \left(\frac{1}{2n}\right)$$

we infer by (3') that

$$||S_{4n-2}(x)-T_{2n}(x)||_{C} \leq ||x||_{\omega} \omega \left(\frac{1}{2n}\right),$$

and this, together with (3), leads to

$$||x-T_{2n}(x)||_{C} \leqslant 7||x||_{\omega} \omega \left(\frac{1}{2n}\right).$$

Analogously

$$||x-T_{2n-1}(x)||_{C} \leqslant 7||x||_{\omega} \omega \left(\frac{1}{2n-1}\right).$$

Hence we can set $A=7\|x\|_{\omega}$, $B=\|x\|_{\omega}$. Let us observe that $k_n(t)$ is a trigonometric polynomial of the form

$$k_n(t) = \sum_{i=0}^{2n-2} c_i \cos it.$$

The representation of $T_{2n}(x)$ and $T_{2n-1}(x)$ by aid of the Jackson integral shows that these operations may be written as a trigonometrical polynomial of degree 4n-2

$$\sum_{i=0}^{4n-2} (x_i \cos it + y_i \sin it),$$

where

$$x_i = c_i \int_{-\pi}^{\pi} T_m^*(x) \cos i\tau d\tau, \qquad y_i = c_i \int_{-\pi}^{\pi} T_m^*(x) \sin i\tau d\tau,$$

and are linear operations from $C_0(X)_n$ to X.

3. Replacing $C_0(X)_p$ by C(X), we can define $T_n(x)$ as a polygonal function $x_n(t)$ assuming for

$$t_i = a + \frac{i}{n}, \quad i = 0, 1, \dots, \quad m = E[n(b-a)],$$

the value $x(t_i)$, linear in the intervals $\langle t_{i-1}, t_i \rangle$ for $i=1,\ldots,m-1$, and in the interval (a+m/n,b) equal to $x(t_{m-1})$ if $a+m/n\neq b$.

In this case we can choose $A=3||x||_{\omega}/2$, $B=||x||_{\omega}$. If $\omega(u)$ satisfies the condition (m), we can replace the coefficient 3/2 above by $1/2+c\omega(1/2)$.

Analogously we can define $x_n(t)$ in the space $C(X)_p$.

Concerning 2 see, for instance, И. П. Натансон, Конструктиеная теория функций, Москва 1949, р. 111-119.

THEOREM 2. If there exist functions $x_n(t) \in C_0(X)_p$ satisfying the Lipschitz condition with the constant (1), and if the inequality (2) is satisfied for $n=1,2,\ldots$, then

$$x(t) \in C_0(X)_n L_{\omega}(X)_n$$

for every $\omega(u)$; moreover,

$$||x||_{\infty} \leq ||x||_{C} + \lambda$$

where $\lambda=2 \max[A+B,A+B|\Delta|]$.

The theorem remains true if we replace $C_0(X)_p$ and $L_{\omega}(X)_p$ by $C_0(X)$ and $L_{\omega}(X)$ respectively.

Proof. By our hypothesis

$$\|x(t) - x_{2^n}(t)\|_C \leq A \omega\left(\frac{1}{2^n}\right),$$

Given $|h| \epsilon(0,1)$ let us choose n so that

$$\frac{1}{2^{n-1}} > |h| \geqslant \frac{1}{2^n}.$$

Then the inequality

$$||x(t+h)-x(t)|| \leq ||x(t+h)-x_{2^n}(t+h)|| + ||x(t)-x_{2^n}(t)|| + ||x_{2^n}(t+h)-x_{2^n}(t)||$$

$$\leq 2A \omega \left(\frac{1}{2^n}\right) + B2^n \omega \left(\frac{1}{2^n}\right) |h| \leq 2(A+B) \omega(|h|)$$

is satisfied. If $1 \le |h| \le |\Delta|$, the last inequality with n = 0 leads to

$$||x(t+h)-x(t)|| \leq 2(A+B|\Delta|)\omega(|h|).$$

Thus setting $\lambda = 2 \max[A+B,A+B|\Delta|]$, we get

$$||x||_{\infty} \leq ||x||_{C} + \lambda.$$

THEOREM 2'. Let $\omega(u)$ satisfy the condition (m), and let $C^n = C^n(X)_p$, be a linear subset of $C(X)_p$ whose functions have the following properties:

