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On a class of operations over the space of continnous
vector valued functions
by
W. ORLICZ (Pornat)

1. By o(u) we shall denote a non decreasing function, defined for
>0, positive for >0, vanishing for x=0 and such that limw(u)=0.

U—>0

‘We shall say that the function w(u) satisfies the eondition (m) if
(2) ‘ w(w)<do(u)w(v),

(b) ————m(u)—w as  #->oo.
a

The condition (m) implies

(b’) wzu) >o0 as u—>0.
Indeed, by (a) ,
wlu) (1)
% cuo(lju)

The functions w(u)=u" or w(u)=u*(|Inu|+1/a), where 0<a<1, satisfy
the condition (m).

X will denote a Banach space. ¢(X) will stand for the Banach space
of continuous X-valued functions x(t) defined in A= (g,b) under the
usual definitions of addition and multiplication by scalars and with the
norm

l#lle =Tax i (M-

By C(X), we shall denote the space of continuous X-valued functions
#(t) defined for —oo<t<oo and of period p; C(X), may become, as
above, Banach space (1f we define the norm by the above formula with
A=(0,p)).
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Given a function w(u), we denote for z(t) belonging to C(X) or
0(X),

o et —a@)
) o

where in the case if #¢C/(X) the supremum is taken for ted,a—t<<h b —1,
and if #¢C(X),, for arbitrary ¢, h.

By L,(X) or L,(X), respectively we shall denote the linear space
of functions of ¢(X) or 0(X), respectively, for which u<<co. Under the
usual definitions of addition and multiplication by scalars, and with the
norm

fllo= max e @l -+,

they are Banach spaces.’

If o(u)=u", 0<a<1, we shall write L (X) instead of L,(X), and
flz]l, instead of [|#,. The functions of L,(X) with 0<a<1 are said to sa-
tisfy the Holder condition with the esponent a, the functions of L,(X) are
sald to satisfy the Lipschite condition. In the last case the constant k,
such that for a—t<<h<b—1 :

Nl (t+h)—a ()| <E|H,

is called the Lipschitz constani. Analogous terminology will be used for
spaces of periodic functions.

Obviously 0(X)DL,(X)DL,(X) if a<p.

By 04(X) or 0o(X), we shall denote a complete subspace of C(X)
or 0(X), respectively. If we restrict the functions 2(2) to run over the space
0, (X) then we obtain a complete subspace 04(X) L, (X) of the space L (X).

‘We shall say that the space Cy(X ) 18 translation-invariant if #(t)e 0y (X )p
implies, for every =, 2(1+7) 60y (X),, )

Lemwma. If for every vev’,v'"> the fumdtion %(z;t) belongs to Cy(X)
[to Co(X),] and ®(z;:) depends continuously on the parameter T, then the
function

F7a

y(O)=[ @ (z;t)ds

!

also belongs o C,() [to 0y (X )pl- The integral is taken in the sense of Riemann-
-Graves.

Proof. Given a partition m£1’=10<r1<...<rn=1”, let us write

z(n,t)=21'm(r-_1;t)(~q—ri 1)

icm
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The function of two variables #(z 5:)=2a(7,t) is uniformly continnous
in (7',7"")x 4. Let Q(3) be the modulus of continuity of z(z,#); then,
for every partition s,

it ) —a(m, < (2 — ') 2(8),

if [¢’—¢"”|<4. Given a normal sequence of partitions {7}, We see that
2 =2(7,,8) >y (¢) uniformly in {a, b, for #(x,,?) —y(t) at every te{a,b),and

the funetions z(w,,t) are uniformly continuous. Hence
lza=ulle—=0,  yeCy(X).

THEOREM 1. Let the space Co(X), be iranslation-invariant; them it
i8 possible to define linear operations T, (x) from 0y(X), 1o Co(X), L, (X),
is such a manner that:

(a) if meCy(X),L,(X),, w=ow(u) being fived, then the functions

(1) =T, () satisfy the Lipschitz condition with the constant

1
(1) k,=Bnw (;),
(b) for n=1,2,...
1
e o—slo< o).

(c) the constants A,B in (1) and (2) do not depend on n.
It is possible to define T,(x) such that

A=|z[l,, - B=|a{.,-

The theorem remains true if we remove the condition of translation-
-invariance of the space and replace the space Cy(X), by the space C(X).
In this case we may set A=3|z|,, B=|z],. )

Proof. The particular case where X is the space of real numbers
and 0,(X), is identical with (X)), is well known. In this case the opera-
tions T, (z) may be defined in several ways, . g. by means of singular
integrals. This device may be adapted to the space 0y(X), satisfying
the translation condifion. .