- (*) the class C^n is contained in C^{n+1} ,
- (**) the functions of C^n satisfy the Lipschitz condition with the constant $k'_n = Bn||x||_C$, B being independent of n.
- If for n=1,2,... there exists a function $x_n(t) \in C^n$ belonging to the given $C_0(X)_p$, and satisfying the inequality (2), then

$$x(t) \in C_0(X)_p L_{\omega}(X)_p$$
,

and

$$||x||_{\infty} \leq ||x||_{C} + \lambda$$

where

(0)
$$\lambda = AL_1(\omega) + ABL_2(\omega) + BL_3(\omega, x).$$

Here $L_1(\omega), L_2(\omega)$ are constants depending only on $\omega(u)$, while $L_3(\omega, x)$ depends only on $\omega(u)$ and $||x||_G$.

The theorem remains true when we replace $C_0(X)_p$ and $L_{\infty}(X)_p$ by $C_0(X)$ and $L_{\infty}(X)$ respectively.

Proof. We shall prove the theorem for the space $C_0(X)$; for the space $C_0(X)$, the proof runs in the same way.

Suppose there exist functions $x_n(t)$ satisfying the hypotheses. Given a>1, let us set

$$y_0(t) = x_1(t),$$
 $y_n(t) = x_{on}(t) - x_{on-1}(t)$ for $n = 1, 2, ...$

By (2)

$$x(t) = \sum_{n=0}^{\infty} y_n(t)$$

and the series on the right-hand side converges uniformly in $\langle b, o \rangle$ for sufficiently large t, which results from the estimations below. Let m be an index; since $\omega(u)$ satisfies the condition (m), $n \geqslant m$ implies

$$\omega\left(\frac{1}{a^n}\right) = \omega\left(\frac{1}{a^m} \frac{1}{a^{n-m}}\right) \leqslant e^{n-m} \left[\omega\left(\frac{1}{a}\right)\right]^{n-m} \omega\left(\frac{1}{a^m}\right),$$

and for $n \leq m$

$$\omega\left(\frac{1}{a^n}\right) = \omega\left(\frac{1}{a^m}a^{m-n}\right) \leqslant c^{m-n}\omega\left(\frac{1}{a^m}\right)[\omega(a)]^{m-n}.$$

Further, the following inequalities are true:

$$||y_n(t)|| \leqslant ||x(t) - x_{a^n}(t)|| + ||x(t) - x_{a^{n-1}}(t)|| \leqslant 2A\omega \left(\frac{1}{a^{n-1}}\right),$$

$$(4) \qquad \sum_{n=m+1}^{\infty} \|y_n(t)\| \leqslant 2A \sum_{n=m+1}^{\infty} \omega \left(\frac{1}{a^{n-1}}\right) \leqslant 2A \omega \left(\frac{1}{a^m}\right) \sum_{i=0}^{\infty} c^i \left[\omega \left(\frac{1}{a}\right)\right]^i,$$

$$||y_n(t')-y_n(t'')|| \leqslant Ba^n ||y_n||_C |t'-t''| \leqslant 2ABaa^{n-1} \, \omega \left(\frac{1}{a^{n-1}}\right) |t'-t''|,$$

$$\sum_{n=1}^{m} \|y_n(t') - y_n(t'')\| \leqslant 2ABa \sum_{n=1}^{m} a^{n-1} \omega \left(\frac{1}{a^{n-1}}\right) |t' - t''|$$

$$\leq 2ABac^{m} \left[\omega(a)\right]^{m} \omega\left(\frac{1}{a^{m}}\right) \sum_{n=1}^{m} \left[\frac{a}{c\omega(a)}\right]^{n-1} |t'-t''|,$$

where $m=1,\ldots$ and, finally,

(5')
$$||y_0(t') - y_0(t'')|| \leq B \left(A \omega(1) + ||x||_C \right) |t' - t''|$$

$$\leq Bc^m [\omega(a)]^m \omega \left(\frac{1}{a^m} \right) \left(A + \frac{||x||_C}{\omega(1)} \right) |t' - t''|.$$