As an example we present three kinds of the introduetion of T, (z),
taking p=2x.

1. Let us write

i+1n in
£, (1) =Tp(x)=n [ a(c)dv=n [ 2(v-+1)dz.
i []
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‘ . , 1
By owr Lemma T, ()eCy(X),. Since mdt):n[m(t-i—q—) —m(t)], we geb

7’ 1‘ 7
Hwn(t)llQ%Hmew(;), 2 (3)] < 20| )lc.
Hence w,(t) satisfies the Lipschitz condition with the constant (1), where
B=lla|,, and T, () is a continuous operation from €y(X), to 0,(X), L, (X)
moreover

1 1
l#(2) —-’ﬂn(t)ll<ﬂof [ (@) —a(t+ol dr <lloll, (Z) .

This implies the condition (b) with 4 ={z|,.
2. Set

t

2

(2n2+1)

.ot 4 x n
(1) = sin —- cosec— , yp=[ by (t)dt=2m

We define first the Jackson integrals?) for n=1,2,... as

8, (8) =8y, _5(2)= 1 fm(r)kn(r—t)drz 1 o (z+2)k, (1) dz.
"N —x yﬂ —-—n

If #(t)e 0y(X), then, by our Lemma, $,(t) €0y (X),. The same estimations
as in the case of real functions #(?) give

) Jo—sulo < 6llal (),

39 lisalle <li#lle.
If 2(t) satisfies the Lipschitz condition with the constant K, then s,(t)
satisfies this condition with the same constant, for
17 ‘
Ilsn(t+h)—8,.(t)ll<;- fllw(t+r+h)—w(t+r)lfkn(r)dfiK{tl‘
N —z
Choosing an arbitrary sequence of operations «f(t)=T"(x) satisfying
the condition (a), (b) with eonstants A=B=|lg|, and setting
Tzn—l(m)=SAn-2(T;n—1(w))1

Ton (@) =84 o Ton(2))  for m=1,2,...,

%) Concerning 2 see, for instance, U. . Hararcon, Koncmpyxmusnas meopus
Pyrryui, Mocksa 1949, p. 111.119.
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we see that the functions T,,(s) and T,, ,(») satisty the Lipschitz con-
dition with fthe constants |z||,2n0(1/2n) or }Im};m(2n—1)w(1/(2n~1))
respectively. Since :

1
lo—Ta (@)l < nw”m“’(gﬁ)’
we infer by (3') that

1
1842 (2) —Top (#)lo < vl (ﬂ) ’
and this, together with (3), leads to

1
nx_r,,.(wmc@llwli»“’(5;;)‘
Analogously

1
{18 —Top_r (@Ml < T2}, 0 (m)

Hence we can set 4=7|z|,, B=/||z|l,. Let us observe that k,(t) is a tri-
gonometric polynomial ot the form
2n—2
k (B)= 3 ¢; cosit.
i-o
The representation of T,,(2) and T, ,(#) by aid of the Jackson integral
shows that these operations may be written as a trigonometrical poly-
nomial of degree 4n—2
4n—2
D (w; cosit--y; sinit),

=0
where
w=c; [ Ty (2) cosivdr, y;=¢; [ Th(z)sinizrdr,
and are linear operations from C,(X), to X.
3. Replacing Cy(X), by C(X), we can define T, (x) as a polygonal
function x,(f) assuming for

4 )
ti=a+;‘—, i=0,1,..., m=E[n(b—a), .

the value #(#;), linear in the intervals {t;_;,f;> for i=1,...,m—1, and
in the interval (a-+m/n,b) equal to #(t,_,) if atm/ns£b.
In this case we can choose A=3||z|,/2, B=||#|,. If (u) satisfies the
condition (m), we can replace the coefficient 3/2 above by 1/2-+¢w (1/2).
Analogously we can define «,(f) in the space C(X),.

Studia Matematica XIV 19
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TErorREM 2. If there ewist fundiions () €Co (X)), satisfying the Lip-
schitz condition W’Lth the constant (1), and if the inequality (2) 48 satisfied
for n=1,2,..., then

#(t) e Co( Xy L (X
for every w(u); moreover,
ol <lalle+2,
where A=2 max[4+B,A+Bl4l]

The theorem remains true if we replace Co(X), and L,(X), by Co(X)
and L (X) respectively.
Prooif. By our hypothesis

1
lot—a(Olg< Ao (35);

1
l[730 (¢) — 30 (1 < B2 00 (‘2;) ="l

Given |h]e(0,1) let us choose # %0 that
1

-1
on

1
>z
Then the inequality
(8 4+ ) — (O] <1 (t4-R)—@an (6B H2 (8) — 2 (D] [0 () — 2 (D]

<2Aw( )+B‘>“ ( )lh1<9(A+B o(|B)

is satistied. Tf 1<|h{<<|4], the last inequality with nw-(:() leads to
o (t+h)—z (<2 (A+BlA]) o ({hl).
Thus setm’ng i=2 max[A-+B,A+B|4]], we get
feello i llo+4-

TEEoREM 2. Let o(u) satisfy the condition (m), and let 0" =C"(X)p,
be a linear subset of O(X), whose functions hawe the following properties:

(%) the class C™ is contained in C™* b

(%) the functions of O™ satisfy the Lipschitz condition with the con-
stant k,=Bn|z|lg, B being independent of n.

If for w=1,2,... there exisis a function %, (t)eC" belonging to the
given Co(X),, and satisfying the inequality (2), then

w(t) ECO(X)me(X)ps

icm
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and
Izl <llzle+4,
where
(0) A= AL,(0) + ABIy(0)+BIy(w,1).

Here L;(w), Ly (w) are constants depending only on o(u), while Ly(w,o)
depends only on w(u) and |jzlq.

The theorem. remains irue when we replace Cy(X), and L,(X), by
0y(X) and L,(X) respectively. i

Proof. We shall prove the theorem for the space Co(X); for the
space C,(X), the proof runs in the same way.

Suppose there exist functions a,(f) satisfying the hypotheses. Given
a>1, let us set

Bolt)=2:(8);  Yn()=2p(t)—Tma(t) for n=1,2,..

By (2)

00

()= Y yn(t)

and the series on the right-hand side converges uniformly in (b,¢> for
sufficiently large i, which results from the estimations below. Let s be
an index; since () satisfies the condition (m), nZ>m implies ‘

o) =elm =) <ol ol

and for n<<m

® (;ln-) = (a—lm a’“‘“) <™ " (;1,7) [0 (@)™

Further, the following inequalities are frue:
||y,.(t>n<uw<t>—wm(t)n+nm<t)—wm-l(t»;suw(;};—l),

s e A

n=m+1 =0

1\
n—1 It —t l)

ley,‘ () yn(t”)l<2ABa2a “la)( 3_1) ' —1""|

n=1

<24Bad™[w(a)]"» (—1—\) Zm [—f—]w 1t —i"|
= = am] & | ew(a) !

194 () =44 @< Ba™ly,llo i’ —1"| <2ABaa" o ( -

19+
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and, finally,
o)~ (¢ <B4 (1)

where m=1,...
) Hlg) 1t —1"1

(59
<ch[a)(a>]mw(a_j;n) (A—|- flzllc ) it —1"].

(U
Choose @ so large that

1 cw(a
co (—)<1, ——«-(—)'— <1,
a, @

this is possible in virtue of the postulate (b) in the condition (m). Given
|h]€(0,1) choose m so that

a>|4];

e > > .
Then
[l (t+Rh)— (1) _;‘ollun (1R — g (D] + ,2 R (t+h) i+ 2 nun s

whenee the estimations (4), (3), and (') lead to

1
o)== @<l {4+ ) nta oo )
(—“ )’"
+2 |k ABac[w(a)] (lm)—"i;’—@# +4Aw(glﬁ)—l—1,
¢ —1 1—0@(—)
¢ w(a) a
and since o (1/a™)<w(|h|), therefore
3 4
uw(t+h)—w(t)n<[2w%—— +4Bo A ——r 4 o ”0] o([hl).
—1 1—cw (—)
cw(a) @
Set
. 4 24’ aflzllo
(6) L].(w):‘“‘*—_(‘i-)*’ L,(w):——a——l-a., L(w,m) w(].)
1—co |- _—1
_ a, cow(a)
If 1<|p|<|4], then, applying the inequality (4) with m=0 we obtain
from (5)
1
o (t4-R) —2 @Yo (t-+h) —yo (Dl +44 o (1)
1—00)(—)
@,
”“"”c) 1 )
<((A+ 0 BIAI+4=A———-———w(1/a) o ([h]),

icm
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and since
mJIch

1A}<L3(w), < Ls(o,2),

we see that for every [n|<|4| the meq_ua.hty
l& (¢ +h) —z @ <Aoo (1h])

holds with A defined by the formula (o), whence ||, <l|#|lc+4
Remark. The theorem 2 belongs o the domain of the classical
approximation problems of D. Jackson and S. Bernstein. In the clas-
sical problematics x,(f) is supposed to be a real polynomial of degree n
and o(w)=w" while in our case more general Lipschitzian vector
valued functions are admitted and o(u) are slightly more general. Our

- method does not differ esentially from the classical procedure.