Choose a so large that

$$c\omega\left(\frac{1}{a}\right) < 1, \qquad \frac{c\omega(a)}{a} < 1, \qquad a > |\Delta|;$$

this is possible in virtue of the postulate (b) in the condition (m). Given $|h| \in (0,1)$ choose m so that

$$\frac{1}{a^{m-1}} > |h| \geqslant \frac{1}{a^m}.$$

Then

$$\|x(t+h)-x(t)\| \leqslant \sum_{n=0}^{m} \|y_n(t+h)-y_n(t)\| + \sum_{n=m+1}^{\infty} \|y_n(t+h)\| + \sum_{n=m+1}^{\infty} \|y_n(t)\|,$$

whence the estimations (4), (5), and (5') lead to

$$egin{aligned} \|x\left(t+h
ight)-x\left(t
ight)\| &\leqslant |h|\,B\left(A+rac{\|x\|_{\mathcal{C}}}{\omega\left(1
ight)}
ight)e^{m}\left[\omega\left(a
ight)
ight]^{m}\omega\left(rac{1}{a^{m}}
ight) \ &+2\,|h|\,AB\,ae^{m}\left[\omega\left(a
ight)
ight]^{m}\omega\left(rac{1}{a^{m}}
ight)rac{\left(rac{a}{c\,\omega\left(a
ight)}
ight)^{m}}{rac{a}{a}-1} +4A\,\omega\left(rac{1}{a^{m}}
ight)rac{1}{1-c\,\omega\left(rac{1}{a}
ight)}, \end{aligned}$$

and since $\omega(1/a^m) \leq \omega(|h|)$, therefore

$$\|x(t+h)-x(t)\| \leqslant \left[2AB\frac{a^2}{\frac{a}{c\omega(a)}-1} + ABa + A\frac{4}{1-c\omega\left(\frac{1}{a}\right)} + \frac{Ba}{\omega(1)}\|x\|_{\mathcal{O}}\right]\omega(|h|).$$

Set

$$(6) \quad L_1(\omega) = \frac{4}{1 - c\omega\left(\frac{1}{a}\right)}, \quad L_2(\omega) = \frac{2a^2}{\frac{a}{c\omega\left(a\right)} - 1} + a, \quad L_3(\omega, x) = \frac{a\|x\|_C}{\omega(1)}.$$

If $1 \le |h| \le |\Delta|$, then, applying the inequality (4) with m = 0 we obtain from (5')

$$\begin{split} \|x(t+h)-x(t)\| &\leqslant \|y_0(t+h)-y_0(t)\| + 4A\,\omega(1) \frac{1}{1-c\,\omega\left(\frac{1}{a}\right)} \\ &\leqslant \left(\left(A+\frac{\|x\|_{\mathcal{O}}}{\omega(1)}\right)B\,|A| + 4A\,\frac{1}{1-c\,\omega(1/a)}\right)\,\omega\left(\,|h|\right), \end{split}$$

and since

$$|ec{ert}| \leq L_2(\omega), \qquad rac{\|x\|_{\mathcal{C}}|ec{ert}|}{\omega(1)} \leqslant L_3(\omega,x),$$

we see that for every $|h| \leq |\Delta|$ the inequality

$$||x(t+h)-x(t)|| \leq \lambda \omega(|h|)$$

holds with λ defined by the formula (o), whence $||x||_{\alpha} \leq ||x||_{C} + \lambda$.

Remark. The theorem 2 belongs to the domain of the classical approximation problems of D. Jackson and S. Bernstein. In the classical problematics $x_n(t)$ is supposed to be a real polynomial of degree n and $\omega(u)=u^a$, while in our case more general Lipschitzian vector valued functions are admitted and $\omega(u)$ are slightly more general. Our method does not differ esentially from the classical procedure.