Similarly to the real case we can choose in the space €(X),, as O*!
the class of trigonometrie polynomials of degree <<n and of the form

n

x(t) Z‘(m o84t +y; sinit),
<o
where ;,y;¢ X. Indeed, as may easily be seen, an analogue of the clas-
sical theorem of S. Bernstein holds:

l2" (e <n ll2lle-

If we choose as O™ the class of the polynomials of degree <{2rn—2, then
they contain the Jackson polynomials s,(f)==Ss,_»(2), defined in 2, of
the proof of theorem 1 and taking =, (t)==8,,_,(¢) with 2eCy(X),, Wwe
obtain as equence of functions 2, (f) belonging to Cy(X),, (the translation-
-invarianee being assumed), which can be used as a sequence of approxima-
ting functions in Theorem 2.

The method used in the proof of Theorem 2’ may also be applied
to prove the following theorem:

THEOREM 3. Let w(u) satisfy the condition (m) and let y,(t) denote
functions from Cy(X), satisfying the following conditions:

(%) There is a constant A>0 such that

nle<do(2) for w=13,..

(%%) ¥,(1) satisfy the Lipschitz condition with the constant (1).
Under these hypotheses every lacunary series of form

ﬂg Yanlt)
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converges uniformly in (0,p> and represents a function in Cy(X),L,(X)
if @ 4s a positive integer satisfying the conditions

(1)
co|—)<1,
o

An analogous statement holds it we replace Co(X), by Cy(X).

As application of Theorem 3 let us consider the following example,

Let @(t) be a vector valued function with values in X and of period p,
satisfying the Lipschitz condition. If 4, ({)=cw(1/n)@(nt), then the con-
ditions (x) and (%) are satisfied, and if a satisfied the conditions of the

theorem, then the series
bl 1

n=1
represents a funetion of € (X), L, (X),, provided that o (u) satisties the con-
dition (m). In particular, let w(u)=u", 0<y<<1; then the condition (m) with
the constant ¢=1 is satistied and we may apply Theorem 3 with a=2,3,...
Choose 0<b<1, ab>1 and let y=-—Inb/lng; thén 0<y<<l and
b"=(1/a*)"=w(1/a™), whence the series

‘ m(t)=§1b"¢(a’“t)

belongs to C(X),L,(X), for 0<dé<y. This result is in a certain sense
the Dbest possible. Indeed, for ¢(t)=cosnt the function #(t) presents for
almost every t the following singularity:
t+h)—ax(t

limape BEER—00] _
: >0 (B
for d>y. Analogous singularities may be obtained for more general p(t)
under supplementary conditions imposed upon a and b2).

THEOREM 4. Let C4(X), be translation-invariant, let U(w) be a Ui-
near operation from Cy(X), to Co(X),. Moreover, let U(x) map the space
0y (X), Ly (X), into the space C(X)p Ly (X),. Under these hypotheses U(z)
has the following properties:

(@) for fimed w(u), 26Cy(X),L,(X), implies U(z)ely(X),Lu(X),,

(B) the operation U(wm) is linear from- the space Co(X), L, (X), to
the space Cy(X),L,(X), and its norm satisfies the inequality

(7 1011 Ullo(28+1) -+ Ul (24-) 2s.

Here s=max(1,p) and y= sup «/o(u) is supposed to be finite.
0<u<1

b4

wole) .

*) See W. Orlicz, Sur les fonctions satisfaisant & une condition de Lipschitz
généralisée (II), Studia Mathematica 13 (1953), p. 69-82.
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The theorem remains true if we remove the translation-invariance,
replace the spaces Cy(X),,L,(X),,[(X), by C(X),L,(X),L;(X) respec-
tively, and multiply the right-hand side in the inequality (7) by 2.

Proof. We prove first that U(z) is linear from (,(X)L,(X), to
Co(X)p Ly (X),. Indeed, let U(z,) >y, and x,->a, (in the sense of the con-
vergence generated by the norm in 0y(X),L,(X),); then {z,—a,~0,
1T (2,) —¥oll.—>0, whence y,=U(x,) and it suffices to apply the closed
graph theorem of Banach®).

Let T, (z) be linear operations of theorem 1 chosen so that A=B=
=|all,. If veCy(X),L,(X),, then

o~ T, @lo<lolo (2.
Further, the following inequalities are satisfied:
| 1U (@)~ U(Z, (@)l <1 Tlicllo — T, (@)l < | Ullelialla @ (%),
(8) L L
T (@) o< #llo-+l@]one (;;) <l (1+ no (;{)),

1
) uT,,(w)n,<nTn(w>nc+ku<uxum(1+2nw(§))<uwnm(2+mw(;),

(9 1T(T @)l <N TN T (2)h-
By Theorem 2, (8) and (9), (9’) imply U(z)eCy(X), L, (X), and
1T @), <IT (@)le+4 <[ Tllcl#lla =+ 28 (| Tlicliallo 1 Tlh (24-7)l12)
<[1Tlo(28+1)+ Ul (24+) 28]l 2]l

and this implies the inequality (7).

Remark. We can replace in Theorem 4 the hypothesis of the linearity
of U(z) by the hypothesis that U(z), as an operation from 0, (X), and
from €, (X), L (X), to itself, satisfies the Lipschitz condition of the
following form:

@) le<Kollole, N0 < Killel,-
Then the assertion of Theorem 4 is to be read:

U(z), as an operation from Cy(X),L,(X), to Co(X)p Ly(X)y, sa-.

tisties a Lipschitz eondition of the form
1T (@)l < Eofl#la-

3 §. Banach, Théorie des opérations linéaires, Monografie Matematyczne,
Warszawa 1932, p. 41, théordme 7,
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In formula (7) the norms [|Ull,, ||Ulle, | Ull are %o be replaced by
¥, Kq K.

2. We shall consider some cases of the spaces C (X)p, 0o (X), with
the space X properly chosen, leading to some classes of functions con-
sidered in the aproximation theory. .

A. Let X denote the space of real numbers; then ¢/(X), is the space
of continuous funetions of period p, and C(X),L,(X), is the space of
the functions of period p whose modulus of confinuity @&(u) satisfies
the inequality

@ (uw)=0{w (u)).

B. Let X be the space L" of functions of period p, integrable with
the r-th power in (0,p) (r>1). As (y(X), let us choose the space of the
functions #(¢) of the form x(¢f)=f(t4+v) where f(v) e L"; then evidently
Cy(X), is translation-invariant.

Since there exists a linearly-isomorphic correspondence between
the functions «(¢) and f(v) and, moreover, for every ¢

lo(®l=( [ -+ aofr= (,,f ) @) =l fl,,

therefore it follows that the space C,(x), is equivalent to the space L.
The formula

Joo -+ ) —az (1) =( f F(©+ By —F (o) o)

implies that O4(X),L,(X), is the space of the functions for which the
L'-modulus of continuity @,(w) satisties the condition @, (u)=0(w(w)),
whence it is identical with the cldss L(w,”) of functions occuring in the
theory of Fourier series. .

B'. Let M(u) be a monotone, convex and continuous function in
{0,00), vanishing only for #=0 and such that
M(u) —0, 1lim M (u) oo

u—+co U

lim
%—>0 w

, M (2u)=0(M ().

We choose as X the space L™ corresponding to the function M (u),
4. ¢. the space of measurable functions of period p, for which

b4
JM(lf('U)l)d’U
iy finite®). The space Cy(X), will be defined as in B with f(v) ¢ L.

% See W. Orlicz, Uber eine gewisse Klasse won Riwmen wvom Typus B,

Bull. Acad. Polonaise des Sciences (1932), p. 93-107; W. Orlicz, Uber Riume LM,
ibidem (1936), p. 93-107.
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Now we shall supply an application of theorem 4 to the theory of
orthogonal systems. Let di{q:i(t)} be an orthonormal system in {a,b)>

" and let F be a class of integrable functions. The sequence {4;} is called

the multiplicator of class (F,F) if, in case of
(10) ) #(t) “’.‘_2; a; @;(f)

being the development of an arbitrary function x(z) of F the series
(11) g,l A i (f)

is also a development of a function y(t)eF. Let us denote by C,Ly, L,
respectively the spaces C(X),L,(X ), L,(X), where X is the space of real
numbers. .

THEOREM 5. Let the system ®lg;(1)} be complete in C. If {4} is sim-
ultaneously o multiplicator of the dlass (C,0) and (I, Ly), it is also mu.lti—
plicator of the dlass (L,,L,) with arbitrary wo=ow(u), y=os<1;1<)1u/m(u) being
supposed to be finite. <

Proof. Let U(s) be an operation in €, transforming the function
#(t) into the function y(t) whose development is (11). The completeness
of the system @ and the closed-graph theorem of Banach imply that
U(z) is a linear operation from € to C. It suffices to apply Theorem 4.

( Regw par la Rédaction le 18. 12. 1953)
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