Similarly to the real case we can choose in the space $C(X)_{2n}$ as C^{n+1} the class of trigonometric polynomials of degree $\leq n$ and of the form

$$x(t) = \sum_{i=0}^{n} (x_i \cos it + y_i \sin it),$$

where $x_i, y_i \in X$. Indeed, as may easily be seen, an analogue of the classical theorem of S. Bernstein holds:

$$||x'(t)||_C \leq n ||x||_C$$

If we choose as C^n the class of the polynomials of degree $\leq 2n-2$, then they contain the Jackson polynomials $s_n(t) = S_{2n-2}(x)$, defined in 2, of the proof of theorem 1 and taking $x_n(t) = S_{2n-2}(x)$ with $x \in C_0(X)_{2x}$ we obtain as equence of functions $x_n(t)$ belonging to $C_0(X)_{2x}$ (the translation-invariance being assumed), which can be used as a sequence of approximating functions in Theorem 2'.

The method used in the proof of Theorem 2' may also be applied to prove the following theorem:

THEOREM 3. Let $\omega(u)$ satisfy the condition (m) and let $y_n(t)$ denote functions from $C_0(X)_n$ satisfying the following conditions:

(*) There is a constant A>0 such that

$$||y_n(t)||_C \leq A \omega \left(\frac{1}{n}\right)$$
 for $n=1,2,...$

(**) $y_n(t)$ satisfy the Lipschitz condition with the constant (1). Under these hypotheses every lacunary series of form

$$\sum_{n=1}^{\infty} y_{\alpha^n}(t)$$

converges uniformly in $\langle 0,p \rangle$ and represents a function in $C_0(X)_p L_\omega(X)_p$ if a is a positive integer satisfying the conditions

$$c\omega\left(\frac{1}{a}\right) < 1, \qquad \frac{c\omega\left(a\right)}{a} < 1.$$

An analogous statement holds it we replace $C_0(X)_n$ by $C_0(X)$.

As application of Theorem 3 let us consider the following example. Let $\varphi(t)$ be a vector valued function with values in X and of period p, satisfying the Lipschitz condition. If $y_n(t) = \omega(1/n)\varphi(nt)$, then the conditions (*) and (**) are satisfied, and if a satisfied the conditions of the theorem, then the series

$$\sum_{n=1}^{\infty} \omega \left(\frac{1}{a^n} \right) \varphi(a^n t)$$

represents a function of $C(X)_p L_{\omega}(X)_p$, provided that $\omega(u)$ satisfies the condition (m). In particular, let $\omega(u)=u^r$, $0<\gamma<1$; then the condition (m) with the constant e=1 is satisfied and we may apply Theorem 3 with $\alpha=2,3,\ldots$

Choose 0 < b < 1, ab > 1 and let $\gamma = -\ln b / \ln a$; then $0 < \gamma < 1$ and $b^n = (1/a^{\gamma})^n = \omega(1/a^n)$, whence the series

$$x(t) = \sum_{n=1}^{\infty} b^n \varphi(a^n t)$$

belongs to $C(X)_p L_{\delta}(X)_p$ for $0 < \delta \leq \gamma$. This result is in a certain sense the best possible. Indeed, for $\varphi(t) = \cos \pi t$ the function x(t) presents for almost every t the following singularity:

$$\lim_{h\to 0} \arctan \frac{|x(t+h)-x(t)|}{|h|^{\delta}} = \infty$$

for $\delta > \gamma$. Analogous singularities may be obtained for more general $\varphi(t)$ under supplementary conditions imposed upon a and b^2).

THEOREM 4. Let $C_0(X)_p$ be translation-invariant, let U(x) be a linear operation from $C_0(X)_p$ to $C_0(X)_p$. Moreover, let U(x) map the space $C_0(X)_p L_1(X)_p$ into the space $C_0(X)_p L_1(X)_p$. Under these hypotheses U(x) has the following properties:

- (a) for fixed $\omega(u)$, $x \in C_0(X)_p L_{\omega}(X)_p$ implies $U(x) \in C_0(X)_p L_{\omega}(X)_p$,
- (β) the operation U(x) is linear from the space $C_0(X)_p L_\omega(X)_p$ to the space $C_0(X)_p L_\omega(X)_p$ and its norm satisfies the inequality

(7)
$$||U||_{\omega} \leq ||U||_{C}(2s+1) + ||U||_{1}(2+\gamma)2s.$$

Here $s=\max(1,p)$ and $\gamma=\sup_{0< u\leqslant 1}u/\omega(u)$ is supposed to be finite.

The theorem remains true if we remove the translation-invariance, replace the spaces $C_0(X)_p, L_\omega(X)_p, L_1(X)_p$ by $C(X), L_\omega(X), L_1(X)$ respectively, and multiply the right-hand side in the inequality (7) by 2.

Proof. We prove first that U(x) is linear from $C_0(X)L_1(X)_p$ to $C_0(X)_pL_1(X)_p$. Indeed, let $U(x_n)\to y_0$ and $x_n\to x_0$ (in the sense of the convergence generated by the norm in $C_0(X)_pL_1(X)_p$); then $||x_n-x_0||_c\to 0$, $||U(x_n)-y_0||_c\to 0$, whence $y_0=U(x_0)$ and it suffices to apply the closed graph theorem of Banach³).

Let $T_n(x)$ be linear operations of theorem 1 chosen so that $A=B==\|x\|_{\omega}$. If $x\in C_0(X)_nL_{\omega}(X)_n$, then

$$||x-T_n(x)||_C \leqslant ||x||_{\omega} \omega \left(\frac{1}{n}\right).$$

Further, the following inequalities are satisfied:

$$\parallel U(x) - U\big(T_n(x)\big)\parallel_C \leqslant \parallel U\parallel_C \parallel x - T_n(x)\parallel_C \leqslant \parallel U\parallel_C \parallel x \parallel_{\omega} \omega\left(\frac{1}{n}\right),$$

$$||T_n(x)||_C \leqslant ||x||_C + ||x||_\omega n\omega\left(\frac{1}{n}\right) \leqslant ||x||_\omega \left(1 + n\omega\left(\frac{1}{n}\right)\right),$$

$$(9) ||T_n(x)||_1 \leq ||T_n(x)||_C + k_n \leq ||x||_{\omega} \left(1 + 2n\omega\left(\frac{1}{n}\right)\right) \leq ||x||_{\omega} (2+\gamma)n\omega\left(\frac{1}{n}\right),$$

$$||U(T_n(x))||_1 \leq ||U||_1 ||T_n(x)||_1.$$

By Theorem 2, (8) and (9), (9') imply $U(x) \in C_0(X)_p L_{\omega}(X)_p$ and $||U(x)||_{\omega} \leq ||U(x)||_{C} + \lambda \leq ||U||_{C} ||x||_{\omega} + 2s(||U||_{C} ||x||_{\omega} + ||U||_{1} (2+\gamma)||x||_{\omega})$ $\leq [||U||_{C} (2s+1) + ||U||_{1} (2+\gamma) 2s]||x||_{\omega},$

and this implies the inequality (7).

Remark. We can replace in Theorem 4 the hypothesis of the linearity of U(x) by the hypothesis that U(x), as an operation from $C_0(X)_p$ and from $C_0(X)_p L_1(X)_p$ to itself, satisfies the Lipschitz condition of the following form:

$$||U(x)||_C \leqslant K_C ||x||_C$$
, $||U(x)||_1 \leqslant K_1 ||x||_1$.

Then the assertion of Theorem 4 is to be read:

U(x), as an operation from $C_0(X)_p L_{\omega}(X)_p$ to $C_0(X)_p L_{\omega}(X)_p$, satisfies a Lipschitz condition of the form

$$||U(x)||_{\omega} \leqslant K_{\omega} ||x||_{\omega}$$

²) See W. Orlicz, Sur les fonctions satisfaisant à une condition de Lipschitz généralisée (II), Studia Mathematica 13 (1953), p. 69-82.

³) S. Banach, Théorie des opérations linéaires, Monografie Matematyczne, Warszawa 1932, p. 41, théorème 7.

In formula (7) the norms $\|U\|_{\omega}$, $\|U\|_{C}$, $\|U\|_{1}$ are to be replaced by K_{ω}, K_{C}, K_{1} .

2. We shall consider some cases of the spaces $C(X)_p$, $C_0(X)_p$ with the space X properly chosen, leading to some classes of functions considered in the approximation theory.

A. Let X denote the space of real numbers; then $C(X)_p$ is the space of continuous functions of period p, and $C(X)_p L_\omega(X)_p$ is the space of the functions of period p whose modulus of continuity $\tilde{\omega}(u)$ satisfies the inequality

$$\tilde{\omega}(u) = O(\omega(u)).$$

B. Let X be the space L^r of functions of period p, integrable with the r-th power in $\langle 0,p\rangle$ $(r\geqslant 1)$. As $C_0(X)_p$ let us choose the space of the functions x(t) of the form x(t)=f(t+v) where $f(v)\in L^r$; then evidently $C_0(X)_p$ is translation-invariant.

Since there exists a linearly-isomorphic correspondence between the functions x(t) and f(v) and, moreover, for every t

$$||x(t)|| = \left(\int\limits_0^p |f(t+v)|^r dv\right)^{1/r} = \left(\int\limits_0^p |f(v)|^r dv\right)^{1/r} = ||f||_r,$$

therefore it follows that the space $C_0(x)_p$ is equivalent to the space L^r . The formula

$$||x(t+h)-x(t)|| = \left(\int_{0}^{p} |f(v+h)-f(v)|^{r} dv\right)^{1/r}$$

implies that $C_0(X)_p L_{\omega}(X)_p$ is the space of the functions for which the L^r -modulus of continuity $\tilde{\omega}_r(u)$ satisfies the condition $\tilde{\omega}_r(u) = O(\omega(u))$, whence it is identical with the class $L(\omega,r)$ of functions occurring in the theory of Fourier series.

B'. Let M(u) be a monotone, convex and continuous function in $(0,\infty)$, vanishing only for u=0 and such that

$$\lim_{u\to 0}\frac{M(u)}{u}=0, \quad \lim_{u\to \infty}\frac{M(u)}{u}=\infty, \quad M(2u)=O(M(u)).$$

We choose as X the space L^M corresponding to the function M(u), i. e. the space of measurable functions of period p, for which

$$\int_{0}^{p} M(|f(v)|) dv$$

is finite⁴). The space $C_0(X)_p$ will be defined as in B with $f(v) \in L^M$.

$$(10) \hspace{3cm} x(t) \sim \sum_{i=1}^{\infty} a_i \, \varphi_i(t)$$

being the development of an arbitrary function x(t) of F the series

(11)
$$\sum_{i=1}^{\infty} \lambda_i a_i \varphi_i(t)$$

is also a development of a function $y(t) \in F$. Let us denote by C, L_1, L_{ω} respectively the spaces $C(X), L_1(X), L_{\omega}(X)$, where X is the space of real numbers.

THEOREM 5. Let the system $\Phi\{\varphi_i(t)\}$ be complete in C. If $\{\lambda_i\}$ is simultaneously a multiplicator of the class (C,C) and (L_1,L_1) , it is also a multiplicator of the class (L_{ω},L_{ω}) with arbitrary $\omega=\omega(u)$, $\gamma=\sup_{0< u\leqslant 1}u/\omega(u)$ being supposed to be finite.

Proof. Let U(x) be an operation in C, transforming the function x(t) into the function y(t) whose development is (11). The completeness of the system Φ and the closed-graph theorem of Banach imply that U(x) is a linear operation from C to C. It suffices to apply Theorem 4.

(Recu par la Rédaction le 18. 12. 1953)

⁴⁾ See W. Orlicz, Über eine gewisse Klasse von Räumen vom Typus B, Bull. Acad. Polonaise des Sciences (1932), p. 93-107; W. Orlicz, Über Räume L^M , ibidem (1936), p. 93-107.